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ABSTRACT 

When one presumes that the gravitational mass of a neutral massenpunkt M  is finite, the Schwarzschild coordinates 

 appear to fail to describe the region within the event horizon (EH),  ,r t  gr r  of a Schwarzschild Black Hole 

(SBH). Accordingly, the Kruskal coordinates  ,u v  were invented to map the entire spacetime associated with the 

SBH. But it turns out that d d 1u v   , at the EH (Mitra, IJAA, 2012), and the radial timelike geodesic of a point parti-

cle would become null. Physically this would mean that, the EH is the true singularity, i.e., , and this zero mass 
BH could only be a limiting static solution which must never be exactly realized. However, since in certain cases 

0M 

d d 0 0u v  , here we evaluate this derivative in such cases, and find that, for self-consistency, one again must have 

d d 1u v    at the EH. This entire result gets clarified by noting that the integration constant appearing in the vacuum 

Schwarzschild solution (and not for a finite object like the Sun or a planet), is zero (Mitra, J. Math. Phys., 2009). Thus 
though the Schwarzschild solution for a point mass is formally correct even for a massenpunkt, such a point mass or a 
BH cannot be formed by physical gravitational collapse. Instead, physical gravitational collapse may result in finite hot 
quasistatic objects asymptotically approaching this ideal mathematical limit (Mitra & Glendenning, MNRAS Lett. 
2010). Indeed “the discussion of physical behavior of black holes, classical or quantum, is only of academic interest” 
(Narlikar & Padmanbhan, Found. Phys. 1989). 
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1. Introduction 

The concept of Black Holes (BHs) is one of the most 
important plinths of modern physics and astrophysics. As 
is well known, the basic concept of BHs originally arose 
due to Laplace, more than 200 years ago, in the cradle of 
Newtonian gravitation, where the mass of a body remains 
fixed during collapse. In General Theory of Relativity 
(GTR), the gravitational mass is less than the baryonic 
mass  0

the EOS by assuming the matter to behave like a dust, 
0p  , one does not obtain any unique solution if the 

dust is inhomogeneous. Depending on the various initial 
conditions and assumptions (like self-similarity) em-
ployed one may end up finding either a BH or a “naked 
singularity” [4]. By further assuming the dust to be ho-
mogeneous Oppenheimer and Snyder (OS) [5] found an 
asymptotic solution of the problem by approximating 
Equation (36) of their paper [2,3]. The region exterior to 
the event horizon  2gr r M 

r
can be described by the 

Schwarzschild coordinates  and t  [6,7]: 

M M . Further, as the body contracts and 
emits radiation M  keeps on decreasing progressively 
along with  [1]. Thus, given an initial gravitational 
mass i

r
M , one can not predict with certainty the value of 

fM  when we would have  2 1fM r G c  
2 2 2 2d d d d dtt rrs g t g r g g 

2          (1) 
1 . Nei-

ther are the values of iM , fM  and 0M  related by 
any combination of fundamental constants though, it is 
generally assumed that i fM M . Ideally, one should 
solve the Einstein equations analytically to fix the value 
of fM  for a given initial values of iM  and 0M  for a 
realistic equation of state (EOS) and energy transport 
properties [2,3]. However even when one does away with  

where  1 2ttg M r  ,   1
1 2rrg M r

   ,  
2g r   , and 2 2sing r  



2gr r M 

. Here, we are working 
with a spacetime signature of  and  has 
a distinct physical significance as the invariant circum-
ference radius. For , the worldline of a free 
falling radial material particle is indeed timelike  
and the metric coefficients have the right signature,  

1, 1, 1, 1   r

2sd 0
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0, 0, 0 and 0.tt rrg g g g      But at  rr2 ,r M g  
blows up and as , the tt2r M g  and rrg  suddenly 
exchange their signatures though the signatures of g  
and g

t
r

 remain unchanged. This is interpreted by say-
ing that, inside the event horizon,  becomes “time 
like” and  becomes “spacelike”. However, we see that 
actually  continues to retain, atleast partially, its 
spacelike character by continuing to be the “invariant 
circumference radius”. Also, note that, if physically 
meaningful quantities like the Rimennian curvature 
components behaved like 

r

3~ M r  outside the EH, they 
continue to behave in a similar manner, and not like 

3~ M t  inside the EH. And it should be borne in mind 
here that by a fresh relabelling or by any other means, the 
curvature components can not be made to assume the 
form 3~ M t . One particular reason for this is that, we 
would see later that, inside the EH, we have t    
while, of course, the value of  remains finite. Thus it 
may not actually be justified to conclude that  be-
comes the “timelike coordinate” inside the EH even 
though 

r
r

rrg  changes its sign. 
So far, it has not been possible to resolve this enigma 

of the duality in the behaviour of  for , and 
the present paper intends to attend to this problem. Since 
Kruskal coordinates  are believed to properly 
chart the SBH spacetime, it is imperative that, one stud-
ies the properties of these coordinates. In a recent paper 
(Pap. I) we found that the Kruskal derivative 

r 2r M

 ,u v

d d 1u v    
at the EH [8]. However, this derivative can be obtained 
from various directions, and in some cases, d du v  may 
assume a 0 0  form as . Here we would like to 
closely examine such cases. Eventually, it would be found 
that, for self-consistency, one must have 

2Mr 

d d 1u v    at 
. This result would suggest, that for a neutral 

point mass, the integration constant appearing the SBH 
solution is 

2r M

2M 0   . Then, as we will soon see, the 
Kruskal coordinates implicitly involve division by zero, 
and which explains various oddities associated with them. 
We would also take note of the objections associated 
with the Kruskal coordinates by some other authors. 

2. Kruskal Coordinates 

Although rrg  blows up at 2r M , as mentioned be-
fore, the curvature components of the Rimennian tensor 
appear to behave (under the assumption M > 0) perfectly 
normally at 3r

4 2sinr 

, ijr r R M 

 

g kl . Further, the determinant 
of the metric coefficients continues to be negative and 
finite . Such realiza-
tions gave rise to the idea that the Schwarzschild coordi-
nate system suffers from a “coordinate singularity” at the 
event horizon and must be replaced by some other well 
behaved coordinate system. It is only in 1960 that 
Kruskal and Szekeres [9,10] discovered a one-piece co-

ordinate system which can describe both the interior and 
exterior regions of a BH. They achieved this by means of 
the following coordinate transformation for the exterior 
region (Sector 1): 

4 2sin 0rr ttg gg r

   1 1cosh ; sinh ; 2
4 4

t t
u f r v f r r M

M M
     (2) 

where 

 
1 2

4
1 1

2
r Mr

f r e
M

   
 

          (3) 

It would be profitable to note that 
1 2

41
2

d
1

d 28
r Mf r r

e
r MM


   
 

      (4) 

And for the region interior to the horizon (Sector 2), we 
have 

   2 2sinh ; cosh ; 2
4 4

t t
u f r v f r r M

M M
    (5) 

where 

 
1 2

4
2 1

2
r Mr

f r e
M

   
 

          (6) 

and 
1 2

42
2

d
1

d 28
r Mf r r

e
r MM

    
 

      (7) 

Note these are the only coordinates which involve M  in 
the denominator. Given our adopted signature of space-
time  2 , in terms of u  and , the metric for the 
entire spacetime is 

v

  
3

2 2 2 2 2 2 232
d d d d dr MM
s e v u r

r
2sin      (8) 

The metric coefficients are apparently regular every-
where except at the intrinsic singularity . Note that, 
the angular part of the metric remains unchanged by such 
transformations and 

0r 

 ,r u v  continues to signal its in-
trinsic spacelike nature. In either region we have 

2 2 21
2

r Mr
u v e

M
    
 

         (9) 

so that 
2 2 0;  1,  2 ,u v u v r M           (10) 

2 2 0;  ;  2u v u v r M            (11) 
and 

2 2 0;  1;  2u v u v r M           (12) 

So, very strangely, the 0r   point corresponds to not 
one but two conditions! 

 1 221v u               (13) 
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Here, one point needs to be hardly overemphasized; as-
tronomical observations and experiments actually con-
form to the idea that atleast far from massive bodies or 
even BH Candidates (BHC), the spacetime is well de-
scribed by the  coordinate system. In fact, although 
in the (normal) physical spacetime, in a spherically 
symmetric spatial geometry (as defined by the implica-
tions of  as an “invariant circumference radius”), the 
physical singularity corresponds to a mathematical point, 
in the Kruskal world view, this central singularity corre-
sponds to a pair of hyperbolas in the   plane. 
While the “+ve” sign of equation corresponds to the cen-
tral BH singularity, the “−ve” sign corresponds to the 
singularity inside a so-called White Hole which may 
spew out mass-energy spontaneously in “our universe” 
[6,7]. The white hole singularity belongs to “other uni-
verse” whose presence is suggested by the fact that the 
Kruskal metric remains unaffected by the following ad-
ditional transformations: 

,  r t

r

u v

   1 1cosh ;  sinh ;  2
4 4

t t
u f r v f r r M

M M
      (14) 

defining Sector (III) and 

   2 2sinh ;  cosh ;  2
4 4

t t
u f r v f r r M

M M
     (15) 

defining Sector 4. Thus not only does the region interior 
to the EH correspond to two different universes (Sectors 
2 and 4), but the structure of the physical spacetime out-
side the EH, too, effectively corresponds to two uni-
verses (Sectors 1 and 3). Hence, if there would be  
separate BHs, as per the Kruskal prescription, there 
would be  disconnected physically weird universes 
describing different wormholes and other universes. 
Hence if a massive star would indeed collapse to form 
BH in the universe we live, other universes would be 
instantly born! 

N

2N

3. Kruskal Derivative 

The aim of this paper is to explicitly verify whether the 
(radial) geodesics of material particles are indeed time-
like at the EH, which they must be if this idea of a finite 
mass Schwarzschild BH is physically correct. First note 
that if the test particle is released from rest at ir r , 
then the conserved mass-energy per unit rest mass  is 
given by 

E

2 2
1

i

M
E

r
                (16) 

Note, from various considerations, in Pap. I [8], we 
have already found that, at the EH, one should have 

d
1; 2

d

u
r M

v
               (17) 

Armed with this value of d du v , we are in a position 
now to complete our task by rewriting the radial part of 
the Kruskal metric  d d 0    as 

23
2 2 232 d

d d 1
d

r MM u
s e v

r v


     
   

       (18) 

or, 

 2 2 1 2d 16 d 1 1 0;  2s M e v r M        (19) 

This implies that although the metric coefficients can be 
made to appear regular, the radial geodesic of a material 
particle would become null at the event horizon of a 
finite mass BH in contravention of the basic premises of 
GTR! Therefore GTR must not allow occurrence of any 
EH at all [2,3]! 

In fact this result could have been easily anticipated by 
studying the limiting behaviour of the SBH metric in 
Schwarzschild coordinates too (even if one would as-
sume that Schwarzschild coordinates break down at exact 

2r M ). Using the vacuum Schwarzschild metric, for a 
radial geodesic in, one finds that find that [2,3] 

   12 2 2d d 1 2 d 1 2 s t M r r M r
          (20) 

i.e., 

   
2

22 2 d
d d 1 2 1 1 2

d

r
s t M r M r

t


.
       

   
 (21) 

But since 

 
 

1

2

1 2d

d 1 2

E M rt

r E M


 

  r
        (22) 

for a radial geodesic, one eventually finds that 

 2

2 2
2

1 2
d d .

M r
s t

E


           (23) 

Note that for a photon, , and the foregoing 
equation correctly shows that . Also, for a mate-
rial particle with 

E  
2ds  0

1E  , it shows that indeed  
as long as . However even for a material parti-
cle worldline, 

2d 0s 
2r  M

2d 0;  2s r M             (24) 

irrespective of the value of . E
Therefore, the radial geodesic of a material particle in 

the Schwarzschild metric would become unphysically 
null  2d 0s   in case the particle would arrive at the 
EH. It may be noted here that though EHt   , by 
definition  is an infinetisimal quantity. And since dt

2ds  is an invariant, its limiting value must not depend 
on the coordinates used. Accordingly, it is natural that 
Kruskal coordinates too should lead to  as 

. 

2ds  0
2r M
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Note, d du v  can be obtained from several approaches, 
and in Pap. I, we found that d d 0 0u v   form in cer- 
tain cases. Accordingly, let us evaluate d du v  for such 
apparent 0 0  cases more carefully. 

3.1. 0 0  Form of the Kruskal Derivative 

First let us define a quantity 

2 1 2 .x E M   r             (25) 

In Pap. I [2,3,8], by the brute direct approach, we 
found that 

d
.

d

vE
uu x

uEv v
x





                  (26) 

To evaluate this derivative very carefully, close to the 
EH, let us first write 

2
1 ;  0

M

r
    .             (27) 

Clearly, the value of d du v  depends on whether 
 or , and let us first consider the former 

case: 
1E  1E 

3.2. 1E   Case 

When , we have 1E 

2 1 1x M r       2 .      (28) 

And thus close to the EH, 

1 2E x      .               (29) 

For the positive sign of E x , as , one finds 0

d
1

d

u u v

v v u


 


 .                (30) 

While for the negative sign of E x , one has 

d
1

d

u u v

v v u


 


 .                (31) 

Thus, for , 1E  d d 1u v    as obtained in Pap I. 

3.3. 1E   Case 

For , close to the EH, one has 1E 

2 21 1 22x E E E E E            (32) 

and 

  2
11 2 1E x E y           (33) 

where 

1 22
y

E


.                    (34) 

Simultaneously from (9), one finds that 
2 2 eu v                      (35) 

so that 

   22     u v e v v y       (36) 

2 2


e
y

v


.                      (37) 

Thus, one has  sets of expressions for the value of 4
d du v  at 2r M . And as we retain terms only upto 
first order of  , and further let  whenever ap-
propriate, from (26) we obtain: 

0

1)  11E x y    and   2u v y  

1 2

1 2

d

d





vy yu

v vy y
               (38) 

By using the forms of  and , the above expression 
can be seen as 

1y 2y

2

2

d

d






v e
u vE

v ev
vE

                (39) 

If Hv   , then one will have d d < 1u v . But, if one 
will have Hv   , then, once again 

d
1;   if  

d
  H

u
v

v
             (40) 

2)  11E x y    and   2u v y  

2

2 1

d

d





y vyu

v y vy
1                 (41) 

Again, by using the forms of  and , the above 
expression can be seen as 

1y 2y

2

2

d

d






e v
u v E

e vv
v E

                (42) 

If Hv   , then one will have d d 1u v  . But, if one 
will have Hv   , then, once again 

d
1;   if  

d
  H

u
v

v
            (43) 

3)  11E x y    and   2u v y  

d 2
1

d 2
  

u v

v v
               (44) 

4)  11E x y    and   2u v y  

d 2
1

d 2


  

u v

v v
             (45) 

Thus when we consider  and 0M  1E  , we 
obtain self-contradictory and strange results. Apparently 
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the cases 1) & 2) suggest that d d 1u v   provided 
 so that  even as . Note that Hv  

2d

2ds  0 2r M
s  is an invariant, and thus such a result would be in 

contradiction with Equation (23) which shows that 
 as  irrespective of the value of . 

Indeed the hope that 

2ds  0 2r M E
d d 1u v   is belied in cases 3) & 

4), which yield d d 1u v 

0 r 
0

2d 0s 

2d 0s 

 as before. And therefore, for 
a graceful exit from such a self-contradiction, one must 
accept that  as  whose physical 
interpretation is  for a point particle. 

2ds 
M 

2M

1E 
0M 

2d

4. Interpretation 

In view of such inconsistencies for  and  
case, it appears that the presumption, , on which 
the BH paradigm is based is incorrect. And even if we 
would momentarily accept this incorrect presumption, we 
would have to confront with the result that as the EH 
would be reached, , i.e., geodesic would be-
come lightlike. But this possibility is inconsistent with 
the BH paradigm where the EH is a regular region of 
spacetime and where the geodesic of a material particle 
must be timelike, i.e., . Since 

0M

s  is an invari-
ant, we can not blame the coordinate system to be faulty 
for such an inconsistency. So we must reject the pre-
sumption that a neutral point particle appearing in the 
vacuum SBH solution has a finite gravitational mass. 

Therefore, clearly, for self-consistency, as far as a 
point mass is concerned (but not necessarily for an ex-
tended object like the Sun), one should have only 1E  . 
And since, i  can very much be finite, it appears from 
Equation (16) that, for a neutral point mass or a SBH, 
one must have . 

r

0

0 2r  

0M 

E

M 

0
For the SBH, there is only one spacetime singulatity 

which is at . Therefore, the EH and the true physi-
cal singularity must be the same: 

r 

c

M                 (46) 

And thus for the true SBH, one must have 

                    (47) 

Irrespective of the above interpretation, the very fact 
the radial geodesic would turn lightlike if it would hit the 
EH means that the EH is no regular region of the spac-
time; on the other hand, the EH must be a spacetime sin-
gularity where the “once timelike always timelike” 
mathematical rule would break down. This is similar to 
the special relativistic situation where a test particle hav-
ing a timelike geodesic would turn lightlike if there 
would be an accelerator of infinite capacity which would 
push . In contrast, if finite mass SBHs would 
really have been allowed, one should have had  
irrespective of the value of  and irrespective of the 
coordinates employed. Indeed, the occurrence of  
as , proves in a coordinate independent manner 

that for any physically meaningful definition of 3-speed 
, one must have  as  [2,3] irrespec-

tive of the coordinates used. The latter fact was even 
acknowledged by Crawford & Tereno [11] after initially 
denying it: 

V 
2s

2ds

d 0


2r M

V

E

V  c 2r M

2M

r 

2 1V 

“Since this is an unacceptable result and we know that 
the Schwarzschild coordinate system is not suitable for 
describing the manifold at  it is rather tempting 
to blame the coordinate system for this malfunction. But 
we should ask first, could it be possible to find a coordi-
nate system that does not have this defect? The answer is 
obviously no, since the result is independent of the choice 
of coordinates, ··· Indeed, even if we use a coordinate 
system that has no difficulties at , like the 
advanced Eddington-Finkelstein coordinates, we would 
still end up with the same result  as .” 

r 

2M

2r M
However, yet, to bypass this fact, they demanded that 

the speed of one infalling particle/observer having 

1E  must be measured by another infalling particle/ 
observer having 2E E  [11]. This essentially means 
that to see whether a speeding car is violating some 
speed limit or not, the traffic inspector too must travel 
alongside the car rather than sit at the checkpost! By 
adopting this strange prescription for checking speed, 
they found that, the relative 3-speed of the infalling 
particles, with respect to each other, is given by[11] 

2

2
1 1

2
2

2
2

1 
2 2
1 2 1 1     

V
E E E



E 
   (48) 

where 1 2 M r   , (note, in different context, we also 
use 2M  ). And at the EH, this yields 

 

2 2
1 2

2

1 2

E E

E E

2 1 H

2 1HV

4
V             (49) 

sothat, apparently,   if 1 2 . In particular, if 

1 2

E E
E E , one will have H ; i.e., the observer/par- 
ticle would conclude that he/she is at rest at the EH. 
This is a profound self-contradiction because Crawford 
& Tereno starts with the premises that the concept of 
staticity vanishes at the EH and below it. In fact, in GR, 
the local speed must indeed be measured locally; i.e., the 
observer and the test particle must be at the same spatial 
location. In other words, the two infalling particles must 
have the same comoving proper time at a given spatial 
position. For a free fall, this can be ensured everwhere, 
only when the two particles/observers have the same 
initial conditions, i.e., 1 2

0

E

V

E



 . Thus as per Crawford & 
Tereno, the observer must fall along with the test par-
ticle side by side! And when this is so, one must have 

0V   everywhere! This is like the situation, when the 
speeding car driver dictates that the traffic inspector must 
measure his speed by sitting in the same car, in the adja-
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cent seat [3]! With reference to Equation (48), even if 
one would assume , and , at 1 2E E   0M  0r  , 
one will have 2

1E    2
11 E

0

 because 

; 0, if  r M                  (50) 

Therefore, following Crawford & Terneno prescription, 
even at the central singularity 

2
2

2
1 0;  0 if  r 0   V M




0

      (51) 

And this above absurdity can be removed by consid-
ering that at the EH,  so that 2r M  0  . 

Unfortunately, the same physically nonsense ansatz for 
speed measurement has recently been adopted by another 
author too [12]. He [12] has attempted to include angular 
momentum in the ansatz of Crawford & Tereno. For cer-
tain conditions, he indeed finds that: “So even if it had 
not go to r = 0 the particle is seen to move with the ve-
locity of light.” But he proceeds by ignoring this red- 
signal. He again finds, “At large value of angular mo-
mentum the velocity approaches that of 1” (p. 12). But 
strangely he opines the  situation to be justified! 1V 

Even when one considers accretion of a perfect fluid 
onto a SBH [13], 

“calculations show that the total velocity  tends 
toward  as , which is in accordance with 
expectations” (see p. 9) [13]. 

V
c 2r M

Unfortunately, these authors fail to realize here that 
ocurrence of  is not allowed in GR because this 
implies  for the accreting fluid! On the other 
hand, such results actually imply that astrophysical and 
all other so-called BHs must be something else [14,15]. 

1V 
02ds

Let us also ponder, how a test particle can be pre-
vented from hitting the EH ever in order that its timelike 
geodesic remains so. The test particle would never arrive 
at the EH, if the associated proper time would be infinite: 
i.e., 

1 23

π
8
 

   
 

r

M
           (52) 

Clearly this demands that the gravitational mass of the 
SBH . 0M 

Note, when one incorrectly presumes a BH with 
, one arrives at a fundamental self-contraction: As 

per the distant inertial observer (who actually does the 
experiment), the test particle can approach the EH only 
asymptotically, and can neither ever reach it or penetrate 
it. On the other hand, as per the free falling observer, he 
not only arrives at the EH but can reach the central 
singularity too. Such a dichotomy is against the principle 
of general covariance by which ultimate physical results 
must not depend on choice of coordinates, and must be 
same for all observers. And this fundamental inconsis-
tency gets resolved only when one realizes that for a BH, 

0M 

0M  , so that both EH EHt    . 
Also note, unlike the case of Newtonian gravity, in 

GTR, 0M   state need not correspond to a configura-
tion with zero baryonic mass. The  state is sim-
ply one in which the negative gravitational energy ex-
actly offsets the positive energy associated with 0

0M 

M  
and internal energy, and may indeed represent a physical 
singularity with infinite energy density and tidal accel-
eration. 

On the other hand, since in Newtonian gravity, the 
negative self-gravitational energy does not offset the bare 
mass, a point particle can have arbitrary large positive 
mass; and hence, the concept of a finite mass BH fits 
better in a Newtonian context. 

5. Discussions 

Even the authors who, in a desperate bid to save the 
black hole paradigm, invent almost ridiculous definition 
of “free fall speed” by which an infalling particle has 

0V   even at the central singularity, were forced to 
conclude that [16] 

“The solutions that do away with the interior singular-
ity and the event horizon, although interesting in them-
selves, sweep the inherent conceptual difficulties of 
black holes under the rug. In concluding, we note that 
the interior structure of realistic black holes have not 
been satisfactorily determined, and are still open to con-
siderable debate.” (Emphasis by the author). 

If the staple topic of discussion of lakhs of textbooks 
and may be millions of articles and news reports have not 
been “satisfactorily determined” in almost 100 years, it is 
certain that, the paradigm itself is unphysical and faulty. 

On the other hand, with the direct result that 0M   
for the SBH, the entire conundrum of “Schwarzschild 
singularity”, swapping of spatial and temporal characters 
by  and t  inside the event horizon (when the angu-
lar part of all metrics suggest that  has a spacelike 
character even within the horizon), “White Holes” and 
“Other Universes” get resolved. Here we recall the wise 
comments of Rosen [17]. 

r
r

“So that in this region  is timelike and  is space-
like. However, this is an impossible situation, for we 
have seen that  defined in terms of the circumference 
of a circle so that  is spacelike, and we are therefore 
faced with a contradiction. We must conclude that the 
portion of space corresponding to  is non- 
physical. This is a situation which a coordinate transfor-
mation even one which removes a singularity can not 
change. What it means is that the surface 

r t

M

r
r

2r 

2r M  
represents the boundary of physical space and should be 
regarded as an impenetrable barrier for particles and light 
rays.” 

This idea of Rosen is also in accordance with the idea 
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of Einstein that the Schwarzschild type singularity is 
unphysical and can not occur for realistic cases [18]. 

And this paper indeed shows that in order that the 
radial worldlines of free falling material particles do not 
become null at a mere coordinate singularity, Nature 
(GTR) refuses to have any spacetime within the EH. And 
this unphysical happening is of course avoided when we 
realize that  and there is no additional spacetime 
between the EH and the central singularity. 

0M 

5.1. Nature of Black Hole Candidates 

Some readers would however ignore this cogent result 
that  for a true BH, by arguing that there are 
massive compact astrophysical objects and which must 
be BHs. Such an argument would be based on the fact 
that cold self-gravitating objects cannot be more massive 
that few solar masses in view of Chandrasekhar 
and Tolman Oppenheimer- Volkoff (TOV) limits. 

0M 

M 

Note the concepts of Chandrasekhar or TOV are based 
on degenerate fermions at temperature . Therefore, 
they are irrelevant for objects which are extremely hot 
and not supported by mere cold degenerate pressure. For 
instance there known hot stars with masses as large 

0T 

100M M 

1010

, and in principle, there could be radiation 
pressure supported stars (RPSSs) with masses as large as 
M M   [7,19]. Such quasi-Newtonian RPSSs 
however have a lower mass limit of 7200M

z

  and 
they are considered as strictly static solutions. Accord-
ingly, they must obey the Buchdahl limit  [20]. 
Indeed such quasi-Newtonian supermassive stars in prin-
ciple may have a surface gravitational red-shift 

2.0

z 1  
[7,16]. In contrast, in principle there could be quasi-static 
extremely relativistic radiation pressure supported stars 
with  (RRPSSs) and no lower mass limit as well 
[21-23]. It may be recalled that it was Hoyle & Folwler 
who first suggested that the central compact objects of 
quasars could be hot quasi-Newtonian RPSSs [24,25]. 
They however conceived these RPSSs as strictly static 
ones whose source of internal energy and pressure is due 
to central nuclear burning; i.e., they ignored the fact 
quasistatic RPSSs can generate internal energy simply by 
virtue of quasi-static gravitational contraction [21-23]. 

1z 

In fact there are several other alternative BH models 
and all of which may have  and arbitrary high 
mass [26]. It is also often argued that, the observed BH 
candidates must be true BHs, because, radio and X-ray 
observations might have probed them down to few 
Schwarzschild radii. Clearly, in view of the existence of 
several BH candidates with  and 

1z 

1z  gr r , such 
astronomical observations have not at all confirmed that 
the so-called BH candidates are true BHs. Further it is 
hoped that the Event Horizon telescope would actually 
image the EH of the BH candidates. In reality, because of 

strong gravitational lensing near an ultracompact object, 
the distantly observed image would always be larger than 
the photon sphere having  and 3r M 2 1z   . 
Thus no telescope would ever be able to detect the ficti-
tious EH. And of course, by definition, it is not possible 
to detect the EH “from which nothing, not even light can 
escape”. 

Hence there is no observational proof which can mys-
teriously upstage the exact result  obtained here. 0M 

5.2. Gravitational Collapse 

Some readers may argue that there is an exact GR solu-
tion by Oppenheimer & Snyder (OS) which shows that 
sufficiently massive objects must undergo gravitational 
collapse to form BHs, and hence the integration constant 
appearing in SBH or Kruskal solution cannot be zero. 
The OS solution assumes the collapsing object to be ho-
mogeneous when no self-gravitating object can be 
strictly homogeneous [27]. Further, it assumes the col-
lapsing matter to be “dust with no pressure at all; 0p  . 
If the homogeneity assumption would be dropped, even 
the fictitious pressure-less dust solutions often lead to EH 
less Naked Singularity rather than a BH [4]. And it has 
recently been shown that the OS solution, though may 
appear to be mathematically correct, has only a symboli-
cal value because it actually corresponds to zero matter 
density 0   [28]. This is expected because exact zero 
pressure, can be achieved only mathematically when 

0   too. Thus, in reality, there is no exact GR solu-
tion which indicates formation of finite mass BHs. Given 
the physical fact that the strict 0   condition implies 

0  , many of the examples of naked singularity 
formation in GR collapse are equally fictitious. Even if 
one would ingore the proof that for a dust 0  , a 
critical analysis of Oppenheimer-Snyder collapse made 
in the Schwarzschild frame has revealed that, in reality, 
OS collapse does not result in any event horizon, any 
trapped surface or any finite mass black hole [29]. And 
this profound result is based on the simple mathematical 
fact that the argument of a logarithmic function must be 
positive definite [29]. 

On the other hand, realistic gravitational collapse al-
ways involves pressure gradient, heat and radiation 
transport [1-3,21-23]. When such complexities are in-
voked, there is no general exact solution of the problem, 
and to make progress, one has to make various simplified 
and favourable assumptions. Since, one never knows 
beforehand which of such simplifications are valid, one 
cannot make any general claim as to whether continued 
GR collapse gives rise to BHs or Naked Singularities, or 
some other non-singular objects. As to the various claims 
about the occurrences of naked-singularities, we may 
recall [30]. 
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“Although some theoretical counterexamples have 
been constructed, the general consensus is that these are 
all too artificial too occur naturally.” 

In fact, same is true for all claims of BH formation in 
continued gravitational collapse too. In order to claim 
that, a spacetime singularity has been formed, it is not 
enough to find whether some light rays can escape out-
side before being trapped (on which claims of naked 
singularities are based). On the other hand, one must 
faithfully compute the comoving proper time all the way 
   to confirm that    . Such a computation is pos-
sible only for the fictitious dust case, and for no physi-
cally realistic case. Thus all claims of formation of “na-
ked singularities” are non-sound. 

In fact by virtue of the general proof that trapped sur-
faces are actually not formed [31,32], it is most likely 
that continued collapse results in non-singular objects 
having external radius    2R M   [2,3]. The proof 
for non-occurrence of trapped surfaces was also offered 
by Kriele [33]. Ironically, such a non-occurrence of 
trapped surfaces and non-formation of finite mass BHs in 
continued collapse might be mistaken as evidence for 
formation of naked singularities. In the absence of a 
trapped surface or EH, such objects must keep on radiat-
ing and contracting even if at infinitesimally slow rate. In 
fact there are several GTR special solutions for physical 
gravitational collapse which suggest that effect of radia-
tion pressure and dissipation may cause formation of hot 
radiating ultra-compact objects rather that any BH or 
naked singularity [34,35]. Radiation pressure apart, gen-
eration of tangential pressure too can arrest the continued 
collapse. 

As the contracting objects would keep on losing mass 
energy, it is likely that, they would approach the 0M   
true BH state. However, this state must not be allowed to 
be formed in finite commoving proper time, i.e., ever. 
This must be so because even for a , BH, the 
timelike geodesic of an infalling material particle would 
tend to turn lightlike if the particle would ever arrive at 
the EH. Therefore, the most logical scenario seems to be 
one where continued gravitational collapse would indeed 
continue indefinitely (Eternally Collapsing Object: ECO) 
[22,23,31,32,36]. Since astrophysical plasma is always 
associated with imbedded magnetic field, ECO are ex-
pected to be ultra-magnetized with a pulsar like magne-
tosphere around. Thus it is quite likely the GR collapse 
results in the formation of Magnetospheric Eternally 
Collapsing Objects (MECOs). 

0M 

6. Conclusions 

Even if one would prima-facie accept the BH paradigm 
which is based on the presumption that the integration 
constant appearing in the vacuum Schwarzschild solution 

 2M   is finite for a massenpunkt or a “point mass” 
too, one lands up in many puzzles and unphysical hap-
penings. For instance, one must wonder, if the EH is in-
deed a perfectly non-singular regular region, why would 
it require an infinite upward boost for an object to stay 
put there [6]. And such an infinite boost is required irre-
spective of whether one is using much maligned 
Schwarzschild coordinates or any other supposedly well 
behaved coordinates. Clearly, the requirement of an infi-
nite boost and the property that nothing, not even light 
can escape the clutches of gravity at the EH are very 
much physical aspects, and they signify that the EH is a 
physical singularity. Yet, one overlooks such physical 
questions to defend the BH paradigm by inventing vari-
ous other coordinate systems to somehow hide the 
physical problems associated with the EH. And here we 
considered the Kruskal coordinates which are believed to 
be the ultimate tool to establish the BH paradigm. As 
soon as the Kruskal extensions were proposed, they 
raised even more physical questions like the apparent 
existence of other universes, wormholes etc., and some 
authors pointed out some of the unphysical aspects. For 
instance Anderson & Gautreau [37] pointed out that the 
Kruskal scheme may involve causal violations even at 

gr r . Belinfante hinted at some of the weird predic-
tions of the Kruskal scheme [38]. Later Gautreau con-
cluded that [39]. 

“I give arguments showing that the reference system is 
not maximally extended, as is commonly reported in the 
literature. On both Novikov and Kruskal Szekeres space-
time diagrams, the left-hand side, corresponding to nega-
tive values of the spatial coordinate, should not be in-
cluded when describing a physical spacetime. In turn, 
this means we have to rethink widely-accepted concepts 
such as black and white holes that arise from the usual 
picture of a maximally-extended Kruskal Szekeres space-
time”. 

Antoci & Liebscher [40] pointed out that EH is actu-
ally a physical singularity and the weird picture of 
Kruskal coordinates is not realizable. 

However what these authors have not pointed out is a 
much simpler and profoundly fundamental incongruity 
associated with the Kruskal coordinates. Note the origi-
nal problem of the static central gravitational field, i.e., 
the Schwarzschild solution, is solved by using the natural 
assumption that the spacetime is asymptotically flat. 
Here, for , one must recover the Minkowski met-
ric: 

r 

 2 2 2 2 2 2 2d d d d sin d ;      s t r r r      (53) 

Very oddly, the Kruskal solution is NOT asymptoti-
cally flat. 

As , the Kruskal metric becomes r 
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 2 2 2 2 2d d sin d ;     s r r       (54) 

One may recoincile this with the previous equation only 
by presuming  2

d d 1r t   at  when in the 
original problem, 

r  
 2
d d 0r t   at . Thus Kruskal 

metric brazenly contradicts the foundations of the very 
problem it purported to solve. Actually, even in the limit, 

, the skewed “Kruskal manifold is topologically 
different from the Minkowski manifold” [40]. 

r  

0M 

As far as Differential Geometry and mathematics are 
concerned, one can indeed conceive of complex mani-
folds which cannot be covered by a single coordinate 
chart and may possess any number of strange properties. 
Such exercises could delight many mathematicians and 
keep them absorbed; but that does not mean that, the 
observable physical spacetime must be such complex, 
convoluted, strange and often self-contradictory. For 
instance, one may easily conceive of not ony 5-D but 
26-D or any dimensional spacetime, and arrive at billions 
of exact solutions. Many such solutions could also sug-
gest existence of even stranger kind of BHs, wormholes 
and what not. But such mathematical extravaganza need 
not have any relationship with the observable physical 
world. 

Even for the innocuous 4-D GTR, most of the “exact 
solutions” could be physically misleading, and actually 
vacuous. For instance, it was recently found that, the 
innocuous simple problem of a strictly uniform density 
self-gravitating sphere is vacuous, because it actually 
corresponds to 0M    [27]. Similarly, the exact 
solutions associated with the collapse of this homogene-
ous sphere too vacuous as they correspond to 0   
[41]. And the collapse of a homogeneous pressure-less 
collapse (the OS collapse) too is vacuous because it cor-
responds to 0   [28,29]. As recently found, one of 
the most important metrics in GR, namely the de-Sitter 
metric, which is the basis for supposed “cosmic infla-
tion” and “dark energy” is illusory because, for self-con-
sistency, one must have cosmological constant 0   
[42]. 

In GR, one is in principle free to use arbitrary coordi-
nates; but the use of complex, convoluted coordinates 
invented by one mathematician after another need not 
lead to new physical realities. Similarly, while coordinate 
transformations could sometimes be mathematically 
convenient, they themselves must not lead to new physi-
cal realities. Accordingly, the very idea that the Kruskal 
coordinates are the most ideal coordinates and reveal 
various universes, white holes, worm holes etc. and 
which are not revealed by other coordinates are against 
the spirit of the principle of general covariance. Only if a 
specific coordinate can be associated with geometrically 
or physically relevant quantities, it may be considered as 
a better coordinate to represent the inherent physical re-

ality despite the principle of covariance. And the Kruskal 
coordinates  by no way could be related to any 
physical observables. As we just found, they even bla-
tantly contradict the basic fact that the concerned space-
time is asymptotically flat. Note, the Kruskal coordinates 

 are constructed by using Schwarzschild/Hilbert 
coordinates . And if  are “bad” coordinates, 
how can the coordinates made out of them could be 
“good” coordinates? 

,u v

,r t
,u v

,r t

We feel that the reason that the Kruskal coordinates 
give an infinite physical distortion is that they involve 
division by zero (see t M  and 2r M  terms in Equa-
tions 2-3), because the mass of the point particle M  has 
been found to be zero. In contrast, the Schwarzschild 
radial coordinate  has direct geometrical significance 
because, by definition, 

r
24πA r , represents the invari-

ant area of 2-surfaces around the centre of symmetry. In 
view of such an invariant character,  defines the lu-
minosity distance too. Similarly, the Schwarzschild coor-
dinate  has a solid physical implication as the proper 
time measured by a distant inertial observer. Thus in re-
ality, the Schwarzschild coordinates are the most appro-
priate coordinates for studying a problem having a 
spherical symmetry. (Note, this so-called “Schwarzschild 
coordinate”  and the metric are originally due to Hil-
bert, and not due to Schwarzschild). On the other hand, 
these physically significant coordinates appear not to 
cover the interior region of a fictitious BH whose idea 
crops up when one one incorrectly presumes that even a 
neutral point particle has finite gravitational mass. In 
contrast, in Newtonian gravitation, a point particle may 
be assumed to have arbitrary mass. And as far as GR is 
concerned, there may not be any strictly point particle at 
all. 

r

t

r

The great expectation that the Kruskal extension 
represents a new and complete physical picture was 
rightly dismissed by Dirac in 1962 [43]: 

“The mathematicians can go beyond this Schwarzschild 
radius, and get inside, but I would maintain that this inside 
region is not physical space, because to send a signal in-
side and get it out again would take an infinite time, so I 
feel that the space inside the Schwarzschild radius must 
belong to a different universe and should not be taken into 
account in any physical theory.” 

From a different consideration, Kiselev, Logunov, & 
Mestvirishvili too have shown that finite mass BHs are in 
contradiction with GTR [44]. Further long back Narlikar 
& Padmabhan too noted many conceptual difficulties 
associated with the concept of “Event Horizon” and 
“Black Hole” [45]: 

“Nevertheless there are several conceptual difficulties 
associated with this simple and elegant solution that are 
usually ignored because of its manifest usefulness.” 

“For the detection of any object by whatever means, it 
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must come within the observer’s past lightcone. This 
does not ever happen for a BH. So none of the laws 
describing the behavior of BHs (as opposed to the Quasi 
BHs) are in principle detectable or testable by the class 
of observers who stay outside their event horizons. Since 
most observers (including those on the Earth) are of this 
type, to them the BH’s are not relevant as physical 
objects” [45]. 

“We therefore find that considering observers inside 
the event horizon makes the problems of interpretation 
even more difficult, and we wonder whether nature al-
lows gravitational collapse to continue inside the event 
horizon at all” [45]. 

Indeed the SBH solution is exact and beautiful; and 
therefore, the resolution to all such paradoxes can be 
made only when we realize that while the integration 
constant 2M   is indeed finite for an extended object, 
it shrinks to zero as the radius of the object shrinks to 
zero. In 1969, Bel noted that [46]: 

“Actually, several extensions have been proposed in 
the literature, the most commonly quoted being those of 
Finkelstein and Kruskal. Both extensions lead to space- 
time models which are not globally static and are conse-
quently inadequate for representing the exterior solution 
of a source in static equilibrium.” 

Then by considering intrinsic differential geometry 
associated with the problem, Bel concluded that [46]. 

“Schwarzschild singularity becomes instead a real 
point singularity on which are localized the sources of 
the exterior static solution” (Emphasis by the author). 

This means that the point particle is synomous with the 
Event Horizon, as has been repeatedly stressed by this 
author while being unaware about Bel’s ignored conclu-
sion. 

Of course, one obtains BH like solutions in many other 
gravity theories and all quantum gravity theories too. But 
everywhere it must be the same story; the BH solutions 
represent asymptotic static limits of dynamical solutions 
characterized by 0   and never realizable in physical 
world. Thus mathematical studies of BHs and questions 
like how such vacuum solutions can possess huge entro-
pies and micro-states are only idle mathematical exercises 
without any physical content. In view of the asymptotic 

 BH solution, we realize that “point particles/ 
singularities” are never allowed by GTR even though the 
concept of such a “point particle” is required for mathe-
matical tractability. Given this, the concept of elementary 
“strings” or “branes” seem to be important ones; such 
concepts, by definition, eliminate the point singularities. 
But ironically the super-string theories too take the ap-
pearances of static BH solutions seriously when the very 
concept of extended “strings” and “branes” are anti-thesis 
of singularities! 

0M 

Irrespective of the present study, there have been al-

ready direct proof that the integration constant appear- 
ing in the vaccuum Schwarzschild/Hilbert solution is 
zero [31,32,47,48]. Thus the massive compact BH can- 
didates cannot be true BHs. Indeed there are significant 
amount of observational evidences, that the so-called BH 
candidates could be ultracompact, ultramagnetized, ul- 
trahot balls of plasma [49-55]. Recall that the Sun too is 
a magnetized plasma and the violent eruptions like Cor-
onal Mass Ejection (CME) could be traced to such mag-
netized plasma ativities. Similarly, much of the violent 
activities associated with the so-called BH candidates 
may be triggered by relativistic version of CMEs from 
the ultra-magnetized plasma of MECOs. Even if un-
charged BHs would be assumed to be spinning, they are 
electromagnetically inert because no current can flow out 
of the central singularity, and no energy can be extracted 
[56]. On the other hand, spin down energy can be ex-
tracted from a spinning MECO as it would act like an 
ultra-relativistic pulsar [57]. 

Very recently, the Event Horizon Telescope has im-
aged a plasma jet coming out from a region within 

 5.5 2g gr r r M  . Since it is bent by the gravitation of 
the central compact object [58], it is highly likely that 
this jet is emanating from the compact object rather than 
from its accretion disk. If so, this could be almost a direct 
confirmation that the central object here is a MECO 
rather than a true BH with an EH. Recall, solar promi-
nences and coronal mass ejection from the Sun are 
plumes or bursts of plasma emerging from the magnet-
ized plasma of the sun. Similarly, the plumes of plasma 
imaged from near the compact object of M87 is most 
likely the signature of a Magnetospheric ECO which is 
spewing out magnetized plasma irrespective of any ac-
cretion disk activity. 

We note here that the faith in the non-existent “Event 
Horizon” and the pretention to be unaware about the rele-
vant developments, have driven theoretical physics in a 
vicious blind alley. When Quantum Gravity is supposed 
to remove the BH singularity, it has actually been in-
voked to enhance the notion of BHs. On the one hand, 
physical reality of BHs are insisted by claiming that “the 
EH is a regular space-time in VACUUM, a mere coordi-
nate singularity, with no physical effects”. On the other 
hand, the same EH is modeled sometimes as “mem-
branes”, sometimes as “fluids”, sometimes as “Fuzzball”, 
sometimes as hard “brick walls”, and now as “Firewalls” 
[59] with most dazzling physical effects! And they never 
admit that they are running into such brazen contradic-
tions because the very assumption of finite mass BHs is 
incorrect. As one can recall, these all started with en-
dowing the avowed vacuum EH, a non-physical “coor-
dinate singularity”, with magical thermodynamic proper-
ties and then inventing “Hawking Radiation” from there. 
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In reality, even by mundane classical GTR, as we found 
here, there is no finite mass BH [28,31,32,47,48] there is 
no EH, no EH thermodynamics (except area A = 0, and 
entropy S = 0), no “Hawking Radiation”, and no voodoo 
“Firewall” [2,3,23,28,31,47]. Further instead of fictitious 
quantum gravitational “Hawking Radiation” or pre- 
Hawking radiation, any gravitational collapse is accom-
panied by well understood radiation in the form of pho-
tons and neutrinos for which no unfounded QG is re-
quired [1-3,21-23,36]. 

Similarly, hypothetical magical effects associated with 
the claimed non-physical “coordinate singularity” have 
inspired formulation of mystic “Emergent Gravity” [60] 
and “Entropic Gravity” [61] speculations. One may of 
course imagine that the vacuum is meshed by elementary 
Planck scale cells; but that does not mean that such cells 
are moving randomly like the molecules of a real gas. 
Recall, as per the basic premises of Quantum Mechanics, 
if the Planck Length would tend to zero, one must re-
cover classical results by which vacuum has zero entropy. 
But as per the “Emergent Gravity” formulation, the en-
tropy of classical vacuum would be infinite (as Planck 
const  0)! This shows complete unphysical and incor-
rect nature of such popular speculations. Atleast, Pad-
manabhan could have avoided such speculations by re-
calling his own honest conclusion: 

“The discussion of physical behavior of black holes, 
classical or quantum, is only of academic interest” [45]. 

7. Endnote 

A preprint by the same title (arXiv:astro-ph/9904162v1) 
has been there on Cornell Univ. Preprint ArXiv for the 
past 13 years. The fact that, this preprint has not received 
any criticism for 13 long years implies that its basic con-
tent is correct. The present version is a massive revision 
of the same preprint, it encompasses all the related de-
velopments that have taken place over 13 years; and 
practically, this is a highly updated new paper. It is nice 
to see that two anonymous referees of IJAA verified/ 
corrected all the relevant calculations. 
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