Scientific Research

Photocatalytic of TiO₂-SiO₂ Thin Films Co-Doped with Fe³⁺ and Thio-Urea in the Degradation of Formaldehyde by Indoor and Outdoor Visible Lights

Charuwan Kaewtip, Kamolporn Accanit, Nat-a-nong Chaowai, Kanokpun Areerat, Pasuree Reaniaruan. Virote Boonumnauvvitava

Chemical Engineering Department, King Mongkut's University of Technology Thonburi, Bangkok, Thailand Email: virote.boo@kmutt.ac.th

Received 2012

ABSTRACT

In this work the photocatalytic activity of TiO₂-SiO₂ thin films co-doped with Fe³⁺ and thio-urea in the degradation of the gaseous formaldehyde was investigaged by indoor and outdoor visible lights. The films were synthesized by Peroxo Titanic Acid (PTA) method. The physicochemical properties of prepared samples were characterized using SEM and UV-vis absorption spectroscopy. It was found that the average film thickness of all coated samples was about 394 ± 5 nm. The band gap energy of un-doped and co-doped photocatalysts was 3.08 and 2.88 eV, respectively. The photocatalytic experimental results showed that the co-doped TiO₂-SiO₂ thin film yield higher photocatalytic efficiency. Under the outdoor light (sunlight in the shade condition) irradiation, with the initial concentrations of formaldehyde of 1000, 3000 and 5000 ppmV, the efficiencies of formaldehyde degradation were 94.7%, 89.5% and 85.1%, respectively. Under the indoor light (the fluorescent lamp) irradiation, with the same formaldehyde initial concentrations, the photocatalytic activities were 87.4%, 85.3% and 81.5%, respectively.

Keywords: Perxo Titanic Acid; Titanium Dioxide; Sunlight in the Shade; Formaldehyde

1. Introduction

Formaldehyde is a toxic volatile organic compound (VOCs), which causes cancer and is harmful to health when uptake into human bodies. Therefore, purification of ambient air form this toxic gas is essential for improving indoor air quality and human being's health [1]. Titanium dioxide (TiO_2) is a promising tool for environmental purification due to its specific optical and electronic properties, low cost, chemical stability and non-toxicity [2-4]. However, the need of an ultraviolet (UV) excitation which accounts for only a small fraction of the total solar energy (~5%) hinders its utility for limited applications [5].

Many attempts have been made to enhance the utilization of solar energy by doping the base photocatalyst with co-dopants elements such as C and N [6], Fe^{3+} and C [7], and Fe^{3+} and N [8,9]. *Ohno et al.* reported that the effect of adsorbing Fe^{3+} on the N- or S- doped TiO₂ and found that the photocatalytic efficiency under visible light region was about twice as high as without Fe^{3+} doping [10]. One element can extend the response of TiO₂ to visible light, the other can act as electron and hole traps. Then TiO₂ can respond to visible light and present a high catalytic activity [11].

In our previous work [12], TiO_2 -SiO₂ thin films with co-dopants of Fe³⁺ and N,S yielded high efficiency in formaldehyde degradation. However, the study was limited in small lab scale using fluorescent lamp as the light source. The objective of this work is to confirm the practical use of these films by studying the efficiency of formaldehyde degradation using co-doped TiO₂-SiO₂ thin films in a large cubic glass chamber under the outdoor light compared with the indoor fluorescent light.

2. Experimental

2.1. Catalysts Preparation

All reagents were of analytical grade and used without further purification. The co-doped TiO₂-SiO₂ thin films were prepared using the peroxo titanic acid (PTA) approach combined with the sol-gel method. The procedures for co-doped PTA sol (solution A) preparing were as follows: First, 4.3 g of Titanyl sulfate (TiOSO₄) was added to 150 cm³ deionized water. While under vigorous stirring, 26 cm³ of NH₄OH (3 mol/dm³) was added to the solution. Next, the white precipitates were filtered and sufficiently washed four to six times with distilled water to remove residues of NH4⁺ and SO₄²⁻ ions, then dispersed homogeneously in 112.5 ml of distilled water. The resulting sol was peptized in 25 cm^3 of hydrogen peroxide (30%), and then stirred for 15 min. The obtained orange transparent sol was kept under reflux at 100°C. Before adding the co-dopants, the PTA sol was kept at room temperature for 24 h. Dopants added into the TiO₂ based on the mass of TiO₂ 1.64 g in PTA sol. Finally, CSN₂H₄ of 0.125 wt.% and Fe(NO₃)₃ of 1.0 wt.% were added into the PTA sol.

The SiO₂ (solution B) sol was prepared via the condensation reaction of methyltrimethoxysilane (MTMOS). First, 4.3 cm³ of MTMOS were hydrolyzed with the mixture of 8.22 cm³ of methanol, 2 cm³ of H₂O, and 0.5 cm³ of HCl (0.055M) aqueous solution. After the solutions were vigorously stirred at 50°C for

60 min, the mixture of 8.22 cm³ of methanol and 3.2 cm³ of NH₄OH (0.856M), which was stirred at 25°C for 60 min, was added into the hydrolyzed MTMOS solution and stirred for 15 min. Then, solution B was added into solution A under stirring at room temperature for 15 min. The obtained sol was coated on a glass plate (100 x 100 x 3 mm) by spin coating machine, and then kept for drying for 24 h at room temperature before using.

The obtained photocatalysts were characterized by Scanning electron microscopy (SEM) to determine the thickness of coted film on the glass plate. The optical transmission and absorption spectra of the films were measured using UV-vis spectrophotometer (U1900 UV/VIS, Hitachi) with the wave range of 200-1000 nm.

2.2. Photocatalytic Activity of Formaldehyde Degradtion

The experiments were conducted in a cubic 9.1 x 10^4 cm³ glass chamber where 70 pieces of coated glasses were attached around the inner wall. The schematic and components of glass reactor chamber showed in Figure 1. Injection and sampling of formaldehyde gas in the glass chamber were conducted through the septum port by means of a syringe. The initial concentrations of formaldehyde gas of 1000, 3000 and 5000 ppmV were used. The glass reactor chambers were covered with black fabric for shutting out light around 50-60 min until adsorption equilibrium conditions have been reached. Then the black fabric was removed to start the photocatalytic reaction. The chambers were placed indoor for fluorescent light and outdoor for sunlight (in the shade) exposures. The concentration of formaldehyde before and after photocatalytic reactions were measured by a gas chromatography (Shimadzu: GC2014) equipped with DB-WAX column.

3. Result and Discussion

3.1. Characterization of the Photocatalysts

Cross sectional SEM image as shown in **Figure 2** shows a complete coverage of the substrate surface by the photocatalysts film with the average film thickness 394 ± 5 nm.

Figure 1. The schematic and components of glass reactor chamber (1) lid, (2) septum port, (3) fan hole, (4) fan, and (5) hygrometer and thermometer.

The color of a coatedfilm is opalescent -semitransparent due to the TiO₂ powder dispersed in thdfilm. The correspon ding UV-Vis spectra for coated film are shown in **Figure 3**. Compared with the un-doped film, the transmittance of the co-doped film was about 80% in the visible wavelength region and lower than those of the un-doped film. The difference in transmittance between the un-doped and the co-doped films was attributed to the adsorption of light by dopant. A significant decrease in the transmittance below 400 nm can be assigned to absorption of light caused by the excitation of electrons from the valence band to the conduction band of TiO₂ [13]

Figure 4 shows the UV-Vis absorption spectra of un-doped

Figure 3. The UV-Vis transmittance spectra of the transparent films of un-doped and co-doped TiO₂-SiO₂ thin films.

Figure 4. The UV-Vis absorption spectra of coated TiO_2 -SiO₂ thin films.

and co-doped TiO₂-SiO₂ thin films. The absorption edge of undoped is limited only to ultraviolet light region, whereas the absorption threshold values of co-doped photocatalyst is extended up to the visible light range. The energy band gap (Eg) is determined by the formula [14], Eg = 1239.8/ λ , where λ (nm) is the wavenumber of the absorption edge in the spectrum. The energy band gap of un-doped and co-doped TiO₂-SiO₂ thin films was 3.08 and 2.88 eV, respectively.

3.2. Photocatalytic Activity

The formaldehyde degradation activity of the prepared photocatalytic films was determined and shown in **Figure 5**. In dark condition, the formaldehyde adsorbed onto the all films within 30 min and approached equilibrium after 50-60 min. Under light irradiation, in both cases of indoor and outdoor conditions, all co-doped samples, demonstrate higher photocatalytic efficiencies than that of the un-doped photocatalysts. This could be

Figure 5. Photocatalytic decomposition profiles of gaseous formaldehyde by control (no photocatalyst) and photocatalysts chambers with different initial formaldehyde concentration a) 1,000 ppmV, b) 3,000 ppmV and c) 5,000 ppmV and different light source of irradiation.

Figure 6. The photocatalytic efficiencies of the co-doped TiO_2 -SiO₂ thin films with different of initial formaldehyde concentration.

attributed to the effect of the synergistic role of co-dopants in narrowing ${\rm TiO}_2$ band gap.

It is generally accepted that a dopant level can form above the valence band for the substitutional nitrogen, and below the conduction band for Fe³⁺ doping, both of which could decrease the band gap of TiO₂ and improve the photocatalytic activity in the visible light region [15]. On the other hand, the co-doping of nitrogen and Fe³⁺ ion inhibits the recombination of the photogenerated electron and hole [16]. The effect of light source on the formaldehyde degradation efficiency is illustrated in **Figure 6**. It is clearly observed in the figure that the formaldehyde degradation efficiency of sun light in shade is higher than that of fluorescent irradiation due tothe higer light intensity [17].

4. Conclusion

The co-doped TiO₂-SiO₂ thin films were synthesized by using PTA sol as the TiO₂ source. The prepared films showed the average thickness of 394 ± 5 nm. The band gap energy of undoped and co-doped photocatalysts was 3.08 and 2.88 eV, respectively. The co-doping of Fe³⁺ and N,S ion into TiO₂ photocatalysts showed the highest photocatalytic activity of formaldehyde degradation. Under the sunlight in the shade condition, with the initial concentrations of formaldehyde of 1000, 3000 and 5000 ppmV, the efficiencies of formaldehyde degradation were 94.7%, 89.5% and 85.1%, respectively. For the fluorescent irradiation, with the same formaldehyde initial concentrations, the photocatalytic activities were 87.4%, 85.3% and 81.5%, respectively. Both iron ions and nitrogen species could lead to a narrowing of the band gap of TiO₂. In addition, the co-doping of nitrogen and Fe³⁺ ion inhibits the recombination of the photogenerated electrons and holes.

5. Acknowledgements

The authors gratefully acknowledge the financial support from the Royal Golden Jubilee program and Senior Research Scholar Grant from Thailand Research Fund (TRF) and National Re-

REFERENCES

- S. Photong and V. Boonamnuayvitaya, "Preparation and characterization of amine-functionalized SiO₂/TiO₂ films for formaldehyde degradation," Appl. Surf. Sci., vol. 255, pp. 9311-9315, 2009.
- [2] A. Fujishima and X. Zhang, "Titanium dioxide photocatalysis: present situation and future approaches," C.R. Chim., vol. 9, pp. 750-760, 2006.
- [3] Y. Yu, J. Wang, and J.F. Parr, "Preparation and properties of TiO₂/fumed silica composite photocatalytic materials," Procedia Engineering, vol. 27, pp. 448-456, 2012.
- [4] Y. Wu, J. Zhang, L. Xiao, and F. Chen, "Properties of carbon and iron modified TiO₂ photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light," Appl. Surf. Sci., vol. 256, pp. 4260-4268, 2010.
- [5] X. Yang, "Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO₂ under visible-light irradiation," Appl. Catal., B, vol. 91, pp. 657-662, 2009.
- [6] B. Ahmmad, Y. Kusumoto, and M.S. Islam, "One-step and large scale synthesis of non-metal doped TiO₂ submicrospheres and their photocatalytic activity," Adv. Powder Technol., vol. 21, pp. 292-297, 2010.
- [7] B. Tryba, "Increase of the Photocatalytic Activity of TiO₂ by Carbon and Iron Modifications," Int. J. Photoenergy, vol. 2008, pp. 2008.
- [8] W.-X. Liu, J. Ma, X.-G. Qu, and W.-B. Cao, "Hydrothermal synthesis of (Fe, N) co-doped TiO₂; powders and their photocatalytic properties under visible light irradiation," Res. Chem. Intermed., vol. 35, pp. 321-328, 2009.
- [9] Z. Liu, Y. Wang, W. Chu, Z. Li, and C. Ge, "Characteristics of doped TiO₂ photocatalysts for the degradation of methylene blue waste water under visible light," J. Alloys Compd., vol. 501, pp. 54-59, 2010.
- [10] T. Ohno, Z. Miyamoto, K. Nishijima, H. Kanemitsu, and F. Xueyuan, "Sensitization of photocatalytic activity of S- or N-doped TiO₂ particles by adsorbing Fe³⁺ cations," Appl. Catal., A, vol. 302, pp. 62-68, 2006.
- [11] X. Sun, H. Liu, J. Dong, J. Wei, and Y. Zhang, "Preparation and Characterization of Ce/N-Codoped TiO₂ Particles for Production of H₂ by Photocatalytic Splitting Water Under Visible Light," Catal. Lett., vol. 135, pp. 219-225, 2010.
- [12] C. Kaewtip, P. Chadpunyanun, and V. Boonamnuayvitaya, "Effect of Co-Dopants in TiO₂–SiO₂ Thin films on the Formaldehyde Degradation," Water Air Soil Pollut., vol. 223, pp. 1455-1465, 2012.
- [13] L. Ge, M. Xu, and H. Fang, "Synthesis of titanium oxide layers on glass substrates with aqueous refluxed sols (RS) and photocatalytic activities," J. Mater. Sci., vol. 42, pp. 4926-4934, 2007.
- [14] M. Yao, J. Chen, C. Zhao, and Y. Chen, "Photocatalytic activities of Ion doped TiO₂ thin films when prepared on different substrates," Thin Solid Films, vol. 517, pp. 5994-5999, 2009.
- [15] X. Cheng, X. Yu, and Z. Xing, "One-step synthesis of Fe-N-S-tri-doped TiO₂ catalyst and its enhanced visible light photocatalytic activity," Mater. Res. Bull., vol. pp. in press.
- [16] Y. Cong, J. Zhang, F. Chen, M. Anpo, and D. He, "Preparation,

Photocatalytic Activity, and Mechanism of $Nano-TiO_2$ Co-Doped with Nitrogen and Iron (III)," J. Phys. Chem. C, vol. 111, pp. 10618-10623, 2007. [17] T. Oyama, "Solar photocatalysis, photodegradation of a commercial detergent in aqueous TiO₂ dispersions under sunlight irradiation," Sol. Energy, in press.