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Abstract 
 
Many real world networks change over time. This may arise due to individuals joining or leaving the net-
work or due to links forming or being broken. These events may arise because of interactions between the 
vertices which occasion payoffs which subsequently determine the fate of the nodes, due to ageing or 
crowding, or perhaps due to isolation. Such phenomena result in a dynamical system which may lead to 
complex behaviours, to self-replication, to chaotic or regular patterns, to emergent phenomena from local 
interactions. They give insight to the nature of the real-world phenomena which the network, and its dynam-
ics, may approximate. To a large extent the models considered here are motivated by biological and social 
phenomena, where the vertices may be genes, proteins, genomes or organisms, and the links interactions of 
various kinds. In this, the first paper of a series, we consider the dynamics of pure reproduction models 
where networks grow relentlessly in a deterministic way. 
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1. Introduction 
 
There has been much recent interest in the way in which 
networks such as the World Wide Web grow, and the 
structures which result from various rules by which new 
vertices are added and link to the existing vertices. One 
of the most studied is the so called Preferential Attach-
ment model whereby a new node is added at each time 
t N   (we use N  and N   for the non-negative inte- 
gers and positive integers respectively) and links to some 
set of existing vertices with probabilities which depend 
on the degrees of the latter. In the simplest case the pro- 
babilities are simply proportional to the degree, a model 
introduced by Yule [1], again by Simon [2], and then 
more recently by Barábasi and Albert [3]. The outcome 
of this process (see [4,5]) is a network in which the de-
gree of a randomly selected node follows a power law 
distribution (i.e., if X  is that degree then the probability 
Pr( = ) = bX k ak  ), and the network is scale-free in the sense 
that ( = ) / ( = ) = ( = ) / ( = )Pr X l c Pr X c Pr X l d Pr X d   
for all l , c  and d . 

On the other hand there has been relatively little atten-
tion paid to the growth of networks through the repro-
duction of existing vertices and the generation of links 
between these new vertices and the old vertices, although, 

of course, the preferential attachment model where a new 
vertex is linked to an existing vertex could be regarded 
as the production of an offspring by the latter. This is 
clearly a situation which arises in a biological population 
which reproduces itself and in which we track related-
ness. In a population which reproduces asexually, if we 
join each individual to its parent, then we simply produce 
a tree for each clone. More interestingly, if in a sexually 
reproducing population we join each individual to their 
two parents we obtain a genealogy (see [6] for alternate 
ways of representing this network). 

A further biological example happens when a genome 
duplication occurs [7]. The genes in the genome each 
code for some specific protein. If one considers the set of 
proteins of some organism as vertices in some network 
and joins any pair of vertices if the corresponding pair of 
proteins can bind then one obtains the protein-protein- 
interaction network. In a genome duplication every gene 
is essentially duplicated, so that there are now two copies 
producing the protein previously produced by one copy 
(we assume for simplicity that there is a simple one-one 
mapping of proteins to genes, ignore post-translational 
modification and other interactions, and splicing varia-
tion). If we then distinguish between the two copies of 
the genes and the proteins produced by those two copies 



R. SOUTHWELL  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                  AM 

138 

then we have a doubling of the set of vertices, and a 
quadrupling of the number of the links. This is our model 
5 below. 

More generally suppose that a set of entities are al-
lowed to reproduce and that links which are produced in 
the new network are defined in terms of the existing 
links, and the relatedness of new and old verticies. In 
addition to the gene-duplication example above this 
might correspond to the establishment of the social net-
work between individuals. For example, taking a gyno-
centric view, suppose that daughters of mothers who are 
friends are also always friends, and that mother and 
daughter also are treated as friends, then we obtain a par-
ticular set of relationships in a population as it repro-
duces, our model 6. Certainly it is well known in some 
species of apes and monkeys that social relationship is 
influenced by biological relatedness [8,9], and this is also 
well known in other groups e.g. spotted hyenas [10]. 

From now on we switch our terminology to that of 
graph theory, i.e., refer to a graph rather than a network, 
and to an edge rather than a link. A graph, denoted 

( , )G V E  or just G  for short, is a specification of some 
set ,V  whose elements are referred to as vertices, and 
some set E V V   whose elements are called edges. 
V V  denotes the set of unordered pairs of elements 
(we adopt   for the direct product, i.e., the set of or-
dered pairs, and elsewhere for the direct product of ma-
trices) from V  since we are restricting ourselves to 
undirected graphs, and we do not exclude the possibility 
of self-edges, that is choosing the same element of V  
twice. We will extensively use the notion of a graph 
product [11]. Suppose we have two graphs = ( , )G U C  
and = ( , )H V D , then we define a new graph 

( , ) =K W E G H  as a graph product of G  and H , 
where =W U V , and the edge set E  contains all 

1 1 2 2(( , ), ( , ))u v u v , where iu U  and ,iv V  which sa- 
tisfy some set of relationships which depend on the iden-
tity, adjacency or non-adjacency of 1u  and 2u , and of 

1v  and 2v  [11]. 
We consider the following processes. The current gra- 

ph is updated by adding to it a new vertex (the offspring) 
for each existing vertex (the parent). Each edge of the 
current graph is replaced by a subset of the edges of the 
complete graph formed on the pair of parent vertices and 
their two offspring; we always retain the edge between 
the parent vertices. Thus the “old” graph is always a 
subgraph of the “new” graph. The eight distinct ways in 
which this can be done constitute the set of models we 
consider (defined precisely below). Note further that 
there is no mortality in this model, all vertices and edges, 
once created are immortal. We shall discuss models in 
which the death of a vertex depends on the degree or the 
age of that vertex, and models in which interactions 

(games) between neighbours determine the survival in 
subsequent papers. 
 
2. The Models 
 
We are interested in a family of sequences of graphs 

( , )t t tG V E , where t N  which we shall refer to as time, 

tV  is the set of vertices and t t tE V V   the set of 
edges. We define a set of functions ()iF  for = 0,..,7i , 
which map graphs to graphs. In general we consider the 
sequences defined recursively by specifying 0G  and 
function ( )iF G ; then 1 = ( )t i tG F G . In each case we 
form 1tG   as a graph product of the existing graph tG  
with a simple two vertex graph. 

Suppose that = ( , ) = ( )i i i i iH H W K F G  for = ( , )G G V E . 
Then iH  has vertex set = {0,1}iW V  . Thus each 
vertex of V  gives rise to two vertices in iW . We shall 
refer to the vertices ( , 0)u  and ( ,1)u  arising from 
u V  as the offspring vertex and parent vertex respec-
tively. iH  has edge set iK . Now if u and v are distinct 
elements of V, then ( , ) (( , ), ( , )) iu v E u j v j K    for 
all j  and ( , ) (( ,1), ( ,1)) iu v E u v K   . We introduce 
three indicators (functions taking values 0 or 1),  ,   
and   to specify the additional edges which are added 
to iK . The index i of the eight functions ( )iF G  are 
written in binary and these define the three indicators for 
that model e.g. 6F  has = 1 , = 1  and = 0 . 
Thus ( )iF G  for = 4 2i      has edges as follows. 
If u V  then (( ,0), ( ,1)) iu u K  if, and only if, = 1 . 
If ( , )u v E  then (( ,0), ( ,0)) iu v K  if, and only if, 

= 1 . Finally (( ,0), ( ,1)) iu v K  (( ,1), ( ,0)) iu v K  if, 
and only if, = 1 . 

These models are illustrated in Figure 1. 
We shall discuss here only the details of the eight mo- 

dels described above by using the eight iF  repeatedly. 
We could generalize the model in various ways, e.g. by 
taking some sequence { }tx , possibly generated at ran-
dom, of elements from {0,1,2, ,7}  and using the 
function xt

F  as the transition from tG , or we could  
 

 

Figure 1. The motif that an edge {u, v} is replaced by under 
each model. The code for the models is shown at the top left 
of each panel. 
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take the  ,   and   themselves to be probabilities 
that the corresponding edges are included at each stage. 

We shall derive results for our models for the number 
of vertices with degree d, the total number of edges, the 
chromatic number, diameter and average distance, and 
comment briefly on the automorphisms. A further paper 
will explore additional graph entities such as cliques, and 
cycles, the number of polygons of given size arising 
from a given polygon at the previous time step, and add 
further information regarding some of the entities ex-
plored here. 

As stated above the operations introduced here are all 
equivalent to taking a graph product of TG  with some 
simple graph Z. Table 1 specifies the products for each 
of the models. 
 
3. Binary String Representation 
 
As mentioned above, a useful, alternative way to define 
the rules is in terms of the notion of parent and offspring 
vertices, and binary strings. If we begin with a graph 

0 0 0( , )G V E , then if 0u V , this vertex gives rise to 
( ,1)u  and ( ,0)u  in 1G , which we write as u0 and u1, 
and to (( ,1),1)u , (( ,1),0)u  (( ,0),1)u  and (( ,0),0)u  
in 2G , which are written in the obvious way as u11, u10, 
u01 and u00, and so on. In tG  there will be 2t  verti-
ces arising from u. We denote these vertices as strings of 
length ( 1)t   written u  where   runs over the bin- 
ary strings of length t. We refer to these representations 
as vertex strings. 

The eight models, all of which at time t have 0| | 2tV   
vertex strings, give rise to distinct edge sets. We now 
specify precisely the edge set for each model at time t. 
Consider two vertices tux  and tvy  (possibly identical) 
at time t, so tx  and ty  are two binary strings of length 
t, whose I’th elements are denoted by i

tx  and i
ty . Now 

we define a third string tz , where the i'th element of tz , 
i
tz , is determined by the pair ( , )i i

t tx y . The purpose of 

tz  is to specify the sequence of edges which need to be 
added to u and v in order to reach tux  and tvy . In 
specifying the models earlier we introduced  ,   and 
 , as indicators for the three distinct types of new edge. 
Here we identify the elements of tz  with  ,  ,   
and two new terms *  and  . Thus if we have 
( , ) = (0,0)i i

t tx y , indicating that an edge must be placed 
between the offspring of the individuals 1tux   and 

1tvy  , then we record =i
tz  . Similarly we track the 

other edges, as is detailed below. Note for ease we in-
troduce a   corresponding to the choice ( , ) = (1,1)i i

t tx y , 
and differentiate between ( , ) = (0,1)i i

t tx y  and ( , )i i
t tx y  

= (1,0)  by using   and *  respectively. When we 
use the tz ’s to specify which edges exist in tG , we 
shall in fact take = 1  always, and *=  . 

Table 1. The products are denoted by a single letter K = 
Kronecker, C = Cartesian, H = Comb, S = Strong = AND, N 
= non-standard. 

Model α β γ Product Edges of Z 

0 0 0 0 K {(1,1)} 

1 0 0 1 K {(0,1), (1,1)} 

2 0 1 0 H {(0,1)} 

3 0 1 1 N N 

4 1 0 0 K {(0,0), (1,1),} 

5 1 0 1 K {(0,0), (0,1), (1,1)} 

6 1 1 0 C {(0,1)} 

7 1 1 1 S {(0,1)} 

 
If  
1) ( , ) = (0,0)i i

t tx y  then =i
tz  , 

2) ( , ) = (1,1)i i
t tx y  then =i

tz  , 
3) ( , ) = (0,1)i i

t tx y  or ( , ) = (1,0)i i
t tx y  and 1 1=t tux vy   

then =i
tz  , 

4) ( , ) = (0,1)i i
t tx y  and 1 1t tux vy   then =i

tz  , 
5) ( , ) = (1,0)i i

t tx y  and 1 1t tux vy   then *=i
tz  . 

The string ( , ) tu v z  specifies the start and the se-
quence of operations which need to take place to pro- 
gress from ( , )u v  to ( , )t tux vy . As examples consider 
(A) vertices ( 0010101010)u  and ( 0011001110)u , then 

*
10( , ) = (( , ) ),u v z u u    and (B) ( 0011001011)u  

and ( 0011001011)v  gives rise to (( , ), ).u v   
Further note that tz  can contain at most one  , and 
then only if =u v . 

Now we assert that tux  and tvy  are linked for a 
specific model if, and only if, each of the entries in tz  
(such as  ,  , etc.) is equal to 1. If we start with 

=u v  then we obtain sequences of the form 
* 1= (( , ) < , > < , , , > ),k t k

tz u u           where the 
powers of the sets <>  are the direct products. Note here 
that  ’s in front of the   must be taken as having 
value 1 in every model since they relate to the same ver-
tex. If we start with u v  then we obtain sequences 

*= (( , ) < , , , > )t
tz u v     . 
There is one additional complication in the case where 

we have self-edges in 0G . We need to consider the am-
biguities which may arise if = 1  and = 1 , since the 
former acting on a vertex, and the latter acting on a self 
edge at that vertex will result in the same edge. We can 
deal with this case efficiently by ensuring that any vertex 
with a self-edge at any time t is only subjected to one of 
the operators. 

For our examples above we have that (A) requires 
= = = 1    (recall = 1  and *=   always) so 
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there is an edge only in model 7, while (B) requires only 
that = 1  and u v  (note that in the absence of a  , 

=u v  would only lead to two copies of the same vertex) 
so there is an edge in models 4, 5, 6 and 7. 
 
4. Homogeneity 
 
Definition. Merger of Two Graphs 

Given two graphs ( , )G U E  and ( , )H V F  then we 
define the merger of G  and H  as the graph 

( , )J U V E F  , and denote this by G H  
Theorem 
For each of the models specified above given some 

0 0 0( , )G V E  then with 1 = ( )t tG F G  and writing in the 
obvious way 0= ( )t

tG F G  we have that,  

    
0, ,t

t u v EG F L u v  where ( , )L u v  is the graph 
with vertices u and v, and one edge ( , )u v . 

Proof 
This follows immediately from the definition of the 

functions ( )iF G . It is clear that for any ( , )G V E  we 
have        , ,i i iF G L u v F G F L u v   for each 
of the possible cases 1) u V , v E  and ( , )u v E , 
2) ,u V  v V  and ( , )u v E , 3) u V  and 
v V , and 4) u V  and v V . Then by induction the 
result follows. 

In view of the theorem above much of the information 
is captured by considering the case where 0G  consists 
of a single edge. We consider how a single edge (and 
sometimes other equally simple structures) evolve under 
our models. 
 
4.1. Models 0, 1, 4 & 5; Kronecker Products 
 
As Table 1 shows, four of the models use the Kronecker 
product, in fact those for which = 0 . For such products, 
which we denote by ,  we have ( ) =A G H  

( ) ( )A G A H , where ( )A G  denotes the adjacency ma- 
trix of G , and   also denotes the Kronecker product 
when applied to matrices. The adjacency matrices for the 
Z’s of models are 0, 1, 4 and 5, respectively, 

0 0

0 1

 
 
 

, 
0 1

1 1

 
 
 

, 
1 0

0 1

 
 
 

 and 
1 1

1 1

 
 
 

. 

The t th Kronecker powers of these, 2 2t t  matrices, 
are easy to obtain. That for model 0 has a single 1 in the 
(2 ,2 )t t  position, and zeroes elsewhere, model 4 gives 
the identity matrix, model 5 gives a matrix of 1’s. Only 
model 1 has an interesting pattern, which is essentially 
the bitwise AND pattern exhibited in [12], and which is 
discussed below in the Section 8. 
 
4.2. Model 2 
 
Model 2 is particularly simple as we have a tree structure; 

we simply add a new branch at each vertex. Here we can 
capture all the structure by starting with 0G  as a single 
isolated vertex. There are various ways to describe the 
resulting tree, and these will be explored in more detail 
in a subsequent paper. For the moment we give only one 
such description. Starting from a single vertex labeled u, 
we obtain vertices u1 and u0 which are linked, then ver-
tices u11, u10, u01 and u00. After t steps we have a tree 
with 2 1t   edges on the vertices of the cube of dimen-
sion t. This tree is necessarily a spanning tree. As we 
make an extra step we take the current cube, with its 
spanning tree, and make a copy of the cube, join vertices 
of the 1t   dimensional cube to the matching vertex in 
the copy. An alternate way of expressing this is to con-
sider a t-dimensional cube with all edges present. Choose 
a particular coordinate and remove all the edges from the 
cube for which this coordinate is 0, then move to the 
cube which has this coordinate equal to 1, and within this 
cube repeat the process. At each stage one removes all 
the edges of a cube, whose dimension is one smaller than 
at the previous step. 
 
4.3. Models 3, 6 and 7 
 
Model 3 is by far the most complex and interesting of the 
models. We shall discuss several aspects of this model, 
along with the other models, but shall postpone a fuller 
discussion to subsequent papers. 

In model 6 the graph arising from a single edge after t 
steps is the ( 1)t  -dimensional cube. 

In model 7 the graph arising from a single edge after t 
steps is the complete graph on 12t  vertices. 
 
5. Numbers of Vertices and Edges 
 
For a general 0 0 0( , )G V E  we have immediately that the 
number of vertices at time t is 0| | *2tV  for all models. 
The number of edges on the other hand depends on the 
particular model, and can be relatively easily deduced 
from the tz  possibilities and the   etc. appropriate for 
each model. For example, for model 3, we have 

*= = = = 1    , so for u v  we have =tz (( , )u v  
*< , , > )t    so there are clearly 3t  edges for each 

( , )u v . We have   * 1= , < , > < , , >k t k
tz u u          

and this results in (3 2 )t t  edges for each u. The com-
plete set of formulae are given in Table 2. 
 
6. Chromatic Number 
 
A vertex colouring of a graph G is the assignment of a 
colour to each vertex in such a way that no adjacent ver-
tices in G have the same colour. The minimal number of 
colours required to achieve this is the chromatic number,  
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Table 2. Formulae describing the number of edges after t 
time steps within the different models. 

Model Number of Edges 

0 0| |E  

1 03 | |t E  

2 0 0(2 1) | | | |t V E   

3 0 0(3 2 ) | | 3 | |t t tV E   

4 02 | |t E  

5 04 | |t E  

6 1

0 0* 2 | | 2 | |t tt V E   

7 1 1

0 0(2* 4 2 ) | | 4 | |t t tV E    

 
which we denote by ( )G . A colouring which achieves 
this minimum will be refered to as a minimal colouring. 
With the exception of model 7, the chromatic number of 
the growing graphs are easy to obtain. 
 
6.1. Models 0, 1, 4 and 5 
 
Suppose that we have a minimal colouring for 0G  with 

0( )G  colours. For models 0, 1, 4 and 5, each offspring 
can be given the same colour as its parent without vio-
lating the condition that we have a colouring, and so the 
chromatic number remains equal to 0( )G . 
 
6.2. Models 2 and 6 
 
For models 2 and 6, suppose we have a minimal colour-
ing of 0G  using the set 0 1 ( ) 10

{ , , , }Gc c c   of 0( )G  
colours. Now suppose that the offspring of a vertex col-
oured with ic  is coloured ( 1) ( )0i mod Gc  . Then, provided 

0( ) > 1G  this will constitute a minimal colouring for 

0( )iR G  for = 2i  and for = 6i . Thus  

    0= 2,tG max G  . 

 
6.3. Model 3 
 
In this model 1( ) = ( ) 1t tG G   . This is because in any 
minimal, proper colouring of tG  there will be an indi-
vidual with ( ) 1tG   distinct colours amongst its 
neighbours (actually there will be at least ( )tG  such 
individuals, and since this individual's offspring is joined 
both to the individual and all its neighbours, this off- 
spring must be given a new colour. This colour can then 
be given to every offspring. 

6.4. Model 7 
 
This is by far the most difficult case, and will be treated 
more fully elsewhere. We observe only that  

( ) 1 ( ) 2 ( )t t tG G G     . 

  The first inequality follows since model 3 produces a 
subgraph of model 7 when they act on the same G. The 
latter inequality is evident since giving a minimal, proper 
colouring of tG  using colours 0 1 ( ) 10

{ , , , }Gc c c   we  
can colour the offspring of any vertex coloured ic  with 
some ic , from a set * * *

0 1 ( ) 10
{ , , , }Gc c c   of completely 

new colours. It is clear that if tG  is a clique, or bipartite, 
then the chromatic number doubles, but this doubling is 
not general. For example the chromatic number of any 
polygonal graph Q  of odd degree > 3 is 3, while 

7( ( )) = 5F Q . 
 
7. The Distance Structure 
 
We now turn to the details of the distances between ver-
tices. The distance between vertices u and v is denoted 
by ( , )d u v , the diameter of a graph g by ( )G . For a 
graph tG  we denote the numbers of pairs of vertices 
with distance x as ( )t x . For each models we shall de-
rive the recursions for the distances through time. Mod-
els 0 and 4 are excluded since they lead to disconnected 
components for which the notion of distance is inappro-
priate. We also suppose that our initial graph is con-
nected so that all subsequent graphs are. 
 
7.1. Model 2 
 
We begin with model 2 since this will allow an easy de- 
monstration of our methods. It is clear that 

1( ) = ( ) 2t tG G    . As in every model if tu V  
then  

( 0, 1) = 1d u u , while if ( , ) tu v E  with ( , ) =d u v d  
then  

( 1, 1) =d u v d , ( 1, 0) = ( 1, 0) = 1d u v d u v d   and  
( 0, 0) = 2d u v d  . We can then write 

1(0) = 2 (0)t t  , 

1(1) = (0) (1)t t t    , 

1(2) = 2 (1) (2)t t t     and 

1( ) = ( 2) 2 ( 1) ( )t t t tk k k k         if 3k  . 
This enables us to derive closed form expressions for 

the ( )t i , for example  

0(0) = 2 (0)t
t  , 

0 0(1) = (1) (2 1) (0)t
t    , 

and 

0 0 0(2) = (2) 2 (1) 2(2 1) (0)t
t t t        but the forms 

rapidly become somewhat unmanageable. 
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We can specify the total number of distances, for all 
models, 2

0 0= (4 | | 2 | |) / 2t t
tL V V  being simply the 

number of pairs of vertices plus the number of vertices, 
and being the same for all the models. The total of the 
distances  

 
      

* *
1 1 1

2* 2 1 1 2 1
0 0 0

= 4 4 3 0

= 4 2 0 2 2 0 .

t t t t

t t t t

L L L

L t



 

  

  

 

  
 

The average distance *= /t t td L L  and for t large this 
gives td c t   where * 2

0 0 0= (2 (0)) / ( (0))c L   . The 
average distance thus increases by 1 at each stage. 

We can derive this average result in another, more di-
rect way. Suppose at some stage we have n vertices and 
average distance t . Now we add the extra offspring. 
The average distance is just the distance between a ran-
domly selected pair of vertices. We consider the possible 
pairs in the new graph. There are (2 1)n n   such pairs, 
n are of type ( 0, 1)u u  and contribute a distance 1. Of 
the remaining 22 ,n  1/4 are of type ( 1, 1)u v , 1/2 are of 
type ( 1, 0)u v , and 1/4 are of type ( 0, 0)u v , which con-
tribute ( 1, 1),d u v  ( 1, 1) 1d u v   and ( 1, 1) 2d u v   re-
spectively. The average over these 22n  latter will thus 
be 1t   and overall we will therefore have 

 
   

2

1

2 1
= = 1 2 2 1

2 1
t

t t

n n
n n

n n


 

 
 


. 

A similar argument can be used to obtain an expres-
sion for the variance of the distances which asymptoti-
cally increases by 1/2 per time step. 
 
7.2. Model 1 
 
In order to derive the appropriate expressions for model 
1 we need to track not only the distances but also the 
number of edges which belong to triangles. Accordingly 
we define set ( )G  of the edges which belong to a tri-
angle (an edge ( , )u v E  belongs to a triangle if there 
exists some k such that ( , )i k E  and ( , )j k E ). De-
fine (1) =| ( ) |t G   and *(1) = (1) ( )t t t t   . The 
necessity of considering triangles arises because the off-
spring of two linked parents will be distance 3 apart if 
the parents’ link is not part of a triangle, but only 2 apart 
if there is a triangle since they are linked through the 
common neighbour of their parents. 

In detail we have 
For all u V  we have ( 0, 1) = 2d u u , 
and for ( , )u v E , 
if ( , ) > 1d u v  we have 

( 0, 0) = ( 0, 1) = ( 1, 0) = ( 1, 1) = ( , )d u v d u v d u v d u v d u v , 
if ( , ) ( )u v G  then ( 0, 0) = 2,d u v ( 0, 1) =d u v  

( 1, 0) = 1d u v , ( 0, 1) ( )u v G  and ( 1, 0) ( )u v G , 
and  

if ( , ) \ ( )u v V G   then ( 0, 0) = 3d u v , ( 0, 1) =d u v  
( 1, 0) = 1d u v , ( 0, 1) ( )u v G  and ( 1, 0) ( )u v G . 
We have immediately that 

1( ) = ( ( ),3) = ( ( ),3)t tG max G max G   . 
From these expressions we obtain recursions for the 

 ’s, as follows, 

1(0) = 2 (0)t t   , 

1(1) = 3 (1)t t  
  

* *
1(1) = 3 (1)t t    

1 1(2) = (0) (1) 4 (2)t t t t   
    

*
1 1(3) = (1) 4 (3)t t t     

1( ) = 4 ( )t tk k    if > 3k . 
From the above recursions we can find simple closed 

form expressions for the  ’s, as follows, 

0(0) = 2 (0)t
t  , 

0(1) = 3 (1)t
t    
* *

0(1) = 3 (1)t
t   

0 0 0(2) = (4 2 ) (0) / 2 (4 3 ) (1) 4 (2)t t t t t
t        

*
0 0(3) = (4 3 ) (1) 4 (3)t t t

t     

1( ) = 4 ( )t tk k    if > 3k . 
The total distance 

* * *
0 0 0 0= 4 (4 3 )(2 (1) (1)) (4 2 ) (0)t t t t t

tL L        , 
so that the average distance converges to a constant. The 
variance of the distances also converges to a constant. 
 
7.3. Model 3 
 
We obtain, in a straightforward manner that 

1(0) = 2 (0)t t   , 

1 1(1) = (0) 3 (1)t t t    , 

1 1(2) = (1) 4 (2)t t t    , 

1( ) = 4 ( )t tk k    for > 2k . 
We have 

1( ) = ( ( ), 2) = ( ( ), 2)t tG max G max G   , 
and the total distance 

* *
0 0 0 0 0= 4 ( (0) (1)) 3 ( (0) (1))t t

tL L         so that 
the average distance converges to a constant. The vari- 
ance of the distances also converges to a constant. 
 
7.4. Model 5 
 
We obtain 1(0) = 2 (0)t t   , 

1(1) = 4 (1)t t   , 

1 1(2) = (0) 4 (2)t t t    , 

1( ) = 4 ( )t tk k    for > 2k . 
We have 

( ) = ( )tG G  , 
and the total distance 

* *
0 0 0= 4 ( (0)) 2 (0)t t

tL L     so that the average dis-
tance converges to a constant. The variance of the dis-
tances also converges to a constant. 
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7.5. Model 6 
 
We obtain 1(0) = 2 (0)t t   , 

1 1(1) = (0) 2 (1)t t t    , 

1 1( ) = 2 ( 1) 2 ( )t t tk k k      for 2k  . 
We have 

1( ) = ( ) 1t tG G    , and  
* *

1 1 1= 4 2 (0)t t t tL L L     , from which we can easily 
demonstrate that the average distance * /t tL L  increases 
by 1/2 per time step for large t. The variance of the dis-
tances increases by 1/4 per time step for large t. 
 
7.6. Model 7 
 
We obtain 

1(0) = 2 (0)t t   , 

1 1(1) = (0) 4 (1)t t t    , 

1( ) = 4 ( )t tk k    for 2k  . 
From this we have that the diameter is constant, and 

* *
0 0= 4 (4 2 ) (0) / 2t t

t tL L   , 
so the average distance converges to a constant. The 
variance of the distances also converges to a constant. 
 
8. Automorphism 
 
In models 0, 1, 4 and 5 we have Kronecker products and 
this allows us to determine the automorphisms on verti-
ces in tG . In these models for a pair of vertices ur  and 
vs , where u and v belong to 0G , and r and s are binary 
strings, to be automorphic in tG , they must have u and v 
automorphic in 0G  and r and s to be automorphic in the 
Kronecker product of the appropriate .Z  This is 
straightforward in each of the models. The most inter-
esting case is model 1. For this the adjacency matrix is 

0 1
= .

1 1
A

 
 
 

 

The n th Kronecker product, kA , of this matrix have 
its rows and columns naturally indexed by the n th 
Kronecker products of vectors (0,1)  and (0,1)T , and 
will have a zero wherever the row index and column 
index have a 0 in the same position. It immediately fol-
lows that the matrix kA  is invariant under any permuta-
tion to the elements of the row and column indices. Ac-
cordingly the permutations induce an equivalence rela-
tion over the binary strings; two strings being automor-
phic if they contain the same number of 0’s. 
 
9. Generating All Graphs 
 
Now [4] proved that for any graph ( , )H U F  of order n 

there exists a set W of size 2 / 4n  such that one can 
associate distinct subsets iW  with the n  vertices, such 
that ( , )i j F  if, and only if, =i jW W  . Consider 
the case where we evolve a single vertex, linked to itself, 
for t time steps under model 1. The vertex set of the re-
sulting graph will be the set of t length binary strings. 
Suppose each string tx  is associated with a set 

( ) = { | = 0}i
t tS x i x . Then two vertices, tx  and ty , are 

joined if, and only, ( ) ( ) =t tS x S y  . It follows that 
every graph with n vertices is isomorphic to some sub-
graph of the t’th iterate when 2 / 4t n    . 

Now as pointed out in [4] the bound is exact only 
when the graph H is bipartite with vertices partitioned 
equally, when n is even, and differing by 1 when n is odd. 
Thus we will observe many graphs will appear at earlier 
stages, for example the graph nK , the complete graph 
on n vertices, will appear at time = 1t n  , since we 
may take = { }iW i . We shall investigate this phenome-
non elsewhere. 

10. The Degree Distribution 

Since we have a deterministic process the degrees of the 
vertices are well defined. We denote by ( , )D G x  the 
number of vertices of degree x in graph G, and refer to 
the degree of any vertex x as ( )deg x . We shall refer to 
the degree distribution by which we mean the distribu-
tion of the degree of a randomly chosen vertex. 

10.1. Degree Distribution; Models 0, 1, 4, 5 

We begin with the models which are Kronecker products. 
Given two graphs = ( , )J V E  and = ( , )K W F  with 
y V  with ( )deg y  and z W  with ( )deg z , then for 
( , )y z J K   we have (( , )) = ( )*deg y z deg y ( )deg z . 
It follows that 

     ( ), = , ,j iD J K x D J j D K i j   

where ( ) = { | , | }i j j N j i  , |j i  having the usual 
meaning that j divides i. 

Now in these models we have 0=t tG G Z , where 

tZ  is the graph obtained by taking the graph Z  (as 
described in Table 1) and taking the Kronecker product 
of it with itself t times. By knowing the degree distribu-
tion of tZ  one can easily determine the distribution 
starting from a generic initial graph. Under model 0, tZ  
has (2 1)t   isolated vertices and a single vertex with 
degree 1, model 1 has t rC  vertices with degree 2r , 
model 4 has every vertex with degree 1, while model 5 
has every vertex with degree 2t . 

10.2. Degree Distribution; Model 2 

At each stage all the vertices of tG  increase their de-



R. SOUTHWELL  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                  AM 

144 

gree by 1, and a set of | |tG  vertices of degree 1 are 
added. Thus 0=0

( , ) = ( ) ( , )
t

t t rr
D G x C D G x r . 

 
10.3. Degree Distribution; Model 6 
 
For model 6 we have a Cartesian product (which we de-
note ). For graphs = ( , )J V E  and = ( , )K W F  with 
y V  with ( )deg y  and z W  with ( )deg z , then for 
( , )y z J K   we have (( , ) = ( ) ( )deg y z deg y deg z . 
Thus 

     0
, , ,

i

j
D J K x D J j D K i j


   

and since the Cartesian power ({0,1}, (0,1))t G  is sim- 
ply the t dimensional cube we have that 

   0, = 2 ,t
tD G x D G x t . 

 
10.4. Degree Distribution; Models 3 and 7 
 
As usual model 3 is the most interesting, and the most 
difficult model to deal with. A vertex tv G  with de-
gree x gives rise to 1v  with degree 2 1x   and to 0v  
with degree 1x  . Thus 

1 1( , ) = ( , 1) ( , ( 1) / 2t t tD G x D G x D G x     

A plot of the frequency distribution of degrees for t = 17 
is shown in Figure 2. 

This distribution will be explored further in subse- 
quent papers. 

In model 7 a vertex tv G  with degree x gives rise to 
two vertices, 1v  and 0v , each with degree 2 1x  . If 
follows that 

    0, = 2 , 1 2 2t t t
tD G x D G x    

 
11. Discussion 
 
We have presented a variety of models for the growth of 
networks based on parent-offspring links and suggested 
that these might be used to describe the growth of inter-
actions between individuals within a population. 

This description might well be used to represent the bin- 
ding of proteins under gene- and or genome-duplications. 
Alternately we might be describing the interactions within 
a population of organisms where these interactions de-
pend on the interactions which existed amongst those in 
the previous generation, such as dominance relations 
(though these might require a directed graph approach). 

The model as formulated has deliberately been kept as 
simple as possible. Thus the model is deterministic. The 
deterministic assumption would rarely apply in a bio-
logical context, but might in a computer context. We  

 

Figure 2. A truncated plot showing the frequencies of ver-
tices with degree ≤ 5000 within the graph obtained by 
evolving a single edge for 17 time steps under model 3. 
 
have indicated some ways in which a stochastic element 
can be introduced. One can vary the transition function 
applied as a stochastic process, or one can vary the links 
made by making the parameters of the models probabili-
ties, rather than 0 or 1. 

The simplicity of our model has allowed us to derive 
many results. Perhaps the most important of these is the 
theorem from Section 4. This theorem highlights the fact 
that the growth of any subgraph is independent of the 
nature of its exterior surroundings. By using this result 
and exploiting relations with graph products and binary 
strings we have derived formulas that describe chromatic 
number, distance structure and degree distributions. 

The model has immortal vertices and edges. In subse-
quent papers we shall consider models with a similar 
reproductive structure, but allow for the death of vertices. 
In the next paper we shall treat the case where individu-
als have a fixed lifetime, and in the third we shall apply a 
threshold to the degree of a vertex, nodes which accu-
mulate too high a degree will die. Naturally both of these 
processes could be made stochastic. In these models 
edges, once established through the reproductive phase 
disappear solely because of the death of one of their ver-
tices. Additional features which we shall add in the fu-
ture include sexual reproduction, and the embedding of 
the graph in space. 
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