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Abstract—Consider a binary string (a symmetric Bernoulli sequence) of length �. For a positive integer �, 1 ≤ � ≤ �, we exactly enumerate, 
in all 2� possible binary strings of length �, the number of all runs of 1s of length (equal, at least) � and the number of 1s in all runs of 1s of 
length at least �. To solve these counting problems, we use probability theory and we obtain simple and easy to compute explicit formulae as 
well as recursive schemes, for these potential useful in engineering numbers. 
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1. Introduction and Preliminaries 
Nowadays, the increasing use of the computer science in 

diverse applications including encoding, compression and 
transmission of digital information calls for understanding the 
distribution of runs of 1s or 0s. For instance, such knowledge 
would help in analyzing, and comparing also, several 
techniques used in communication networks (wired or 
wireless). In such networks binary data, ranging from a few 
bytes (e.g. e-mails) to many gigabytes of greedy multimedia 
applications (e.g. video on demand), are highly processed. For 
details, see [1-2] and the references therein. 

  Another area where the study of the distribution of runs of 
1s and 0s has become increasingly useful is the field of 
bioinformatics or computational biology. In particular, 
molecular biologists examine tandem repeats among DNA 
(Deoxyribonucleic acid) segments trying to specify how 
probable are runs of matches, denoted as 1s, in adjacent 
segments of a DNA sequence. See, e.g. [3-5]. 

In such applications, as the indicative ones mentioned 
above, a key point is the understanding how 1s and 0s are 
distributed and combined among the elements of a binary 
sequence (finite or infinite, memoryless or not) and eventually 
forming runs of 1s and 0s according to certain enumeration 
rules (counting schemes). Each enumeration rule defines how 
runs of same symbols (i.e. 1s or 0s) are formed and 
consequently counted. A rule may depend on, among other 
considerations, whether overlapping counting is allowed or not 
as well as if the counting starts or not from scratch when a run 
of a certain size has been so far enumerated. For extensive 
reviews of the runs literature we refer to [6-8]. The topic is still 
active and attractive too, because of the wide range of its 
application in many areas of applied probability and 
engineering including hypothesis testing, quality control, 
system reliability and financial engineering. Some recent 

contributions on the subject, among others, are the works of [9] 
– [22].  

Let {��}��� be a sequence of binary (two-state) random 
variables (RVs) taking on the values zero (0) or one (1) ordered 
on a line. According to Mood’s [23] enumeration scheme a run 
of 1s (1-run) is defined to be a sequence of consecutive 1s 
preceded and succeeded by 0s or by nothing. The number of 1s 
in a 1-run is referred to as its length (or size). For a positive 
integer �,   let ��,�  denote the number of 1-runs of length 
exactly � in the first  � , � ≥ � ≥ 1,  binary trials. Following 
Makri and Psillakis [19], we use the indicator functions 
�� = (1 − ����)(1 − ����) ∏ �� ,

�
�������  ending at �, � ≤ � ≤

�,  with the convention �� ≡ ���� = 0 . Consequently, the 
statistic ��,� can be expressed as  ��,� = ∑ ��

�
��� . The RV ��,�, 

which is a fundamental one in the run literature, besides its 
independent merit, may be used for  the representation of other 
interesting statistics, too. Among them, the following two have 
been frequently discussed in the literature and in particular in 
financial engineering and bioinformatics [4, 17-18]. They refer 
to 1-runs of length exceeding a positive integer �, 1 ≤ � ≤ �, 
in � binary trials, and they are the number ��,�  of 1-runs of 
length at least �; ��,� = ∑ ��,�

�
��� , and the number ��,� of 1s in 

all 1-runs of length at least �; ��,� = ∑ ���,�
�
��� . An alternative 

interpretation of  ��,� is that it denotes the sum of the lengths of 
the 1-runs of length greater than or equal to �. The statistics 
��,�, ��,�, ��,�  have been studied on binary sequences of 
several internal structures by many researches who used 
various methods. See, e.g. [1, 4, 9, 11-14, 17-19, 23-30].  

In this brief note we show how someone can easily 
enumerate explicitly the (total) number of occurrences of all 1-
runs associated with the first two mentioned statistics, as well 
as, the (total) number of 1s according to the third one, in all 
possible 2� binary strings of length �. Our approach is relied 
on simple and efficient probabilistic arguments. It provides an 
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alternative way to recapture explicit formulae for numbers 
associated with 1-runs and it also establishes a new explicit 
expression for the number of 1s in certain 1-runs. A unified 
recursive scheme for these numbers is provided, too.    

2. Main Results 
Let ��,�

(�)  stand for the RVs ��,� , ��,� , ��,�  for � = �, �, �,      
respectively. The support (range set) of  ��,�

(�) is 

�(��,�
(�)) = �

{0,1, … , �(� + 1) (� + 1)⁄ �} ��� � = �, �
{0, �, � + 1, … , �} ��� � = �

 .   (1) 

Next, we consider a sequence {��}���
�  of length � of 

independent (i.e. derived by a memoryless source) and 
identically distributed 0-1 RVs with a common probability of 
1s �;  i.e. � = �(�� = 1) = 1 − �(�� = 0) = 1 − � , � =
1,2, … , �.   Such a sequence, called a finite Bernoulli sequence, 
is of particular importance in studies of applied probability 
because of its simplicity, and also since it may be considered as 
a special case of a sequence with dependent elements; e.g. a 
Markovian or an exchangeable one. 

For a Bernoulli sequence of length  �, let �(�)(�; �, �; �) 
denote the probability mass function (PMF) of the RV ��,�

(�); i.e. 

 �(�)(�; �, �; �) = �(��,�
(�) = �), � ∈ �(��,�

(�)), � = �, �, �.    (2) 

 Then, the expected value of ��,�
(�), 

����,�
(�); �� = ∑ ��(�)(�; �, �; �),�∈�(��,�

(�))                         (3) 

 is given by (see Makri et al. [11]) 

����,�
(�); ��

=

�
�
�

�
�

0, � = �, �, �, ��� � > �
��, � = �, ��� � = �

����2 + (� − � − 1)��, � = �, ��� 1 ≤ � ≤ � − 1
���1 + (� − �)��, � = �, ��� 1 ≤ � ≤ �

���� + (� − �)(�� + �)�, � = �, ��� 1 ≤ � ≤ �.         (4)

  

In the sequel, we consider a symmetric (� = 1/2) finite 
Bernoulli sequence (i.e. a finite binary string) of length � for 
which we obtain our main results. Since the cardinality of a 
proper sample space is 2� (i.e. there are 2� binary strings that 
are equally likely to occur) the classical definition of 
probability implies that 

�(�)(�; �, �; 1 2⁄ ) = ��,�;�
(�) 2�⁄ .                                        (5) 

The numbers ��,�;�
(�) , � ∈ �(��,�

(�)), for � = �, �, � admit the 
following interpretation: (i) ��,�;�

(�) , � = �, � is the number of 
all binary strings of length �  with exactly �, � =
0,1, … , �(� + 1) (� + 1)⁄ �, 1-runs of length [exactly (� = �), 
at least (� = �)] �, among all the 2� possible binary strings of 
length � , � ≥ � ≥ 1 . (ii) ��,�;�

(�)  is the number of all binary 
strings of length �  with exactly �, � = 0, �, � + 1, …, n, 1s 
contained in all 1-runs of length at least �, among all the 2� 
possible binary strings of length �, � ≥ � ≥ 1. 

Simple explicit expressions of ��,�;�
(�)  (not repeated here) are 

given in Makri and Psillakis [19]. The authors provided an 
explicit formula of  ��,�;�

(�) , for � = �, �, � in terms of binomial 
coefficients. Their method is based on the solution of a 
combinatorial problem; specifically, the allocation of balls into 
cells under certain constrains (see Lemma 2.2 of [11]). An 
explicit expression of  ��,�;�

(�)  , in terms of binomial coefficients 
too, is given by Sinha and Sinha [1] who used a generating 
function approach. The latter expression contains an additional 
sum; therefore it may be evaluated slower computationally than 
that provided in [19]. 

The numbers ��,�;�
(�)  allow us to establish (we do not actually 

need their specific expressions according to the new proposed 
approach) respective numbers referring to all possible 2� 
binary strings of length �. They are defined as 

��,�
(�) = ∑ ���,�;�

(�)
�∈�(��,�

(�)) ,                                                   (6) 

i.e. ��,�
(�)  is the total number of occurrences of all 1-runs of 

length [exactly (� = � ), at least (� = � )] � , and the total 
number of 1s in all 1-runs of length at least � [� = �], in all 
possible 2� binary strings of length �, � ≥ � ≥ 1. 

Since ����,�
(�); 1/2� = ∑ ��(�)(�; �, �; 1/2)�∈�(��,�

(�)) , hence 

by (5) and (6), ��,�
(�) = 2��(��,�

(�); 1/2). Therefore (4) implies  

��,�
(�)

=

�
�
�

�
�

1, � = �, �; �, � = �, ��� � = �
2, � = �; 3, � = �; 3� − 2, � = �, ��� � = � − 1
(� − � + 3)2�����, � = �, ��� 1 ≤ � ≤ � − 2
(� − � + 2)2�����, � = �, ��� 1 ≤ � ≤ � − 2

��(� + 1) − �(� − 1)�2�����, � = �, ��� 1 ≤ � ≤ � − 2.

  

                                                                                            (7) 

Readily, by symmetry, ��,�
(�)  provides the respective 

numbers associated with 0-runs and 0s in 0-runs. 

By (7) it is noted that for a fixed � , ��,�
(�) , � = �, �, � 

decreases exponentially as � increases, and for a fixed  �, 1 ≤
� ≤ � − 2, as � → ∞, it holds 

��,�
(�) ��,�

(�)� → 2, ��,�
(�) ��,�

(�)� → � + 1, ��,�
(�) ��,�

(�) → 2(� + 1)� . 

                                                                                           (8) 

Furthermore, ��,�
(�) ≤ ��,�

(�) ≤ ��,�
(�) , since ��,� ≤ ��,� ≤ ��,� , 

1 ≤ � ≤ �. 

Table I presents the three numbers ��,�
(�), ��,�

(�), ��,�
(�)  in binary 

strings of length � = 2� bits, � = 2,4, and for 1 ≤ � ≤ �. The 
entries of the table confirm the previously noted behavior of 
the depicted   numbers. 

Sinha [31] was the first who addressed the usefulness of the 
number ��,�

(�)  and also provided its formula. Then, Sinha and 
Sinha [1] obtained an explicit expression of ��,�

(�)  whereas 
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Makri and Psillakis [19] derived the same formula for it and 
they also established an explicit expression of  ��,�

(�). In both 
papers ([1] and [19]) the approach was relied on the definition 
of ��,�

(�)  via ��,�;�
(�) , � = �, � . Recently, Sinha and Sinha [2] 

reestablished ��,�
(�)  solving explicitly a recursive generation 

scheme for  it.  

The proposed, in the present note, approach is a new one 
and treats under the same frame all the numbers  ��,�

(�)  in a 
simple, unified and systematic way. Accordingly, by (7) we 
effortless get a recursive scheme for ��,�

(�), � = �, �, �. It gives a 
way to generate ��,�

(�) from ��,���
(�)  and it offers further insight in 

understanding the interdependencies among the studied 
numbers. Specifically, it holds 

��,�
(�)

= �
1, � = �, �; �, � = �, ��� � = �

2, � = �; 3, � = �; 3� − 2, � = �, ��� � = � − 1
2��,���

(�) + 2�������,�
(�), � = �, �, �, ��� � = 1,2, … , � − 2,

  

(9) 

with ��,�
(�) = 2��, � = �; 1, � = �; 2� − �, � = �. We note that 

for the particular case  � = � we capture by the relevant entries 
of (9) and (7), Theorems 2 and 3 of [2], respectively. 

TABLE I.  NUMBERS  OF  OCCURRENCES  OF 1-RUNS,  ��,�
(�), ��,�

(�) AND 

NUMBER OF 1S,  ��,�
(�) , IN BINARY STRINGS OF LENGTH �  

� � ��,�
(�) ��,�

(�) ��,�
(�)  

4 1 12 20 32 

 2 5 8 20 

 3 2 3 10 

 4 1 1 4 

16 1 147456 278528 524288 

 2 69632 131072 376832 

 3 32768 61440 237568 

 4 15360 28672 139264 

 5 7168 13312 77824 

 6 3328 6144 41984 

 7 1536 2816 22016 

 8 704 1280 11264 

 9 320 576 5632 

 10 144 256 2752 

 11 64 112 1312 

 12 28 48 608 

 13 12 20 272 

 14 5 8 116 

 15 2 3 46 

 16 1 1 16 

 

3. Conlusions 
In this note we stated three run statistics which are 

important in many areas of applied probability. We defined 
them on a binary (0-1) sequence, and we then provided 
explicitly their mean values for a Bernoulli sequence. After that, 
we considered binary strings (symmetric Bernoulli sequences) 
and we showed how the analytic expressions of the means of 
these RVs provide eventually the respective explicit 
expressions of three numbers studied recently by different 
methods. Finally, as a byproduct of our approach, we proposed 
a unified recursive scheme which clarifies further the 
interdependencies among these numbers. The examined 
numbers are potential useful in many engineering applications 
like the ones mentioned briefly in the Introduction. Early 
results are encouraging in this direction. 
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