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Abstract – A friendship graph is a graph consisting of cliques sharing a common vertex. In this paper
we investigate the maximum number of elements in an optimal friendship decomposition of graphs of
order n. We obtain upper and lower bounds for this number. These bounds relate this problem with the
classical Ramsey numbers.
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1 Introduction

For notation and terminology the reader is referred
to [1]. All graphs considered here are finite and
simple, i.e., they have no loops or multiple edges.

Let H be a fixed family of graphs. An H-
decomposition of a given graph G is a partition of
its edge set into subgraphs that are isomorphic to
elements of H . We define φ(G,H) as the mini-
mum number of elements in an H-decomposition
of G. One of the main problems in graph decom-
positions is the one of finding the smallest number
φ(n,H), such that, any graph of order n admits
an H-decomposition with at most φ(n,H) elements.
This problem has been studied for some well known
families of graphs, such as, cliques, bipartite graphs,
cycles and paths.

A clique is a complete graph and a clique de-
composition or a clique partition of a graph is a
decomposition of its edge set into edge disjoint
cliques. Erdős, Goodman and Pósa [2] showed that
the edges of any graph on n vertices can be de-
composed into at most �n2/4� cliques. They also
showed that a minimum clique decomposition has
exactly �n2/4� cliques if and only if the graph is pre-
cisely K�n/2�,�n/2�. Further, in the decomposition
they only need to use edges and triangles. Later
Bollobás [3] generalized this result by showing that
a graph of order n can be decomposed into at most

tp−1(n) edge disjoint cliques of order p (p ≥ 4) and
single edges. By tp−1(n) we denote the number of
edges in the Turán graph of order n, Tp−1(n), which
is the unique complete (p − 1)-partite graph on n
vertices that has the maximum number of edges.
Furthermore, for p ≥ 4 it was also proved that
Tp−1(n) is the only graph that cannot be decom-
posed into fewer than tp−1(n) edge disjoint cliques
of order p and single edges.
Let B denote the family of all complete bipar-

tite graphs. It is easy to see that the edges of
the complete graph Kn can be decomposed into
n − 1 edge disjoint complete bipartite subgraphs,
since Kn decomposes into edge disjoint copies of
the stars K1,n−1,K1,n−2, . . . ,K1,2,K1,1. Graham
and Pollak [4] proved thatKn cannot be partitioned
into fewer than n− 1 edge disjoint complete bipar-
tite graphs. Therefore, φ(Kn,B) = n− 1. This re-
sult of Graham and Pollak was motivated by an ad-
dressing problem in communications networks and
simple proofs were found later by Tverberg [5] and
Peck [6].

Consider now the family C of all cycles, then it
is easy to see that a graph admits a cycle decompo-
sition if an only if all its vertices have even degree.
In this case, Hajós made the following conjecture.

Conjecture 1. Every graph G on n vertices with
all degrees even can be decomposed into at most
�n/2� edge disjoint cycles.
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In this direction Lovász [7] proved the following
theorem:

Theorem 1.1. A graph on n vertices can be de-
composed into at most �n/2� edge disjoint paths and
cycles.

This theorem includes the following two results
concerning complete graphs: the complete graph on
2k vertices can be decomposed into k edge disjoint
paths and the complete graph on 2k+1 vertices can
be decomposed into k edge disjoint Hamiltonian cy-
cles. Lovász theorem is also a partial result towards
the following conjecture of Gallai.

Conjecture 2. A graph or order n can be decom-
posed into at most �(n+ 1)/2� paths.

Let P be the family of all paths. Dean and
Kouider [8] showed that for any graph G (possi-
bly disconnected), φ(G,P) ≤ u(G)/2 +

⌊
2
3g(G)

⌋
,

where u(G) denotes the number of odd vertices in
G and g(G) denotes the number of nonisolated even
vertices in G.

In this paper we will study decompositions of
graphs into friendship graphs. A friendship graph
is a graph consisting of cliques sharing a common
vertex. For t ≥ 2, a t-friendship graph is a friend-
ship graph that consists of exactly t cliques shar-
ing a common vertex. Let Ft be the set of all t-
friendship graphs. Sousa [9] determined the exact
value of the function φ(n,Ft) for t = 2 and t = 3,
and its asymptotic value for t ≥ 4. More precisely,
Sousa [9] proved the following theorems.

Theorem 1.2 (Sousa [9]). Let F2 be the set of all
2-friendship graphs. We have,

φ(n,F2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⌈
n2

8

⌉
if n is even,

n2−1
8 if n is odd.

Theorem 1.3 (Sousa [9]). Let F3 be the set of all
3-friendship graphs. We have,

φ(n,F3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⌈
n2

12

⌉
if n is even,

⌈
n2−1
12

⌉
if n is odd and n �= 5,

3 if n = 5.

Theorem 1.4 (Sousa [9]). Let t ≥ 4 and let Ft be
the set of all t-friendship graphs. We have,

φ(n,Ft) =
( 1

4t
+ o(1)

)
n2.

Let F be the set of all friendship graphs. Our
goal is to study the function φ(n,F ), which is the
smallest number such that any graph of order n
admits a friendship decomposition with at most
φ(n,F ) elements. The exact value of the func-
tion φ(n,F ) is still unknown. However, for n suffi-
ciently large, we were able to obtain lower and up-
per bounds (see Theorem 1.5 below). These results
relate the function φ(n,F ) with the classical Ram-
sey numbers, which might be an indication that the
problem of finding the exact value of the function
φ(n,F ) might be deep and hard.

Theorem 1.5. Let F be the set of all friendship
graphs. There exists n0 such that for all n ≥ n0 we
have

n− 9
√
n log n ≤ φ(n,F ) ≤ n− 1

2
log

2

n

4
.

2 Friendship Decompositions

in this section we will prove Theorem 1.5. We start
with some definitions and auxiliary results.

Definition 2.1. Let G be a graph.

(a) A vertex cover of G is a set S ⊂ V (G) such
that every edge of G is incident with a vertex
of S. The minimum size of a vertex cover of
G is denoted by α0(G).

(b) A subset A ⊂ V (G) is said to be independent
if no two vertices of A are adjacent in G. The
independence number of a graph G is the max-
imum size of an independent set of vertices and
is denoted by α(G).

Observation 2.2. In a graph G, S ⊂ V (G) is a
vertex cover if and only if V (G)\S is an indepen-
dent set, and hence α0(G) + α(G) = v(G).

Lemma 2.3. Let G be a graph. We have,

(a) φ(G,F ) ≤ α0(G);

(b) If, in addition, G is triangle free then
φ(G,F ) = α0(G).
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Proof. (a) Let C be a vertex cover of G such that
|C| = α0(G) and assume that its elements are or-
dered, i.e., C = {v1, . . . , vm}, where m = α0(G).
Let S = {Svi

| i = 1, . . . ,m} where Svi
denotes the

star with center vi and edge set

E(Svi
) =

{{vi, x} | {vi, x} ∈ E(G)− ∪i−1
j=1E(Svj

)
}
.

Clearly S is a friendship decomposition of G, hence
φ(G,F ) ≤ |S| = α0(G).

(b) It suffices to see that α0(G) ≤ φ(G,F ). In
this case all friendship subgraphs of G are stars.
Thus, if S is a friendship decomposition of G with
|S| = φ(G,F ) then the set of vertices { v |
v is the center of F, F ∈ S} is a vertex cover for
G. Therefore α0(G) ≤ |S| = φ(G,F ).

We will also need some results from Ramsey The-
ory. We start with the definition of the Ramsey
numbers.

Definition 2.4. Let s and t be natural numbers.
The Ramsey number of s and t, denoted by R(s, t),
is the smallest integer n, such that, in any graph on
n or more vertices, there exists either a clique of s
vertices or an independent set of t vertices.

The existence of these Ramsey numbers is a
simple consequence of a theorem proved by Ram-
sey [10]. The problem of estimating R(s, t) or even
R(s, s) has proved to be very difficult and the best
known bounds are still quite far apart. Erdős and
Szekeres [11] showed that R(s, t) ≤ (

s+t−2
s−1

)
which

implies that

R(s, s) ≤
(
2s− 2

s− 1

)
≤ 22s−2 (2.1)

The best known upper bound on R(s, s) was
proved by Thomason in [12] where he shows that

R(s, s) ≤ s(−
1
2+o(1))

(
2s−2
s−1

)
. In one of the first

applications of the probabilistic method Erdős [?]
proved an exponential lower bound on R(s, s) us-
ing random colorings. These bounds were improved
later by Spencer in [13] where he uses the proba-
bilistic method and Lovász Local Lemma to obtain
R(s, s) >

√
2
e

(
1 + o(1)

)
s2s/2 and this is the best

known lower bound for R(s, s).
The gap between these bounds is still large, and

in recent years, relatively little progress has been
made. Tight bounds are known only for s = 3. We
have,

c1
t2

log t
≤ R(3, t) ≤ c2

t2

log t
.

The upper bound is due to Ajtai, Komlós and Sze-
merédi [14] and the lower bound was proved by
Kim [15] using a probabilistic argument. The main
result of Kim, which will be used in the proof of
Theorem 1.5, is the following upper bound on the
independence number of triangle free graphs.

Theorem 2.5. Let G
(3)
n denote a triangle free

graph on n vertices. Then every sufficiently large

n has a G
(3)
n for which

α(G(3)
n ) ≤ 9

√
n log n,

where log denotes the natural logarithm.

We are now able to prove Theorem 1.5

Proof of Theorem 1.5. Let n be sufficiently large

and let G
(3)
n be as in Theorem 2.5. From Lemma 2.3

we know that φ(G
(3)
n ,F ) = α0(G

(3)
n ) and from

Observation 2.2 we have α0(G
(3)
n ) = n − α(G

(3)
n ).

Therefore,

φ(G(3)
n ,F ) ≥ n− 9

√
n log n

by Theorem 2.5 and this implies the lower bound.
It remains to prove the upper bound. Let G be a
graph of order n and let t = � 1

2 log2
n + 1�. Then,

by (2.1) we have R(t, t) ≤ n and this implies that
G contains either an independent set of t vertices
or a clique of t vertices.

(a) Suppose that G contains an independent set
of t vertices, say T and let X := V (G) − T .
Assume that the elements ofX are ordered and
let X = {v1, . . . , vm}, where m = n − t. Let
S = {Svi

| i = 1, . . . ,m}, where Svi
denotes the

star with center vi and edge set

E(Svi) =
{{vi, x} | {vi, x} ∈ E(G)−∪i−1

j=1E(Svj )
}
.

Clearly S is a friendship decomposition of G,
hence φ(G,F ) ≤ |S| = |X| = n− t.

(b) Now suppose that G contains a clique of t ver-
tices, say G[X], with |X| = t. Let G1 be the
graph obtained from G after the deletion of the
edges of G[X]. Now G1 contains an indepen-
dent set of t vertices, so φ(G1,F ) ≤ n − t by
part (a), therefore φ(G,F ) ≤ n− t+ 1.

We have n−t+1 ≤ n− 1
2 log2

n−1+2 = n− 1
2 log2

n
4 ,

as required.
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