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ABSTRACT 

The lattice Boltzmann method (LBM) is a numerical simplification of the Boltzmann equation of the kinetic theory of 
gases that describes fluid motions by tracking the evolution of the particle velocity distribution function based on linear 
streaming with nonlinear collision. To verify the reliability and accuracy of the model simulation of incompressible 
fluid flow, we program to simulate two-dimensional Poiseuille flow which has the analytical solution by using the three 
mode: D2Q9 model, He-Luo model, Guo model (D2G9). The tests show that the Guo model gives better results. So, in 
the article, the Guo model is used to stimulate the jet flow field, then the result of which is compared to the result from 
the experience. The research of this article is the first step to make use of the LBM on the aeroacoutics of jet flow and to 
provide a theoretical basis on jet aeroacoustics for further study. 
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1. Introduction 

The first two-dimensional discrete lattice gas model was 
proposed in 1986 by Frisch, Hasslacher and Pomeau 
(FHP) [1]. The method is numerically stable and inher- 
ently parallel, etc., With using it successfully to simulate 
a few complex physical systems, especially the success- 
ful simulation of fluid phenomena, making the method 
increasingly attention [2]. But the method has statistical 
noise, does not meet the Galilean invariance and other 
deficiencies. To overcome these LGA deficiencies, a Lat- 
tice Boltzmann method was developed. McNamara and 
Zanetti (1988) made direct use of the average number of 
particles or particle distribution functions instead of 
Boolean variables evolution, which reached a new model, 
this model is the first lattice Boltzmann model [3], there- 
by creating a new fluid calculation direction. 

Comparing with Navier-Stokes (N-S) equations, 
Boltzmann equation (BE) has several advantages: First, 
the BE is applicable even if the medium could not be 
considered as continuous, such as in simulating rarefied 
gas flows or multiphase and multicomponent flows. 
Second, the BE provides clear physical definitions for the 
equation of state of the fluid, the viscous stress, and the 
heat conduction from the molecular transport viewpoint. 
For the N-S equations, these considerations could not be 
derived directly from the continuum model. In general, 
the perfect gas equation of state, the Stokes viscous hy- 

pothesis, and the Fourier heat conduction relation have to 
be introduced to solve the equations. Third, there is a 
large timescale disparity between these two kinds of 
equations [1]. 

On the other hand, the macroscopic quantities in the 
Navier-Stokes equations, such as density, velocity, pres-
sure, and temperature, are affected by the long timescale 
of the velocity distribution function, which is of the order 
of about 10−4 s. Consequently, the BE has a much smaller 
timescale than the Navier-Stokes equations. However, 
the BE is relatively simple compared to the Navier- 
Stokes equations. 

In the recent decade, the Lattice-Boltzmann approach 
has developed quickly, turning into a powerful tool for 
the simulation of fluid flow [4,5]. Different from the tra-
ditional visual top-down method in the calculation of 
fluid mechanics, the Lattice-Boltzman method uses down- 
top method with the start from the micro discrete model 
of fluid. While using the method of Lattice-Boltzman, 
the fluid is abstracted as a number of micro particles, 
which may collide and move on the regular discrete lat-
tice in some simple ways.  

The key of Constructing LBGK is to choose the right 
model of equilibrium distribution function. And the key 
of different LB models is to constructing a corresponding 
equilibrium distribution function. 

Some people propose their model to compute incom-
pressible N-S equation, but their model has their own 
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definition. 
DnQb model which is still widely used, was proposed 

by Qian in 1992 [6]; 1995, Zou and his collaborators 
proposed a lattice Boltzmann model which could made 
the calculation of steady incompressible Navier-Stokes 
equations, it’s called Zou-Hou model [7]; In 1997, Chen 
and Ohashi promoted the Zuo-Huo model unsteadily and 
incompressibly to construct a new incompressible Lat-
tice-BoltZman model. We called it Chen-Ohashi mode 
[8]. They treated the macro speed u  in the Zou-Hou 
definition as a temporary speed, adjusting which the real 
fluid speed may be figured out by: w u f  . The 
basic concept of Chen-Ohashi model is to adjust velocity 
field with a potential function, which may lead to the 
correct unsteady and incompressible N-S function. How- 
ever, a Possion function needs to be figured out in every 
time step during calculation, which increased the calcu-
lated amount of the model. 

While Chen-Ohashi model was being suggested, He 
and Luo suggested another flow Lattice-Boltzmnan model 
that generally incompressible. Here we call it He-Luo 
model [9]. The basic concept is to eliminate directly the 
high-order Mach (caused by the changes of density) in 
the equilibrium distribution functions. This is an addi-
tional limitation out of low Ma number in the He-Luo 
model. To minimize the influence of artificial com-
pressibility  2

0sL c t p t   , the additional condition 
which needs to be satisfied is 0 st L c .  

In 2000, some researchers including Guo Zhaoli con-
struct a Lattice-Boltzmnan model that is able to stimulate 
general incompressible N-S equations set, which some-
how overcome the insufficiency of the above models [4]. 
Here it’s called Guo model or D2G9 mode. 

In the article, the Lattice-Boltzmann and Guo model is 
used to stimulate the incompressible jet flow field (Ma ≤ 
0.3), then the result of which is compared to the result 
from the experience. The research of this article is the the 
first step to make use of the LBM on the aeroacoustics of 
jet flow and to provide a theoretical basis on jet aeroa- 
coustics for further study. The near-field flow physics 
simulations were performed using self programming, 
which is based on the LBM kernel. This paper is ar-
ranged as follows: Section 2 provides a brief description 
of the LBM methodology; Section 3 summarizes the grid 
setup and flow conditions used for LBM and provides 
results for both the near and far-field flow variables and 
finally some closing remarks and future work are in-
cluded in Section 4. 

2. Physical Model 

Discrete velocity model was established for Lattice 
Boltzmann method by starting from the concepts and 
theories of kinetic theory, statistical mechanics, basing 

on microscopic particle size. It obtained particle distribu-
tion function to meet the mass, momentum and energy 
conservation conditions, then made calculations of the 
statistical distribution function of particle, it can obtain 
the pressure, flow rate and other macro variables. 

In this paper, as shown in Figure 1, the model of two 
dimensional nine vectors is discretized into a square. And 
according to the theory of the Lattice Boltzmann method, 
it consists of two steps: a streaming step and a collision 
step.  

The time-discrete version of the Boltzmann equation 
can be written as follows [4]: 

         1
, , , eq

i i i i i ,f x c t t t f x t f x t f x t

           

(1) 

Here, in Equation (1), 1 is the particle velocity distribu-
tion function, 0 t    is dimensionless relaxation 
time.  eq

if  is the equilibrium distribution function of 
 ,if x t . Equilibrium distribution function of DmQn 

model has the following general formula: 
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Here, in Equation (2), sc is constant, pt  is weight coef-
ficient. ,i ic c   is components of the discrete velocity 

i . According to Equation (2) shows that, once selected 
discrete speed i , equilibrium distribution function can 
be obtained if one choose the right coefficient i  only. 
In order to ensure obtaining the correct macro equation, 
when choosing these weights, it shall be made to meet 
the mass conservation, momentum conservation and iso-
tropic constraints, so that: 

c
c

w

   ,eq eq
i i i

i i

f c f u             (3) 

In this model, each node can have three particles sta- 
tionary particle, orthogonal direction of movement of par- 
ticles and the diagonal direction of movement of particles,  
 

 

Figure 1. D2Q9 lattice. 
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respectively. The discrete velocities for the D2Q9 model 
are defined as . And the nine 
vectors of the lattice links are documented as follows: 
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c x t   is Grid speed, x and t  are the grid step 
and time step respectively. 

The discrete velocity of D2G9 model is still used the 
discrete velocity of D2Q9 model, but a new class of dis-
tribution function was introduced, the equilibrium distri-
bution function was defined as followed [10]: 
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 ,  ,   are some model parameters to meet the con-
ditions: 

2 1 2

  
 
 

  
               (6) 

Throughout the derivation it only meets for low Mach 
number limit. Meanwhile, comparing with general lattice 
Boltzmnan model calculation, D2G9’s calculation adds 
nothing. The model can be applied to unsteady flow. 

3. Analysis and Discussion  

An overview of the lattice Boltzmann method is provided 
in the previous section. Based on the above theoretical 
analysis, we will use D2Q9 model, Guo model (D2G9), 
He-Luo model to make two-dimensional simulation for 
constant pressure gradient-driven Poiseuille flow and 
make comparison with the simulation results and ana-
lytical solutions or the existing literature’s data. on the 
basis of proving Lattice Boltzmann method in proving 
the calculated value for the fluid stimulation feasibility, 
several focusing on the comparing basic model simula-
tion results, and from the convergence speed, accuracy, 
numerical stability analysis of several different angles 
and compared to choose an excellent model to provide a 
theoretical basis for further stimulation of jet acoustics 
by using lattice Boltzmann method. 

3.1. Verification Computation 

To verify the reliability of the model simulation of in-
compressible fluid flow, first programming to simulate 
two-dimensional Poiseuille flow which has the analytical 
solution. 

As show in Figure 2, width is L between the two 
plates, the fluid viscosity is  , flow pressure gradient is  

p
G

x


 


, the analytical solution of flow velocity is: 
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G L y y
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 

             (7) 

Flow region is 0 4x  , , which is divided 
by 160 × 40. The fluid initial density 0

0 y 1
1.0  , initial 

velocity 0 0v  . Pressure boundary conditions for the 
inlet and outlet [11], the pressure drop gradient 0.1p  . 
After calculation, steady flow can be achieved. By com-
paring D2Q9 model, He-Luo model, Guo model (D2G9) 
in use of Poiseuille flow simulation computation, define 
the analytical solution of Poiseuille flow is  , 1 , 2 , 

3  are respectively D2Q9 model, He-Luo model, Guo 
model  2 9D G  simulation results. Define the relative  

error:  e
 





. 

As can be seen from the above simulation results 
(Figure 3), Although D2G9 model though is not too ob-
vious advantage, it is still able to get a more accurate 
simulation results. Three basic relative errors are not more 
than 3%, which is within the allowable error range in 
engineering. From the chart it can also be found that as 
the Reynolds number increases, D2G9 model errors rise 
significantly smaller than the other two, the error is much 
gentler curve, which shows D2G9 model in the large 
number have significantly higher stability than the rest of 
the two models at large Re.  

3.2. Jet Simulation 

The turbulent square jet has been studied experimentally 
and numerically [12]. The mean streamwise velocity at 
the center of the slot exit 0U  is 60 (m/s). We will use 
this data from the experiment in the validation study.  

Jet computational domain (excluding the nozzle) grid 
is designed to: 801 201x yN N   . Grid of Jet compu-  
 

 

G p x  

 

Figure 2. Poiseuille flow schematic diagram. 
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tational domain is showed in Figure 4. Starting from the 
prescribed initial conditions, the results are computed for 
a long enough time to allow for the establishment of sta-
tistically stationary turbulent field. 

The rate of decrease of the centerline velocity Uax of 
the jet can be used to make known the extent of penetra-
tion [12]. Slow decrease of the centerline velocity would 
indicate deeper penetration of the jet into the ambiance. 
Figure 5 showed the computed mean streamwise veloc-  

 

 

Figure 3. Poiseuille schematic diagram of relative error. 
 

 

Figure 4. Model and grid computing. 
 

 

Figure 5. Decay of the mean centerline streamwise velocity 
Uax (x) normalized by the maximum velocity Umax. The ex-
perimental data (blue) are taken from [12].  

ity evolution on the jet centerline along with the experi-
mental result of Quinn and Militzer [12]. The centerline 
velocity Uax is normalized with Umax which is the maxi-
mum mean streamwise velocity along the jet center line. 

Figure 6 showed the computed variation of the half- 
width with downstream distance along jet centerline. In 
Figure 6, the velocity half-width 1 2y  of the jet in the 
spanwise direction is the distance between the jet center-
line and the location where the mean streamwise velocity 
is half that of the centerline. It is showed that along 
streamwise direction the trend of between the experi-
mental and LBM results are made very good agreement. 
The simulations capture the experimental profile reasona-
bly well. Rapid increase of the jet half-width with down-
stream distance would indicate rapid mixing or spreading. 
As show in Figure 6, numerical simulation results are 
smaller than the experimental data. 

As shown in Figure 7, Visualization process of jet 
calculation (velocity) shows that the flow goes outside in 
the xy plane, i.e., along streamwise direction the jet 
width rapidly extends. In the vertical direction, the flow 
goes toward the center axis just behind the nozzle, and 
the jet width is gently extended in the downstream. This 
feature has also appeared well in the spatially averaged 
axial velocity profiles (Figure 9). 

The experimental data (red solid lines) and the nu-
merical results (dashed lines) of Mean streamwise veloc- 
ity profiles in the central xy plane at different locations 
are compared in Figure 8. It is noted that all the veloci-
ties are dimensionless. Good agreement was obtained 
with the numerical results for the mean axial velocity.  

The spatially averaged axial velocity profiles are dis-
played in Figure 9. The measured profiles taken at dif-
ferent heights above the outlet follow the free jet theory. 
Close to the outlet the profile is similar to a turbulent 
plug flow, with high gradients inside the shear layer. Af-
ter passing the transition zone for x D 6  (at the end  
 

 

Figure 6. Development of the jet half-width y1/2 along the jet 
centerline. Experimental (blue) data are taken from [12]. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Visualization process of jet calculation (velocity). 
 
of the potential core), the jet breaks down with further 
downstream position, resulting in a typical flattening and 
broadening of the profile in the starting self-similarity 
zone  x D 11 . 

Figure 10 shows comparison of contours of velocity 
with LES and LBM. It is found that the trend of simula-
tions of LES and LBM is alike. Close to the outlet the 
profile is similar to a turbulent plug flow, with high gra-
dients inside the shear layer. After passing the transition 
zone for x D 6 , the jet breaks down with further 
downstream position, resulting in a typical flattening and 
broadening of the profile in the starting self-similarity 
zone x D 11  . But, compared with traditional CFD, 
the contours’ line of LBM is smooth transition, and it is 
equivalent to an ellipse. As the BE provides clear physi-
cal definitions for the equation of state of the fluid, the 
viscous stress, and the heat conduction from the molecu-
lar transport viewpoint. So, it is concluded that LBM can 

better reflect the nature of the fluid flow. 
Figures 11 and 12 show the axial turbulence intensi-

ties along the centerline and jet shear layer of the jet for 
both LBM and LES. The simulation results are also com-
pared to recent experimental measurements of Lauren-
deau et al. [13]. Qualitatively, the trends of the axial tur-
bulence intensities for this jet are consistent with those of 
an axisymmetric turbulent jet; the peak fluctuation for 
the centerline occurs earlier and is greater compared to  

 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Mean streamwise velocity profiles in the central 
xy plane at different locations. (a) x/D = 0.2; (b) x/D = 2.7; (c) 
x/D = 4.5. Experimental data (red solid lines) are taken 
from [12].  
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Figure 9. Ensemble averaged filtered axial velocity. 
 

 
(a) 

 
(b) 

Figure 10. Comparison of contours of velocity with LES 
and LBM: (a) LES; (b) LBM. 
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Figure 11. Mean axial turbulence intensity along the jet 
centerline experiments data are from Laurendeau [13]. 

 

Figure 12. Mean axial turbulence intensity along the jet 
shear layer for both LBM and LES. Numerical results are 
compared to the recent experiments of Laurendeau [13]. 
 
the centerline peak fluctuation. The decay after the peak 
intensity is reached is shown to be slightly slower for the 
LBM compared to the LES. The peak value and the axial 
location of the computed lip-line turbulence intensity are 
in agreement with experimental observations. 

4. Conclusions 

In the article, the LBM is used for numerical simulation 
of low-Mach jet flow field. Besides, the LBM is used in 
the first step of research on the aeroacoutics of jet flow, 
in which the evaluation process of the diffusion and 
transportation of jet flow is figured out by numerical 
calculation. This highly reflects the flow in the jet flow 
filed and the result from the numerical stimulation is co-
incided with the result of experience. 

Of course, practical applications require to run LBM 
simulations at higher Mach numbers. There is an effort to 
extend the current lattice-Boltzmann methodology for 
high Mach number capability. Nonetheless, this study 
has shown that as a first step towards reaching that goal, 
the LBM indeed showed promising results for a near 
compressible jet. Hence, the use of LBM applied to the 
study of jet aeroacoustics appears to be a viable approach 
in the field of jet noise simulations. 
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