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ABSTRACT 

A diffusion-reaction, two-compartment model was used to explore the bifurcation and chaotic behavior of acetylcholi-
nesterase (AChE) and cholineacetyltransferase (ChAT) coupled enzymes system. The effects of hydrogen ion feed 
concentrations, choline (Ch) and acetylcholine (ACh) feed concentrations, as bifurcation parameters on the system per-
formance are studied. It is found that hydrogen ions play an important role in creating potential differences through the 
plasma membranes. Detailed bifurcation analysis over a wide range of parameters is carried out in order to uncover 
some of the qualitative changes of the system such as hysteresis, multiplicity, Hopf bifurcation, boundary crises bifur-
cation, periodic transient, and other complex dynamics. Some of the obtained results relate to the phenomena occurring 
in the physiological experiments like periodic stimulation of neural cells and irregular functioning of acetylcholine re-
ceptors. The model depends on real kinetics expressions and parameters obtained from the literature, so the results can 
be used to direct more systematic research on cholinergic disorder. 
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1. Introduction 

Acetylcholine (ACh) serves as the transmitter of nerve 
impulses at cholinergic synapses. In humans and ho-
moeothermic animals, it affects transmission from motor 
nerves to skeletal muscles, from preganglionic parasym-
pathetic and sympathetic fibers to neurons in the auto-
nomic ganglia. ACh is also the transmitter at some syn-
apses in the ventral neural system, as shown in Figure 1. 

The released ACh diffuses in the synaptic gap and re-
acts with the cholinergic receptor protein, located in the 
post-synaptic membrane. The reaction with the receptor 
starts the chain of events resulting in the excitation or 
inhibition of postganglionic cell [1,2]. The substrates for 
the bio-synthesis of ACh are acetyl coenzyme A (acetyl- 
CoA) and choline. The synthesis is catalyzed by cho-
lineacetyltransferase (ChAT). 

Acetylcholine (ACh) plays a well recognized role in 
the nerve excitation [1,3-5]. It is found in cholinergic 
synapses that provide a stimulatory transmission in the 
nervous system. Its complete neurocycle constitutes a 
coupled two-enzyme system with the following two si-

multaneous events: 
Activation Event: ACh is synthesized from choline 

and acetyl coenzyme A (Acetyl-CoA) biocatalyzed by 
the enzyme choline acetyltransferase (ChAT) and imme-
diately stored in small vesicular compartments closely 
attached to the cytoplasmic side of the presynaptic mem-
branes [2,3]. 

Degradation Event: Once ACh has completed its ac-
tivation duty; the synaptic cleft degradation begins for 
removing the remaining ACh. This occurs when the ACh is 
consumed biocatalyzed by the acetylcholinesterase (AchE) 
to form choline and acetic acid [2,4,6,7]. 

In enzyme membrane systems, the pH decreases due to 
the local production of hydrogen ions. Because of the 
amphoteric properties of the proteinaceous membrane; 
the lower the pH the lower the density of the negative 
fixed charges in the membrane [8]. Artificial AChE 
membrane exhibits a potential difference electrical re- 
sponse similar to excitable membranes when ACh is in- 
jected on one side [9]. The steady state potential due to 
the enzyme activity for increasing and decreasing sub- 
strate concentrations exhibits a hysteresis behavior. Due 
to the auto-catalytic effect resulting from the production  *Corresponding author. 
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Figure 1. Two-enzymes/two-compartment model. 
 
of hydrogen ions and the existence of diffusional resis-
tances, hysteresis phenomenon develops in a definite 
range of parameters. The amphoteric properties of the 
membrane help to transfer the hysteresis of the internal 
pH into a hysteresis in membrane potential [9]. 

The two-enzymes/two-compartments model used in 
this investigation differs from other membrane excitation 
models such as of Rose-Hindmarsh model for action po- 
tential [10,11] which is a modification of Fitzhugh model 
[12]. This later model was developed to simulate the re- 
petitive, patterned and irregular activity seen in mollus- 
can neurons. Holden and Fan [13-15] and Fan and Hol- 
den [16] investigated the dynamic behavior of membrane 
excitation using a three-variable model of action poten- 
tial which showed clearly the existence of different dy- 
namic modes like simple periodic, bursting periodic and 
chaotic behavior. 

Ibrahim and co-workers [17,18] investigated one half 
of the neurocycle in a two-compartment model using 
AChE as the only enzyme. The model unveiled bifurca- 
tion, instability, chaos and hyperchaos.  

Moustafa et al. [19-21] investigated the complete neu- 
rocycle with special emphases on the choline recycling. 

Parag et al. [22] investigated the bifurcation, stability 
and chaotic behavior of a two compartment model de-
scribing the complete neurocycle (AChE/ChAT) using 
general kinetic expressions. In this paper a more realistic 
kinetic expressions and parameters were implemented in 
order to further our insight into such important neurocy-
cle.  

2. The Simplified Diffusion-Reaction 
Two-Enzymes/Two-Compartment Model 

A simplified model for the AChE/ChAT enzymes system 
inside the neural synaptic cleft is shown in Figure 1. The 
complete neurocycle of the acetylcholine, as a neuro-
transmitter, is simulated as a simplified two-enzymes/ 
two-compartment model. Each compartment is modeled 
as a constant flow, constant volume, isothermal, conti- 
nuously stirred tank reactor (CSTR). The two compart- 
ments are separated by a nonselective, permeable mem- 

brane as shown in Figures 2 and 3. 
Assuming that all the events are homogeneous in all 

vesicles, and by using the appropriate dimensionless state 
variables and parameters, we consider the behavior for a 
single synaptic vesicle as described by this simple two 
compartment model, where I and II denote compartments 
1 and 2 respectively. 

It is assumed that acetylcholine is synthesized in the 
presynaptic cell by the enzyme choline acetyltransferase 
due to an activation reaction. The stimulatory neuro-
transmitter acetylcholine is synthesized through the reac-
tion R(1) as follows: 

 1

ChAT

R :

Choline Acetyl-CoA Acetylcholine CoA  

 2

AChE
2

R :

Acetylcholine H O Choline Acetate H

 

Acetylcholine is hydrolyzed (destroyed) in the postsy- 
naptic cell by the acetylcholinesterase enzyme through a 
degradation reaction R(2) (where the stimulatory neuro- 
transmitter acetylcholine is degraded) as follows: 

   
 

 Both reactions are considered substrate inhibited and 
hydrogen ion rate dependent. This leads to a non- 
monotonic behavior of the reaction rates on both the 
substrate and pH.  

 From an enzyme kinetics point of view, the kinetic 
expression evaluated by Louis B. Hersh et al. (1977) 
[23] was used. This expression describes the choline- 
acetyltransferase reaction. It relates the speed of reac-
tion by the two reactants (Choline and acetate). The 
saturation constant ks for this reaction is assumed to 
be dependent on H+ ions concentration 

The proposed rate expressions are as follows: 
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Figure 2. Schematic representation of synaptic cleft. 
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Figure 3. Two-enzymes/two-compartment model. 
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The rate expressions R1 and R2 in a dimensionless 
form are 
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And S1j, S2j, S3j and Hj stand for acetylcholine, choline, 
acetate and hydrogen ions respectively. 

The material balance equations for the two compart-
ments are summarized in the dimensionless form as fol-
lows: 

1) For Hydrogen Ions [H+] 
a) For compartment (1) 
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b) For compartment (2) 
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where hj is the dimensionless hydrogen ions concentra-  

tion, 
1

qt

V
   is the dimensionless time, 1

2

V

V
rV  is the  

dimensionless volume relating the two compartments; 

h  is the dimensionless membrane permeability for hy-
drogen ions, oh  is the dimensionless membrane per-
meability for hydroxyl ions;  
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12
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2) For Acetylcholine ACh [S1] 
a) For compartment (1) 
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b) For compartment (2) 
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3) For Choline [S2] 
a) For compartment (1) 
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b) For compartment (2) 
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4) For Acetate [S3] 
a) For compartment (1) 
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b) For compartment (2) 
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The relatively simple two-enzyme/two-compartment 
model is thus represented by the set of Equations (3) 
through (12) which represents the nonlinear system of 
equations having eight state variables  
   . The system parameters 

values are given in Table 1.  
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Table 1. System parameters evaluation. 

Value Parameter 

1 Kd 

1.2 Vr 

0.032 γ 

0.5 3s  

0.5 2s  

0.5 1s  

0.5 oh  

30 h  

50 7  

50 6  

50 5  

100 4  

50 3  

10 2  

50 1  

0.5 β 

0.55 α 

0.5 3  

0.1 2  

0.1 1  

2.0 S3f 

2.0 S2f 

0.003 Hf 

3. Numerical Tools, Presentation Techniques 
and Computational Resources 

The static and dynamic bifurcation analysis was per-
formed. The feed concentrations of acetylcholine and 
hydrogen ions S1f and pHf was taken as the bifurcation 
parameter. The bifurcation diagrams are obtained using 
the software package AUTO 97 of Doedel et al. [24]. 
This package is able to perform both steady state and 
dynamic bifurcation analysis, including the determina- 
tion of entire periodic branches. In some cases where 
multiplicity of steady-state was found in a very narrow 
range of the bifurcation parameter or where catastrophic 
changes in periodic branches occurred, the AUTO 97 
package failed to capture the complete periodic branches. 
In these cases, simulation techniques were used to com-
plete the whole picture of the bifurcation diagrams.  

Poincare’ presentation techniques were also used. The 
discrete points (return points) were obtained by inter-

secting the trajectories and a hyper surface (Poincare’ 
surface). These discrete points of intersection were taken 
so that the trajectories intersected the hyper surface 
transversally and crossed it in the same direction. 

The DGEAR subroutine available in the IMSL Librar-
ies for FORTRAN with automatic step size was used to 
ensure accuracy for stiff differential equations for nu-
merical simulation of periodic and chaotic attractors. The 
program employed by Elnashaie et al. [25] was also used 
to plot the Poincare’ diagram. The routine enjoys high 
accuracy. In many cases, a bound on the allowable error 
as small as 10−15 was necessary to obtain accurate results.  

4. Results and Discussion 

Hydrogen (H+) ion is a very simple element because it 
contains only one proton and its size is very small. H+ 
ions play an extremely vital role in all metabolic proc-
esses, and transport  of ions such as Na+, K+, and Ca2+ 
occurring in the living organisms. For example, the func-
tion of protein components can be altered from hydro-
phobicity to hydrophilicity because of its ability to re-
lease or bind H+ ions [26]. It is observed that most 
pathological environments and ions diffusion are ac-
companied by observed pH changes [27,28].  

During exocytosis the synaptic vesicle fuses with the 
surface membrane and undergoes a pH jump. When the 
synaptic vesicles is inside the presynaptic nerve terminal 
its internal pH ranges from 5.2 to 5.5 [29,30], and after 
fusion, the inside of the vesicle comes in contact with the 
extracellular median with a pH of about 7.25 this jump 
on pH affects the opening of non-specific ion channels 
[31]. 

Stanley M. Parsons [32] states that the value of trans-
membrane pH and electrical gradient (ΔpH and Δψ re-
spectively) are about 1.4 pH units and 39 m volt respec-
tively for filled cholinergic and monoaminorgic secretory 
vesicles. 

The plasma membrane extrudes hydrogen ions from 
the cell to generate a proton (H ion) motive force with a 
membrane potential of −120 to −160 m volt (negative 
inside). This process takes place via H+-ATPase mecha-
nism of transport [33]. 

In enzyme membrane systems, the pH decreases due to 
the local production of hydrogen ions or to the active 
transport of protons. And because of the amphoteric 
properties of the plasma membrane the lower the pH 
value the lower the value of the negative fixed charges 
located at the membrane surface [34]. Artificial AChE 
membrane exhibits potential differences similar to excit-
able membrane when ACh is injected on one side [9]. 
The last article shows that the steady state potential due 
to the enzyme activity exhibits a hysteresis and oscilla-
tory behavior. Due to the auto-catalytic effects resulting 
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from the production of hydrogen ions and the existence 
of diffusional resistances, hysteresis phenomenon devel-
ops in finite range of parameters. The amphoteric proper-
ties of the membrane help to transfer the hysteresis of the 
internal pH into a hysteresis in membrane potential [9]. 

The bifurcation analysis is concerned with the way 
that steady state solutions of the system model vary with 
one of the system parameters. The feed concentration of 
acetylcholine (S1f) and pHf feed were chosen as the main 
bifurcation parameters through this investigation. Static 
and some dynamic characteristics of this biosystem are 
investigated using the software AUTO 97 [24] and dy-
namic simulation techniques. For each case, all the pa-
rameters (other than the bifurcation parameter S1f, pHf 
feed) were kept constant at the values in Table 1. The 
default values of Table 1 are used, unless the contrary is 
mentioned. At each region of bifurcation analysis, a 
sample of the possible correspondence with real physio-
logical values is given. Although some of the parameters 
were obtained from direct experimental results, but cho-
sen in a heuristic way from plausible alternatives, it is 
interesting to notice that the state variables are similar to 
the physiological expected values.  

An extensive literature review leads us to the values 
for different parameters in the model. 
 pH in the range of 6.95 - 7.15 was measured in hu-

man brain [35]. 
 pH in the range of 6.95 - 7.35 was reported in a feline 

model [36].  
 ACh in a rat brain was found to be in the range of 

0.22 × 10−5 kmol/m3. (Free ACh) to 1.77 × 10−5 (total 
ACh) [2]. While, in guinea pig cerebral cortex the 
range was 0.31 × 10−5 (free ACh) to 1.67 × 10−5 
kmol/m3 (total ACh) [2].  

 ACh concentration in human placenta is reported to 
be in the range of 3.0 × 10−5 - 55.5 × 10−5 kmol/m3 
[37].  

 ACh in the isolated rings of rat pulmonary artery was 
measured to be in the range of 0.001 × 10−5 - 3.0 × 
10−5 kmol/m3 [38].  

 Choline concentration in mouse rat brain is about 
1.15 × 10−4 kmol/m3 [2].  

 Choline concentration in human plasma is in the 
range of 0.01×10−4 - 0.7 × 10−4 kmol/m3 [39].  

In the following, the investigation will be emphasized 
on the autonomous periodic and aperiodic behavior of 
the biosystem under consideration, in addition to the be-
havior when considering the quantal nature of the neuro-
transmitter releases. 

4.1. System Behavior in Response to Constant 
Fixed Input 

Figures 4(a)-(c) show the bifurcation diagram at the set  

of system parameters listed in Table 1, the bifurcation 
diagram is shown for a wide range of the bifurcation pa-
rameter (8.2 > pHf > 8.8).  

With respect to Figures 4(a) and (b), the S shape be- 
havior exhibits a transfer of the system behavior from 
high conversion of ACh hydrolysis (in terms of ACh 
concentration in compartment 2 and membrane potential) 
to low conversion states with pH increase. The bifurca- 
tion diagram characterized by the existence of two Hopf 
bifurcation points (at pHf = 8.4754 and 8.5232) and two 
static limit points. The bifurcation behavior is character- 
ized by the following features: 
 At  .2,8.398f : Unique steady state solutions 

on the high conversion steady state branch exist. 
8pH 

 At  ,8.4754f : Bistability between steady 
state and periodic or aperiodic solutions exist.  

8.398pH 

 At  ,8.5232f : Unique periodic or ape-
riodic solutions exist. 

8.4754pH 

 At  .5232,8.8f : Unique steady state solu- 
tions on the low conversion steady state branch exist. 

8pH 

The first Hopf bifurcation point (at pHf = 8.4754) is a 
subcritical one where a set of unstable periodic solutions 
emerging in its neighborhood and this organization of the 
state space make it possible to exhibit a bistability.  

Figure 4(c) shows the bifurcation diagram in terms of 
pH changes in the two compartments, the results show 
that the pH differences between the two compartments 
changed dramatically corresponding to the variation of 
the resultant hydrolysis process of ACh that is repre-
sented by Figure 4(b). The pH difference changes from a 
value close to 0.8 at pHf = 8.2 to a value close to 1.2 at 
the first Hopf bifurcation points (pHf = 8.4754). The pH 
difference deceases dramatically at the solution sets of 
low conversion domain (close to 0.1 in pH units). These 
results are close to the experimental results reported by 
Stanley M. Parsons [32].  

The membrane potential was estimated (assuming hy-
drogen ions were the only charged ions in the system) 
using the following formula [40]: 

1
10

2

membrane potential 58.0log
H

,  
H

Thus the positive value (see Figure 4(a)) of the mem-
brane potential means that the negative charges are lo-
calized on the membrane surface of compartment I. It is 
noticed that the membrane potential exhibit the same 
behavior as pH difference [the membrane potential in-
creases with the increase of pH difference and vice versa]. 
The region of high conversion shows high membrane 
potentials [changes from a value close to 42 m volts up to 
a value of 76 m volt as a maximum value in the periodic 
region]. The average values of membrane potential at the 
periodic region are represented by the star symbols in 

igure 4(a), these values are estimated as follows: F  
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Figure 4. (a) Bifurcation diagram [pHf vs membrane potential], produced at s1f = 20 and the rest of system parameters as 
listed in Table 1], [solid circles represents the average value of the stable periodic branch, … unstable stationary branch, 
____ stable stationary branch]; (b) Bifurcation diagram [pHf vs ACh concentration in compartment 2; s12], produced at s1f = 
20 and the rest of system parameters as listed in Table 1. [The symbols indicates the stable periodic branches, solid line indi-
cates the stable stationary branch, dashed line indicates the unstable branch]; (c) The lower curve [w.r.t pH1,2] represents 
compartment 2 and the other curve for compartment 1. 
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   where, x represents the state vari-

able of the system. 
It is noticed that the average membrane potentials at 

the periodic and bistable (where two kind of attractors 
exist: the stationary and the periodic one) regions are less 
than that of the high conversion region. At the low con-
version region the membrane potential decreases dra-
matically to values less than 20 m volts (near the second 
Hopf bifurcation point).  

However a value of membrane potentials which occurs 
due to hydrogen ions concentration difference of the 
same range has been recorded by Heven Sze et al. [33]. 

Generally, ions in body fluids can be classified into 

two categories: the first one is buffer ions such as bicar-
bonates, and the second one is non buffer ions which are 
either strong ions or electrolytes [41]. These strong ions 
have no effect on buffering capacity as they are com-
pletely ionized at normal pH [41]. In this work, the effect 
of bicarbonate on pH is ignored. This assumption is sup-
ported and validated by Constable et al. [41]. Further-
more bicarbonate ions do not contribute to cholinergic 
ACh reactions that lead to the net synthesis or degrada-
tion of ACh [41,42]. In addition, bicarbonate can be ef-
fective through alterations in respiratory activity not in 
ACh cholinergic neurons [41,42]. Our model considers 
that ionic charges contributed by [CO3]

2− and [HCO3]
− 

are quantitatively unimportant. 
It is noticed that the variation in pH and consequen-
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tially the membrane potential are a little bigger than 
those recorded in actual physiological situations, this is 
due to the fact that the model ignores any effects of other 
ions (generation and transport) but hydrogen ions, and 
the assumption of fully ionization of the acetic acid. 
These effects may play a basic role in controlling and 
regulating of charges on both membrane sides. On the 
other side, the use of an artificial membrane like the 
proposed one for this model or like the membrane which 
was used by Friboulet et al. [9] and eliminating any 
charged molecules but hydrogen ions may give closer 
results to that illustrated by Figure 4(a). Friboulet et al. 
[9] used an artificial membrane which was injected by 
acetylcholine from one side and the hydrolysis reaction 
takes place in the other side found a hysteresis and oscil-
lations in pH values and a pH variation close to the 
model results.  

Figures 5(a)-(c) show the bifurcation diagrams where 
the ACh feed concentration is the bifurcation parameter. 

This diagrams are constructed using the same set of pa-
rameters as Figure 4 and pHf = 8.5287874. The bifurca-
tion diagrams are characterized by the existence of four 
Hopf bifurcation points and four static limit points: the 
first HB1 (from the left) occurs at S1f = 19.80467, the  
second HB2 at S1f = 21.55055, the third one occurs at s1f 

= 31.5689 and the fourth HB4 at S1f = 31.86253.  
The AUTO 97 package failed to capture the periodic 

branch that emerging from these Hopf bifurcation points, 
so simulation techniques are used to estimate these 
branches (see Figure 5(b), an elongation of Figure 5(a)). 
The Hopf bifurcation points are of the subcritical type 
where a set of unstable periodic solutions emerging in its 
neighborhood and this organization of the state space 
make it is possible to exhibit bistability.  

The steady-state branches have two regions of multi-
plicity of steady-states separated by a high conversion 
steady-state branch. The first region of multiplicity, from 
the left-hand side of Figure 5(a), lies between the two  

 

 
(a)                                                          (b) 

 
(c) 

Figure 5. (a) Bifurcation diagram [S1f vs S11]-[This diagrams are constructed using the same set of parameters as Figure 4 
nd pHf = 8.5287874]; (b) An enlargement of (a); (c) Bifurcation diagram [S1f vs membrane potential]. a   
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static limit points SLP1 [s1f = 19.90996] and SLP2 [s1f = 
14.96821], the second region of multiplicity lies between 
the third SLP3 [s1f = 43.18598] and SLP4 [s1f = 
22.08557]. On the right of the Hopf bifurcation point 
HB1 at this point, the steady-state branch loses its stabil-
ity to unstable steady-state of saddle-focus type, where 
six of the eigenvalues are of negative sign (the other two 
are complex conjugates of positive real values). The 
negative sign of the eigenvalues of these saddle-focus 
type steady-states correspond to a six-dimensional stable 
manifold Ws that enter the saddle point called the separa-
trix, while the positive eigenvalues corresponds to the 
two-dimensional unstable manifold Wu. The same type 
of saddle-focus unstable steady-states are born directly 
before gaining stability at HB2 (s1f = 21.55055). There is 
a range between the two Hopf bifurcation points HB1, 
HB2 where S1f  (19.80467, 21.55055) have three un-
stable static branches, this range occurs at s1f 


  

(19.80467, 19.90996). Two of these unstable steady 
states are of saddle-focus type and the third of saddle 
node type, where six out of the eight eigenvalues are real 
and negative and the rest are of real positive value.  

The reinjection of Ws into Wu gives rise to homoclinic 
connections. The reinjection of unstable manifold Wu of 
one of the three unstable steady-states to another gives 
rise to heteroclinic connections also. On the other side, 
the transversal intersections between immersed mani-
folds (stable or unstable manifolds cannot intersect in the 
state space but immersed manifolds can) should create 
homoclinic points. Absence of blackholes in this region 
makes such connections easily formed in state space. The 
points on the two saddle-focus branches were found to 
satisfy the Sil’nikov’s conditions [43]. These conditions 
with the expected homoclinic orbits existing in the state 
space generate a complex situation. Therefore two major 
expectations should be considered in this region between 
HB1 and HB2 within the range of multiple unstable 
steady states: 
 The existence of three static points of the saddle type 

with their possible manifolds connections may create 
more than one basin of attraction and bistability of 
cyclic attractors should be expected.  

 In the neighborhood of the homoclinical points chaos 
should be expected based on Sil’nikov’s theorem and 
the generalization of Rossler et al. [44] as discussed 
in Ibrahim and Elnashaie [18]. The cyclic behavior in 
this region should be influenced by the spiralling-out 
effect of the saddle-focus which will play a recog-
nized role in organizing the system dynamics. 

However, the results show the following bifurcation 
characteristics as Figures 5(a)-(c) indicate: 
 At ,19.8046f  unique stationary steady states 

characterize this region. 
1 5

 46,

s

 At 19.80467  bistability between sta- 

tionary steady states and cyclic attractors exists. 

1 19.80fs 

 At  21.55055f  unique cyclic attrac-
tors dominate this region. 

1 19.80467,s 

 At  , 2208557f  bistability between cy- 
clic and stationary steady states attractors exists. 

1 21.55055s 

 At  , 25.1f  three stable solutions ex-
ist in the state space. One of them is cyclic attractor. 

1 22.08557s 

 At  31.56897  two stable stationary states 
exist. 

1 25.1,fs 

 At  31.86253f  bistability between cy- 
clic and stationary steady states attractors exists. 

1 31.56897,s 

 At  43.18598f  two stable stationary 
states exist. 

1 31.86253,s 

 At s1f > 43.18598 a unique stationary state exists. 
Figure 6 shows a periodic burst in a time trace repre-

sentation at s1f = 20. [the region of unique cyclic attrac-
tors], each cycle of this burst involved one smooth big 
cycle and one spike, this kind of complex oscillations is 
of course a casual event in the dangerous boundaries dis-
cussed before.  

The branch of periodic bursts continues with increas-
ing s1f [s1f > 20] without remarkable changes in its shape 
until it dies out homoclinically at the second multiplicity 
region as illustrated by Figure 5(b). The range where 

 1 19.8046,20s f  shows a burst bifurcation to chaos, a 
one-dimensional Poincare’ map is constructed for this 
range, see Figure 7, where the Poincare’ hyperplane is 
carefully chosen. According to Javier et al. [45], the 
Poincare’ plane must be transverse to the bi-dimensional 
stable manifold of the corresponding saddle-focus. There- 
fore the Poincare’ plane used crosses through the central 
hole of the attractors. On this basis, the Poincare’ plane 
in this case is taken at a value of s12 = 12.4974075. Be- 
cause of the expected bi-stability phenomenon and to 
avoid the attraction of any other attracting sets that may 
exist in the same state space, the initial conditions neces-
sary to obtain the trajectories intersections with the 
Poincare’ plane are changed automatically every step of 
the s1f state space to insure that the trajectories are re- 
tained in the same domain of attraction in the state space. 
It is clear from the Poincare’ map of Figure 7 that the 
burst oscillations go through an inverse period adding 
sequence with the increase of s1f until it bifurcates to 
chaos which terminates suddenly as the causality of cri- 
ses bifurcations. Figure 6(b) shows a time trace repre- 
sentation to a complex periodic attractor selected near the 
point of chaos appearance at s1f = 19.80462. Comparing 
to Figure 6(a), the selected attractor have a period close 
to ten times of the period characterizing the attractor of 
Figure 6(a). This means that the selected attractors are 
very close to dangerous boundaries creating crises condi- 
tions (i.e. homoclinicity conditions and/or heteroclinicty 
conditions). 

Figures 8(a)-(c) show time trace representation of     
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(a)                                                           (b) 

Figure 6. (a) Periodic bursts of one spike at s1f = 20 and the rest of the system parameters as Figure 5; (b) Complex periodic 
attractor at s1f = 19.84062. 
 

 

Figure 7. One dimension pioncare map: the hyper plan surface taken at S12 = 12.4974075. 
 
three sets of attractors: 
 Figure 8(a) shows the bistability evolved at s1f = 

21.8 where a periodic attractor coexist with a station-
ary state attractor at the same state space. The biosys-
tem alternate between the two attractors according to 
initial conditions.  

 Figure 8(b) shows the time trace at s1f = 22.8, where 
three stable attractors coexist at the same state space 
dividing it into three domains of attraction: one for 
the bursts type of attractors and the other two attrac-
tors are of stationary type.  

 Figure 8(c) shows the time trace at s1f = 31.7, where 
two attractors coexist at the same state space: one of 
smooth and low amplitude oscillations type and the 
other is of stationary state type. 

It is known from bifurcation theory [46,47] that inter-
actions between a SLP and HB point may lead to a vari-
ety of behavior ranging from simple periodicity to com-
plex periodic behavior. In the beginning of this analysis 

it is helpful to build an overall picture of the possible 
bifurcation mechanisms that the system may exhibit. 
This task is best achieved by showing both the loci of the 
static limit points and the Hopf points in a two-parameter 
continuation diagram. 

Figures 9(a)-(c) show the SLP curve (dashed line) and 
the HB curve (solid line) for instance in the parameter 
space (s1f, pHf), (s1f, gama) and (s1f, s2f) respectively. It 
can be seen from Figure 9(a), that the loci of the HB 
points consist of two curves that form two minima at pHf 
= 7.8591 and 8.5217. An oscillatory behavior should be 
expected then in the model for any value of the pHf larger 
than these values up to a value of pHf = 8.524 for the first 
minimum and a value of 8.5936 for the second minimum. 
It can be also seen from the shape of the HB curves that 
no oscillatory behavior occurs below pHf = 7.8591. 
Similarly to the HB curve the loci of the static limit 
points (SLP curve) shown by dashed lines consist of two 
maxima, two minima and a small cusp, the two    
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(a)                                                          (b) 

 
(c) 

Figure 8. (a) Shows the time trace at s1f = 21.8 [initial conditions for periodic attractor: y1 = 0.008, y2 = 0.005, y3 = 2, y4 = 1.5, 
y5 = 0.4, y6 = 2, y7 = 2, y8 = 1] [initial conditions for stationary solution: y1 = 0.0087, y2 = 0.184, y3 = 15.6, y4 = 1.58, y5 = 1.15, 
y6 = 15.17, y7 = 1.15, y8 = 15.2]; (b) Shows the time trace at s1f = 22.8 [initial conditions for periodic attractor: y1 = 0.008, y2 
= 0.005, y3 = 2, y4 = 1.5, y5 = 0.4, y6 = 2, y7 = 2. y8 = 1] [initial conditions for low conversion stationary solution: y1 = 0.0087, 
y2 = 0.184, y3 = 15.6, y4 = 1.58, y5 = 1.15, y6 = 15.17, y7 = 1.15, y8 = 15.2], [initial conditions for high conversion stationary 
solution: y1 = 0.00394, y2 = 0.00947, y3 = 20.58, y4 = 15.5, y5 = 1.44, y6 = 6.522, y7 = 15.5, y8 = 6.5]; (c) Shows the bistability 
evolved at s1f = 31.7 initial conditions of periodic solution: y1 = 0.0938, y2 = 0.4365, y3 = 22.387, y4 = 1.554, y7 = 2, y8 = 1, y5 
= 0.412, y6 = 21.244, initial conditions for stationary solution: y1 = 0.008, y2 = 0.005, y3 = 2, y4 = 1.5, y5 = 0.4, y6 = 2, y7 = 2, 
y8 = 1. 
 
minima occur at pHf = 8.4287 and 8.5217, the two 
maxima occur at pHf = 8.6052 and 8.6973. Static limit 
points are then expected in the model for any values of 
feed pH lower than 8.6973 and the rest of the system 
parameters are kept constant as in Table 1. 

It should be noted that points of maximum and mini-
mum of SLP and HB curves are special points since they 
are considered as degenerate points. Interesting dynamic 
behavior can be found at the vicinity of these degenerate 
points in addition to qualitative changes in bifurcation 
behavior are excepted when passing these points. 

The diagram of Figure 9(a) also shows that the HB 
curve crosses the SLP curve, respectively, at some point. 

These points are also degenerate points since they create 
the so-called type Fl degeneracy [46,47]. The two curves 
can also be seen to collapse in one line along the right 
branch of the diagram. This gives birth to another kind of 
degeneracy, i.e., the so-called Fz degeneracy [46,47]. 

From practical point of view, one can expect close to 
these degenerate points some interesting dynamic be-
havior ranging from periodic solutions, quasiperiodic 
solutions to other global bifurcation phenomena. The 
two-parameter continuation diagrams of Figures 9(a)-(c) 
were, therefore, helpful in providing a “big picture” of 
the potential bifurcation mechanisms in the system. In 
this regard, the continuity diagram of Figure 4(a) ob-     
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(a)                                                         (b) 

 
(c) 

Figure 9. (a) Two parameter continuation [S1f vs pHf]; (b) Two parameter continuation [S1f vs γ(gama)]; (c) Two parameter 
continuation [S1f vs S2f]. 
 
tained for s1f = 20 should be considered as only the tip of 
the iceberg as far as the richness of the system is con-
cerned. To have a better understanding of the different 
bifurcation mechanisms in the system, the diagram of 
Figure 9(a), is divided into different regions and the 
static and dynamic bifurcation for each region is investi-
gated: 
 pHf < 7.8591, this region characterized by the exis-

tence of two limit points creating a range of multi-
plicity of stationary states as represented by Figure 
10(a). 

 1,8.4287f , this region characterized by 
the existence of two HB bifurcation points and two 
SLP, a sample result representing this region is shown 
by Figure 10(b) at pHf = 8.2. The bifurcation diagram 
shows the emerging of a range of unique periodic or 
non-periodic solutions in addition to the multiplicity 
range. 

7.859pH 

8.4287,fpH  8.5217 , this region is characterized 

by the existence of two HB bifurcation points and 
four SLP. A sample result representing this region is 
shown by Figure 10(c) at pHf = 8.452. The bifurca-
tion diagram shows the emerging of a second region 
of multiple stationary states in addition to the bifurca-
tion behavior noticed at pHf = 8.2 of Figure 10(b). 

 ,8.524f , this region is characterized 
by the existence of four HB bifurcation points in ad-
dition to four SLP. A sample result representing this 
region was illustrated early by Figure 10(d). 

8.5217pH  

 4,8.5936f  this region is characterized 
by the existence of three HB bifurcation points and 
four SLP. A sample result representing this region is 
illustrated by Figure 10(e), at pHf = 8.55. The bifur-
cation diagram shows the emerging of isolated sta-
tionary solution (ISOLA). 

8.52pH  

 ,8.6973f , this region is characterized 
by the disappearance of the second region of multi- 
plicity and a shrinkage isolated solution as repre-  

8.5936pH  
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(a)                                                          (b) 

 
(c)                                                          (d) 

 
(e)                                                          (f) 

Figure 10. (a) Bifurcation diagram at pHf = 7.6 [one region of multiple steady states]; (b) Bifurcation diagram at pHf = 8.2; (c) 
Bifurcation diagram at pHf = 8.452; (d) Bifurcation diagram at pHf = 8.5287874; (e) Bifurcation diagram at pHf = 8.55; (f) 

ifurcation diagram at pHf = 8.65. B  
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sented by Figure 10(f). 

Figures 9(b) and (c) show the two-parameter continua- 
tion diagrams: (s1f vs gama) and (s1f vs s2f) respectively. 
Variety of different one-parameter bifurcation may be 
obtained. Figure 11 shows a special one-parameter bi- 
furcation diagram, where periodic or non-periodic at- 
tractors dominate the system behavior for any value of 
s2f (feed concentration of choline) greater than the value 
of the bifurcation parameter at the HB point.  

One of the interesting dynamic bifurcation phenome-
non obtained is the so-called periodic transient: An orbit 
in a dissipative system can show transient periodic be-
havior, i.e. before the orbit falls down onto the final at-
tractor it seems periodic for a long, but finite, time. Fig- 
ures 12(a)-(c) show this interesting bifurcation phenol- 
menon. However in dangerous boundaries of the bifurca- 
tion parameter, just before the saddle-node bifurcation, 
the situation is as follows: an exponentially fast attraction 
along the contracting direction and slow linear drift along 
the other. These different two time scales cause this 
phenomenon. Trajectories starting from a given neigh- 
borhood are initially attracted to this point which will 
become a normal attractor as the bifurcation parameter 
passes through a critical point, then they spend a certain 
time in the close vicinity of this point, and finally they all 
leave this region and never return to it [47]. 

4.2. Response to Quantal Releases of  
Acetylcholine 

Acetylcholine in rat brain was found to be in the range of 
2.2 micromole/lit up to 17.7 micromole/lit. while in the 
guinea pig cerebral cortex the range is 3.1 micromole/lit 
(free ACh) to 16.7 micromole/lit (total ACh) [37]. ACh 
in human plancenta is reported to be in the range of 3 
micromole/lit to 555 micromole/lit [37]. 

The quantal nature of acetylcholine release was dis-  

covered at the neuromuscular junction and the demon-
strated in a variety of central and peripheral synapses [49, 
50]. At the neuromuscular and nerve-electro-plaque syn-
apses, the size of evoked ACh quanta is fairly constant 
(8000 - 10000 ACH molecules). Quantal secretion causes 
the change in membrane potential that excite the postsy-
naptic cell, and transmission at a synapse is critically 
dependent upon this mechanism of release [32,51]. ACh 
concentrations depend on the volumes of both compart-
ments. For in vitro experiments it is easy to control each 
compartment volume and consequently controlling of 
ACh concentration for both the two compartments. With 
respect to physiological situations, the synaptic clefts 
have variable constructions and volumes according to its 
locations and functions. Volume of synaptic clefts could 
be less than 0.1 femtoliter (10−15 liter) and could be 
greater than 150 femtoliter as shown by [52-55]. Re-
leases of 1 quanta (10,000 molecules) correspond to the 
release of 0.1661 × 10−13 micromole of ACH taking 
Avogadro’s number in consideration (6.02 × 1023 mole-
cule/mole). So ACh concentrations may take very low 
values in micromole/lit units up to values of hundred 
micromole/lit according to the nature and size of the 
cleft. 

In general, excitability means that the response of a 
system on external perturbations is “all” or “none” de-
pending on whether the strength of the stimulus is above 
or below a critical threshold. Prominent examples of ex-
citable systems are the spiking of neurons [56], the car-
diac muscle [57], the dynamics of life populations [58], 
or nonlinear chemical reactions [59,60].  

Two different forcing mechanisms have been investi-
gated in this work: 

1) Continuous oscillating ACh feeding which obeys 
the function   1 1 0 1 am sin ,s sf f        where 
(am) is the amplitude of forcing oscillations and ω is the  

 

 

Figure 11. Bifurcation diagram [S2f vs membrane potential] extracted from Figure 9(c). 
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(a)                                                          (b) 

 
(c) 

Figure 12. (a) Periodic transient at s1f = 14.40375 [this attractor is produced as the same set of parameters as in Table 1 but 
gama = 0.01, Hf = 0.0024]; (b) Periodic transient at s1f = 14.40373 [this attractor is produced as the same set of parameters as 
in Table 1 but gama = 0.01, Hf = 0.0024]; (c) Periodic transient at s1f = 14.403722 [this attractor is produced as the same set of 
parameters as in Table 1 but gama = 0.01, Hf = 0.0024]. 
 
frequency; s1f0 is the starting value of ACh feed concen-
tration (τ = 0) and τ is the dimensionless time. Figure 13 
shows the one dimension excitation map for this case at 
s1f0 = 20, am = 0.0015 and the natural period of the sys-
tem before forcing is 11.2636099 and the rest of system 
parameters as in Table 1. It is clear that the bifurcation 
scenario obeys the so-called crises bifurcation where: 
period one attractor from left goes suddenly to chaotic 
attractor. Infinite periodic and chaotic patterns may ob-
tain using Figure 13. Figure 14 shows the phase plan of 
a chaotic attractor at ω = 3.5. 

2) Discontinuous constant feeding of ACh (square 
forcing): in this case the system response to long period 
forcing (120, 80) is shown in Figures 15(a) and (b). The 
resulting patterns have the feature of actual physiological 
response (where the neural bursts involve one or more 
spikes (60)). Figure 15 shows the oscillatory pattern of  

membrane potential at period equal to 80. Figure 15(b) 
shows the oscillatory pattern at period equal to 120. 

5. Concluding Remarks  

An eight-dimensional non-linear mathematical model 
(two-enzymes/two-compartments) is developed for a 
coupled AChE/ChAT enzymes system considering the 
physiological reality and importance of the transmem-
brane pH and electrical gradient (ΔpH and membrane 
potential differences respectively) of this neural system. 
The investigation has been based on a well established 
kinetic scheme and kinetic data. The model accounts for 
the effects of hydrogen ion concentrations on the kinetics 
and its role in creating membrane potential, assuming no 
other charged ions exist. Both autonomous and non- 
autonomous cases were investigated considering the two 
common mechanisms of applying acetylcholine in prac-    
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Figure 13. One dimension excitation map using the function S1f = S1f0*(1 + Am*sin(ωτ))-[Am = 0.015, natural period = 
11.2636099]. 
 

 

Figure 14. Phase plane of chaotic attractor at ω = 3.5 [Figure 13]. 
 
tical physiological situations (constant and quantal).  

The investigation uncovered a wealth of static and dy-
namic bifurcations of the system including multiplicity of 
steady states, isola, periodic and aperiodic behavior. The 
use of two parameters continuation technique uncover 
different qualitative changes in bifurcations with respect 
to three of the system parameters (pHf, γ, S2f). Different 
bifurcations occurred at alkaline feed pH and a wide 
range of the other two parameters. 

It was observed that all the state variables were very 
sensitive to the variations in the acetylcholine inlet con-
centration S1f as a bifurcation parameter. Their behavior 
was strongly dominated by the hysteresis and multiplicity 
phenomena throughout a large range of the bifurcation 
parameter. Different kinds of solutions existed: point 
(stationary state), periodic, chaotic bi-stability, tri-stabil- 
ity was found. Boundary crises bifurcations are the domi- 
nating scenario of bifurcation: periodic transient and 
boundary crises bifurcation to chaos were shown. Intrin- 

sic bursts with one spike are the most common periodic 
and aperiodic behavior of the system.   

It is noticed that the variation in pH and consequen-
tially the membrane potential are a little bit bigger than 
those recorded in actual physiological situations; this is 
due to the fact that the model ignores any effects of other 
ions (generation and transport) but hydrogen ions, and 
the assumption of fully ionization of the acetic acid. 

Different kinds of bursts may be obtained in response 
to the quantal feeding mechanism; bursts with more than 
one spike were obtained (spike train). 

An experimental research work is recommended in 
order to use this model for simulating real physiological 
behavior. Availability of good experimental data for hu-
man brain in the future can help in improving this model. 
It can also help in deeper understanding of the physio-
logical behavior and in planning better brain experiments 
and in linking the complex behavior investigated to the 
cholinergic disorders.    
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(a)                                                          (b) 

Figure 15. (a) Spike train obtained at square input [s1f = 20], period = 80 and frequency of the input = 0.078539816. [γ = 0.032, 
Hf = 0.003]; (b) Spike train at frequency of 0.0523598775, period of 120, and the same parameters as (a). 
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Notation 

Symbol   Description 
    Membrane area, m2 

mA

1 2,E E  Enzyme concentration in kg/m3-1 
for ChAT enzyme-2 for AChE en-
zyme 

jH  Hydrogen ions concentration in 
kmol/m3 

1 2 3, , , ,s s s s iK K K K K

1 2, , ,h

 Equilibrium and inhibition con-
stants 

1 2h h hK K K K 

1 2,R R

1

 Equilibrium constants  
Q     Volumetric flow rate in m3/s 

 Rate of production and consumption 
of ACh respectively in s−1 

jS

2

    ACh concentration in kmol/m3 

jS

3

    Choline concentration in kmol/m3 

jS

t

 Acetyl Coenzyme concentration in 
kmol/m3  

    Time in s 

jV

1mV

2mV

h

    Compartment volume in m3 

 Specific enzyme velocity (ChAT) in 
s−1 

 Specific enzyme velocity (AChE) in 
s−1 



oh

 Membrane permeability for hydro-
gen ions, m/s 



1

 Membrane permeability for hy-
droxyl ions, m/s 

s

2

 Membrane permeability for ACh, 
m/s 

s

3

 Membrane permeability for Choline, 
m/s 

s  Membrane permeability for acetyl 
Co enzyme, m/s 

Abbreviations 

AChE Acetylcholinesterase 
ChAT Choline Acetyltransferase 
CoA  Coenzyme A 
ACh  Acetylcholine 
Ch  Choline 
CSTR Continuously Stirred Tank Reactor 
HB  Hopf Bifurcation 
SB  Static Bifurcation 
U  Periodic Limit Point 
PD  Period Doubling 
Pi  Periodicity i of the Periodic Orbit 

Subscripts 

1  Compartment 1 
2  Compartment 2 
f  Feed condition 

Legend for Figures 

——— Stable steady state branch 
--------- Unstable steady state branch 
 Stable periodic branch 

Dimensionless Parameters and State  
Variables 

Symbol  Description 
K

 Dimensionless substrate inhibition con-

stant 

  1s

Ki

h m
h

A

q




 Dimensionless permeability of hydrogen 

ions 



oh m
oh

A

q




 Dimensionless permeability constant of 

hydroxyl ions 



1
1

s m
s

A

q




 Dimensionless permeability c onstant of 

ACh 



2
2

s m
s

A

q




 Dimensionless permeability constant of 

Choline 



3
3

s m
s

A

q




 Dimensionless permeability constant of 

Acetyl Co-enzyme  



K
  Dimensionless equilibrium ratio   s2

3Ks

1 2 2
1

2

m

h

VV E
 Dimensionless reaction activity constant  

K q
 

1 1 1
2

1

m

s

VV E
 Dimensionless reaction activity constant 

K q
 

1 2 2
3

1

m

s

VV E
 Dimensionless reaction activity constant 

K q
 

1 1 1
4

2

m

s

VV E
 Dimensionless reaction activity constant 

K q
 

1 2 2
5

2

m

s

VV E
 Dimensionless reaction activity constant 

K q
 

1 1 1
6

3

m

s

VV E
 Dimensionless reaction activity constant 

K q
 

1 2 2
7

3

m

s

VV E
 Dimensionless reaction activity constant 

K q
 

2
2

w

h

K
  Dimensionless equilibrium ratio  

K

2
1

2

h

h

K
  Dimensionless equilibrium ratio  

K
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2
2

1

h

h

K

K
 


  Dimensionless equilibrium ratio 

1
3

2

h

h

K

K
    Dimensionless equilibrium ratio 

1

qt

V
    Dimensionless time 

2

j
j

h

H
h

K
  ions concentra- Dimensionless hydrogen

tion 

fh  

2 3

s
d

S S

k
k

k k
  nsionless equilibrium ratio Dime

1,
1,

1
j

S

S
S j  Dimensionless ACh concentration 

K

2,
2,

2
j

S

S
S j  Dimensionless Choline concentration 

K

3,
3,

3
j

S

S
S j  Dimensionless Acetyl Co-enzyme con-

centration 



1

K

S

2

   ACh feed concentration f

S

3

   Choline feed concentration f

S    Acetate feed concentration f

1

2
r

V
V

V


 
 

  Compartment volume ratio 


