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ABSTRACT 

The relativistic precession of Mercury −43.1 seconds of arc per century, is the result of a secular addition of 5.02 × 10−7 
rad. at the end of every orbit around the Sun. The question that arises in this paper, is to analyse the angular precession 
at each single point of the elliptic orbit and determine its magnitude and oscillation around the mean value, comparing 
key theoretical proposals. Underline also that, this astronomical determination has not been yet achieved, so it is con-
sidered that Messenger spacecraft, now orbiting the planet or the future mission BepiColombo, should provide an op-
portunity to perform it. That event will clarify some significant issues, now that we are close to reach the centenary of 
the formulation and first success of General Relativity. 
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1. The Theoretical G.R. Angular Precession 

The trajectory of a target around a massive object (M), is 
defined starting from the Schwarzschild solution, in a 
geometry and a space-time with spherical symmetry. The 
G.R. equation of motion with 1u r  is [1-3]: 
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We can write the relativistic orbit as a slight perturba-
tion of the newtonian ellipse as: 
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h = angular momentum per unit of mass; e = eccentricity; 
  = true anomaly; p = semi-latus;     is a very 
small function that produces the G.R. orbit differences, 
from the newtonian-kepler ellipse: an orbit precession. 

On that basis, a first approximation and particular so- 
lution of this differential equation, neglecting second 
order terms, and assuming a geodesic orbit, is presented 
in the classic relativity textbook “Gravitation” by W. 
Misner [4]: 
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were δ0/2π = constant angular precession = K. 

As result of it, angular instantaneous precession in 
each point of the trajectory -δ()-, is constant referred to 
, so that the gradual addition along the orbit, orbital 
precession -Δ()-, has a linear accumulation till its final 
value Δ(2π) (Figure 1). 
Final one orbit precession is: Δ() = K ×  
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Figure 1. Angular (δ) and orbital (Δ) precession. 
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This particular solution with a constant angular pre-
cession was, in my opinion, the first result obtained by 
Einstein in 1915. [5]: 

“··· That contribution from the radius vector and de-
scribed angle between the perihelion and the aphelion is 
obtained from the elliptical integral: 
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where α1 and α2 (··· reciprocal values of the maximal 
and minimal distance from the Sun ···) are the corre-
sponding first roots of the equation: 
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Coefficients of Equation (3), were also confirmed by 
Schwarzschild and other authors:  
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where E = Energy per unit. 
The coefficients, must be also consistent with the 

complete orbit precession of Mercury: 
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Equation (2) represented by function f(x), has the fol-
lowing graphic expression (Figures 2 and 3). 

We can remark that f(x), has virtually the same values  
 

 

Figure 2. f(x): General graphic. Mercury (blue). 
 

 

Figure 3. Graphic focused on mercury. α1, α2. 
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both in the aphelion as in the perihelion and also through 
the rest of the orbit. It means that this solution, involves a 
constant angular precession -δ()- along the whole orbit 
and also a linear accumulation of the orbital precession 
-Δ()-, with a K proportion relative to the true anomaly  
(Figure 1). 

2. G.R. Angular Instantaneous Precession.  
Periodic Oscillations 

General Relativity accepts also small periodic oscilla- 
tions that should be insignificant contributions and their 
only effect is to change slightly the position of the peri- 
helion and the interpretation of rmin and e [6]. 

Usual formulation of G.R. fluctuations about the av- 
erage constant precession, based also in a particular solu- 
tion of the Schwarzschild’s methodological approach is 
[1-3,7]: 
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We will analyse the range of the periodic oscillations 
produced by function  j   related with the mean value 
that involves the last term sine   (Figure 4). It must 
be underlined that the cumulative effect produced by 
  K e  has also a periodic origin and implication; it 
really represents  sine K    that makes     a 
function consistent in Equation (1) and, as a result of it, 
the perturbation’s effect -Δ()-, is shaped definitely as an 
angle, a real precession. 

Function  j   involves very small variations. Its 
amplitude is about 3/100 of the mean constant value. 

Professor M. Berry [6], presents another     func- 
tion with larger amplitude of oscillations: 
 

 

Figure 4. Angular precession oscillations: j(). 
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Standing out from Figure 5, there are significant os- 
cillations, but with the same final orbital relativistic pre- 
cession. The range is equivalent to the magnitude of the 
theoretical constant precession. The eccentricity of the 
orbit has clear effects on the angular precession, increas- 
ing the amplitude as the eccentricity decreases. 

3. G.R. Perturbing Gravitational  
Potential/Force 

Trying to analyse the oscillations of the angular preces- 
sion, we can also study the effects of a perturbing poten- 
tial or force. This procedure should allow even more ac- 
curate results than those obtained solving the second or- 
der differential equation of motion. 

The effective G.R. potential is displayed in Equation 
(4), where the last term, is the perturbation potential 
added to the classic newtonian one [1,8-10]. 
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Figure 5. Angular precession oscillations: jB(). 
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We will now analyse some approaches and methods 
that explore the orbital precession produced by any po- 
tential or perturbation force. 

1) In 1982, B. Davies [11] presented a solution to the 
orbital precession, based on the Laplace-Runge-Lenz 
vector, located in the same plane as the orbit and pointing 
in the direction of the perihelion. Vector’s angular veloc- 
ity, measures the precession if there is any external dis- 
turbance. 

The magnitude of the total force would be equal to the 
usual newtonian, added with a function  - -g r  as a 
perturbing factor. 
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The solution to the orbital precession is then: 
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If we apply this method to G.R. perturbing force and also 
considering an elliptic orbit: 
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and then, in agreement with the orbit’s symmetry: 
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Then, the instantaneous angular precession referred to  
radians is (Figure 6): 
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and referred to time: 
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The integral of this angular precession gives exactly 
the relativistic final orbital precession, equivalent to 43.1 
seconds arc/century, however with significant intermedi- 
ate oscillations. Orbital precession is (Figure 6):  
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Davies also remarks that the factor cos , brings a 
positive sign to the precession in the part of the orbit 
when the planet is closer to the focus than the average 
distance (p); the rest is negative. Therefore, that state- 
ment supports that one half of the relativistic precession, 
is in the opposite direction to the advance of the planet in 
its orbit. 

2) In 2005, M.G. Stewart [9] started also his approach 
from the Laplace-Runge-Lenz vector, but providing the 
following alternative formulation: 
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Figure 6. Theoretic approaches to angular (δ) and orbital (Δ) precession. 
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with  GR , angular velocity of L-R-L vector. 

If we apply this method to G.R. perturbing force: 
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This result is just the same to the previous one. 
3) In 2007, professor G. Adkins [10], studies the pre- 

cession solving the equation of motion, with a right 
method, adding a perturbing potential  in the fol- 
lowing equation: 
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By the change of variables  1u ez  p , he obtains 
the next formulation of the orbital precession: 
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and for a power-law potential, this alternative formula- 
tion: 
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If we apply this method to G.R. perturbing potential and 
changing cosz  : 
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Again it is exactly the same result, however starting 
from a different hypothesis. 

4) We will check these results with an accurate test, 
based on a new approach. This is the Langrange Plane- 
tary Equations applied to a slight perturbation with an 
energy and forces conservative framework. The preces- 
sion is referred to the argument of the periapsis whose 
derivative in this elliptic orbit, is equivalent to the true 
anomaly. 

2

2

d d 1

d d

e R

t t na e

   
 

e
 

where R is a perturbing function. 
If we consider a plane elliptic orbit with a central po- 

tential, we have the following relation: 
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V(r) is the relativistic perturbation potential, so 
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then: 
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Solution that is just the same as before and also with 
identical result to that obtained through the Gauss Plane- 
tary Equations, based on the perturbing force: 
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and then: 
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5) We will finally verify this proposals with the Lan- 
dau & Lifshitz formulation [12], which defines the pre- 
cession produced by a perturbing potential-Energy. This 
formula is valid as a theorem, suitable for any small per- 
turbation whatever could be its physical origin and re- 
turning the exact value. Integration is performed over an 
unperturbed orbit [13]: 
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where M = mh = angular momentum, δU = perturbing 
potential-Energy = 3 m V(r) (for a three dimension tar-
get). 

Then, the angular instantaneus precession is: 
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If we apply this method to G.R. perturbing potential: 
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and then: 
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Orbital precession is (Figure 6): 
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The solution is different, however very similar to the 
previous ones, and also with identical value of the final 
orbital relativistic precession. The maximum values are 
somewhat lower at 0 and 2π but higher at π. The angular 
precession is null at  = 1.77 rad. and  = 4.50 rad. 
while previously was null at π/2 y 3π/2. 

The results obtained, shows that the oscillation is such 
that between π/2 and 3π/2, the orbital precession turns 
back, opposite to Mercury’s own progress in its orbit. At 
these points (maximum and minimum) there is an 
equivalent lead/lag of 1.9 sec.arc./century related with 
the magnitude of the orbital precession at the final/ initial 
point of the orbit (Figure 6). 

Another issue is the clear influence that has the eccen- 
tricity in the magnitude of oscillations. The lower is the 
eccentricity, the greater the fluctuation of the angular 
precession because they are inversely proportional.  

In case of Mars (e = 0.093), there would be a lead/lag 
of 1.3 sec.arc./century equivalent itself to the magnitude 
of the relativistic precession at the final/ initial point of 
the orbit. The Earth (e = 0.017) should have a lead/lag of  

37.1 sec.arc./century, nearly ten times the relativistic 
precession and Venus (e = 0.0068) should have 203.4 
sec.arc./century, 24 times the final precession (Figure 7). 
If this theoretical formulation is correct, these results 
should have significant observational data records, in the 
Registered orbital precession of these planets. 

4. Mercury’s Orbit as an Open Free-Fall  
Path 

The currently precession of Mercury, is far larger to the 
one with only a relativistic origin. This is due to the ef- 
fect produced by the rest of the planets, causing also 
precessions that must be added. 

The largest precession is produced by Venus (277 
sec.arc./cent.) followed by Jupiter (154 sec.arc./cent.), 
the Earth-Moon system (91 sec.arc./cent.) and the rest of 
the planets for a total of 532 sec.arc./cent. Relativistic 
Precession is 43 sec.arc./cent., therefore we can conclude 
that the real precession detected in astronomical observa- 
tions is equivalent to 575 sec.arc./cent. 

There are other perturbations as solar oblatness or 
Lense-Thirring secular precessions, but with magnitudes 
some orders lower. 

To study the oscillations of the angular precession re- 
lated to the final magnitude in each orbit, it would be 
necessary to have for at least one year, data from the posi- 
tion of Mercury with the best possible accuracy. These 
data should be reduced with the other perturbations of the 
planets, as well as considering the effect of the equi- 
oxes’s precession. In this way, we could examine Mer-  n 

 

 

Figure 7. Eccentricity, angular (δ) and orbital (Δ) precession. 
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cury’s orbit as an open free-fall path, isolated from other 
planets gravitational interference. It is certainly a difficult 
and complex duty but clearly available with the current 
development of our technology and also not expensive. 

Messenger spacecraft, now orbiting the planet, should 
provide an excellent opportunity to perform it, giving 
precise radiometric data on the day to day real position of 
Mercury. A detailed study and related tests on relativistic 
and gravitational effects that could be achieved with a 
Mercury orbiter mission, is summarized in [14]. Another 
alternative is to wait till the Bepi Colombo be launched 
in 2015, an European mission to Mercury where, testing 
relativistic gravity is recognized as a crucial scientific 
objective. 

To assess the influence of each planet in the orbit of 
Mercury, is not enough to replace it by the approxima- 
tion due to a uniform ring of matter. We need to perform 
a software calculation based on elliptical and inclined 
orbits, positioning each planet in every moment. 

5. Conclusions and Open Comments 

1) A first solution is a constant angular precession and 
a lineal accumulation along the orbit. 

2) Angular precession may oscillate about a mean 
value. The magnitude depends on the alternative theo- 
retical method we use. There are significant differences 
and coincidences between them. In all of them, angular 
precession has a non-zero effect in the perihelion neither 
the aphelion, nodes where radial velocity is null. 

3) The orbital precession produced by the perturbing 
potential, involves oscillations with a negative advance 
and turns back, opposite to Mercury’s own progress in its 
orbit. Any elliptic orbit with eccentricity e < 0.22, would 
have the same behaviour with a lead/lag related to the 
final/initial precession. However, the final one orbit pre- 
cession does not change in any case and is always ex- 
actly the expected relativistic one. 

4) Eccentricity should have great influence in the 
magnitude of oscillations of the angular precession. 

5) The astronomical determination of the angular and 
orbital precession at each single point of the orbit, has 
not been yet achieved, so it is considered that Messenger 
spacecraft, now orbiting the planet or the future mission 
BepiColombo, should provide an opportunity to perform 
it. 

6) Close to reach the centenary of the formulation and 

first success of General Relativity, there are still some 
open issues: Is it right to accept a constant precession? 
How large is the magnitude of oscillations if there are 
any? Has the orbital precession any turn back? Which of 
these theoretic proposals fits on the real trajectory of 
Mercury? 
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