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ABSTRACT 

Recently measured thermal conductivity in single-walled carbon nanotube ropes in the temperature range 8 - 350 K has 
been explained using an anisotropic dynamical model which not only takes into account the quasi two-dimensional na-
ture of the folded graphene sheets that forms the nanotubes, but also the intertube coupling, in addition to the phonon 
frequency and dimensionality dependent relaxation time of phonon-phonon scattering and interaction. 
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Dynamical Model 

1. Introduction 

Thermal conductivity in bulk samples of single-walled 
carbon nanotube (SWNT) ropes in the temperature range 
8 - 350 K, have been reported by Hone et al. [1]. The 
observed thermal conductivity is predominantly due to 
phonons: the contribution of electrons is less than two 
orders of magnitude in the entire temperature range [2]. 
The temperature dependent values of the thermal con- 
ductivity are much larger than that of crystalline full- 
erene, another allotrope of carbon [3]: at low temperature 
~8 K it is more than an order which keeps increasing 
with increasing temperature and becomes more than two 
orders of magnitude at 300 K. It is smaller than the ther-
mal conductivity of graphite along the z-direction [3] in 
the temperature range 8 - 150 K, beyond which, it ex-
ceeds and becomes almost twice that of graphite at 300 K. 
However, it is much lower than the thermal conductivity 
of graphite in the basal plane, in the temperature range 8 - 
300 K. It is therefore, apparent that the folding of gra-
phene sheets into a bucky ball or right circular cylindrical 
tubules, results in a remarkable change in its thermal 
conductivity, as is evident from the experimental meas- 
urements.  

SWNT ropes consist of bundles of aligned SWNT of 
diameter around 1.25 nm. Each SWNT is in proximity 
with other SWNT and therefore, are bound to one an- 
other and give rise to three-dimensional dynamical modes, 
unlike the case of isolated SWNT, where, the dynamical 
modes are essentially two-dimensional because of the-

folding of a graphene sheet into a capillary. The dynam- 
ics of a SWNT has been studied theoretically using a 
simplified model of the tube, and the appropriate dy-
namical matrix diagonalized, to obtain its vibrational 
modes [4]. However, there is hardly any theoretical work 
which attempts to explain the observed temperature 
variation of thermal conductivity in SWNT ropes, be- 
cause of its complexity. One must nevertheless, try to 
understand the phenomenon because of its commercial 
utility and also, for academic purposes, which will lead 
to the understanding of its different physical properties. 
An attempt here, is therefore, made to understand both 
the thermal conductivity and its intimately related quan- 
tity, the specific heat [5,6] using different physical dy- 
namical models, and then try to fix the dynamical model, 
using the basic physics of the sample, to explain consis- 
tently both the temperarure dependent thermal conduc- 
tivity and the specific heat variation of the sample.  

In the next section is briefly described the mathemati- 
cal formalism, followed by the results and discussions of 
the computations. Important conclusions are recorded in 
the final section. 

2. Mathematical Formalism 

Thermal conductivity is expressed as: 

i
i

                   (1) 

where i  is the thermal conductivity in the  direc- thi
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tion  (, ,i x y z , ,x y z  represent the directions in the 
Cartesian coordinates and also the polarization of the 
phonons). 

21

3i i iC v i               (2) 

where i , i  and iC v   are the specific heat, velocity and 
the relaxation time of the phonons respectively in the  
direction.  

thi

Expressing specific heat in terms of phonon frequency 
distribution function (FDF), ( )ig  , and the average 
number of phonons of energy  , 
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the expression for thermal conductivity turns out to be: 
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Different dynamical models of phonons are used to 
compute the specific heat and thermal conductivity. 

2.1. Debye Model 

The phonon FDF in this model is given by the relation. 
2           0
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        (4) 

2.2. Extended Debye Model 

In this model [7-9] the material anisotropy is introduced 
using different cutoffs for the allowed maximum energy 
of the phonons. 
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where 

, ,EDMi DMx EDMy EDMx EDMy      EDMz E

ig

  

and the limit of FDF along the z axis and perpendicular 
to it ( i.e. in the x-y plane) are different.  

2.3. Anisotropic Model 

The phonon FDF,  , in a given direction i, in the 
suggested dynamical model [10,11] is given as follows: 
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where 0 0i B ik   , mi B mik   , Bk is the Boltz- 
mann constant and  

2π

h
  

where h is the Planck’s constant. 0i  and mi are the 
characteristic temperatures that define the extent of 
three-dimensional and two-dimensional modes region re- 
spectively, in a given direction i. Here mi  is the maxi- 
mum value that two-dimensional modes can have, i = x, y, 
z. Substituting expression (6) in Equation (3), one gets 
the final expression of thermal conductivity: 
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where  is the number density of SWNT ropes. n
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And 1I  and 2I  are as follows: 
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where the relaxation time is given by 
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3. Results and Discussions 

We consider three dynamical models, which increasingly 
take into account the realistic nature of the SWNT ropes 
sample. The first model is celebrated isotropic three- 
dimensional Debye model, which ignores the presence of 
anisotropic nature of the SWNT ropes. The model is 
given by expression (4) which when used in expression 
of the specific heat contained in expression (3), to com- 
pute the temperature variation of specific heat, one finds 
that the Debye temperature of 1500 K yields the specific 
heat in the temperature range 2 - 300 K, as shown by 
small dash curve (- - - - - -) in Figure 1. It is the model 
which yields Dulong Petit law i.e. the value of 3R at high 
temperatures in agreement with the experimental results 
shown by solid squares (■ ■ ■ ■); but at low tempera- 
tures yields quite different temperature variation of spe-  

Copyright © 2013 SciRes.                                                                                  SNL 



On the Thermal Conductivity of Single-Walled Carbon Nanotube Ropes 9

 

Figure 1. Specific heat of single-walled carbon nanotubes in 
the temperature range 2 - 300 K by different models: (a) 
Experimental values squares (■ ■ ■ ■); (b) Debye model 
dash (- - - - - -); (c) Extended Debye model dash dot (- .-. -. -. -.) 
and (d) Anisotropic model solid line ( _________ ). 
 
cific heat: the computed values are increasingly much 
lower than the corresponding experimentally observed 
values of specific heat in the entire temperature range 
down to 2 K. In order to take into account the anisotropy 
present in the system, one can use expression (5), which 
is referred to as “Extended Debye model” (EDM) where 
there are two values of EDM , one along the basal plane 
and other perpendicular to it i.e. 

 2600 KB EDMxyk 
 


 

and 

 650 KB EDMzk 
 


 

respectively. The computed values of specific heat have 
been shown by large dash curve (___ ___ ___). 

The EDM yields closer values to experimental ones in 
the temperature range 60 - 300 K, but gives much lower 
values at lower temperatures , even though 
these values are much higher than those given by iso- 
tropic Debye model. Finally, the anisotropic model given 
by expression (6) which not only takes into account the 
anisotropic planar modes reminiscent of graphene modes, 
but also the intertube coupling, which gives rise to 
three-dimensional dynamical modes at small values of 
frequencies, has been used to compute the specific heat. 
One finds that 

60 KT  

0 10 Kxy z0 0 0x y      ; 906 Kmz    
and mxy 2600 K    yields the best possible values of the 
specific heat as shown in Figure 1 by solid line 
(__________). As is evident from the Figure, this model 
explains quite well the temperature variation of specific 
heat in the entire temperature range 2 - 300 K (and is far 
superior to Debye and Extended Debye model). We 
therefore, use this model to study the temperature varia-
tion of thermal conductivity of SWNT ropes.  

Thermal conductivity, unlike the study of specific heat 

in the present problem where number of phonons is fixed, 
involves phonon-phonon scattering and phonon-phonon 
interaction, which gives rise to phonon mean free path  
or phonon relaxation time

l
 . One has to use an appropri- 

ate form for the relaxation time. Taking a cue from ther- 
mal conductivity when phonon distribution function is 
three-dimensional Debye type, one can suggest the form 
of ( )   to be that given by expression (8) where, d is 
introduced as a variable having the physical connotation 
of the dimensionality of the system. For d = 2, the ex- 
pression corresponds to three-dimensional case [5]. Us- 
ing this form of ( ) 

, ,

in expression (3), one gets the fi- 
nal expression of thermal conductivity given by expres- 
sion (7). Using the various values of the physical pa- 
rameters 0 0 ,z xy mz mxy  

D eff


10

 obtained from the specific 
heat study and , 18 K  

d

, the thermal conductivity 
is computed for different values of d, and its temperature 
dependent variation is plotted in Figure 2. As is evident 
from Figure 2, when 0.75  the computed values 
given by solid curve (__________) explains reasonably 
well the temperature variation of thermal conductivity 
from 8 K to ~150 K. Above 150 K, experimental values 
are somewhat higher and maximum percentage deviation 
is ~ 40% at 300 K. 

Since 1.0d   represents a two-dimensional nature of 
the system, it therefore appears that at high temperatures 
the behavior of thermal conductivity in SWNT ropes 
approaches that of two-dimensional material while at low 
temperatures, it corresponds to quasi two-dimensional 
because of the curvature of graphene sheets.  

4. Conclusion  

One may conclude that, it is possible to explain consis- 
tently both, the observed temperature variation of spe- 
cific heat and thermal conductivity of SWNT ropes, us- 
 

 

Figure 2. Thermal conductivity of single-walled carbon 
nanotubes in the temperature range 8 - 350 K for different 
values of d: (a) Experimental values by squares (■ ■ ■ ■); (b) 
d = 0.7 round dots (··········); (c) d = 0.75 solid line 
(__________); (d) d =0.8 small dashes cross (- - - -- - - -); (e) 
d = 0.9 long dash double dot ( ___.. ___.. ___ ); (f) d=1 long 
dash ( ___ ___ ___ ); (g) d = 1.1 long dash dot(___. ___. ___). 
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ing an appropriate anisotropic dynamical model and a 
suitable form of relaxation time that represents phonon- 
phonon scattering and interaction. The anisotropic dyna- 
mical model takes into account the presence of surface 
modes on the curved graphene sheets and intertube cou-
pling. Further, the relaxation time, which is related to 
phonon mean free path, due to the phonon phonon inter-
action is found to be dependent both on phonon energy 
and the dimensionality. Its form also indicates the quasi 
two dimensional nature of SWNT ropes. 
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