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ABSTRACT 

We prove the existence and nonexistence of elliptic curves having good reduction everywhere over certain real quad-

ratic fields  m   for . These results of computations give best-possible data including structures of Mor-

dell-Weil groups over some real quadratic fields via two-descent. We also prove similar results for the case of certain 
cubic fields. Especially, we give the first example of elliptic curve having everywhere good reduction over a pure cubic 
field using our method. 

200m 
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1. Introduction 

Tables of elliptic curves over   have been of great 
value in mathematical research. In particular, some 
databases are very famous and useful in number theory, 
and Cremona’s index (classification of elliptic curves 
over ) becomes popular. Nowadays, modularity 
theorem that explains correspondence between elliptic 
curves and modular forms becomes one of the most im- 
portant facts in number theory and arithmetic geometry. 



Meanwhile, computing elliptic curves (rank of curves, 
Mordell-Weil groups etc.) over general number fields is 
still hard. There are only a few databases of such curves 
and these databases use Cremona-Lingham’s general 
algorithm over number fields. It seems ideal from the 
viewpoint of computational approach, and we can also 
observe the case of elliptic curves over cubic fields that 
are not totally real. However, updating of this algorithm 
with supplementary tables had been stopped since Sep- 
tember 2005. In addition, though we apply this general 
algorithm, we have to determine many Mordell-Weil 
groups (=sets of rational points) and this task is the most 
difficult in creating databases. 

Therefore, we have to find a more efficient way (re- 
ducing the number of Mordell-Weil groups that we have 
to determine) to achieve this project and also easy-to- 
read sorted tables of such curves, including information 
(with references) which case is already known and which 
case is still open. 

Let mK  be the real quadratic field  m  where m  

is a square-free positive integer with  and 

m

200m 

KO  the ring of integers of mK . We already know the 
following results concerning elliptic curves with every- 
where good reduction over certain real quadratic fields 
[1-16]: 

Theorem 1.1. 
1) There are no elliptic curves with everywhere good 

reduction over mK  if 

2,3,5,10,11,13,15,17 1,23,30,31,34,35,

39, 42,47,53,55,57, ,66,69,70,73,

74,78,82,83,85,89, ,95 and 97.

m ,19,2

58,61

93,94


 

2) The elliptic curves with everywhere good reduction 
over mK  are determined completely for 

6,7,14,22, 29,33, , 41,65 and 77.m 37,38  

3) There are elliptic curves with everywhere good re- 
duction over mK  if 26 nd 86.m ,79 a  

We can also consider the pure cubic field case. Let  

mL  be the pure cubic field  3 re m  is be- 

free, positive integer with 20m   
m

m  whe cu

and0  LO  ring 

of integers of mL . e first known result is given by 

Bertolini-Canuto [17]: 

the 

Th

Theorem 1.2. Let  be the field L    where   
is the real cube root of 2 (i.e. 2 ). Then there are no 
elliptic curves over  with good reduction everywhere. 

L  L
L

Recently, N. Takeshi applied Bertolini-Canuto’s me- 
thod and showed the following criterion in her master’s 
thesis. 

Theorem 1.3. ([18]) Let L be the cubic field (not only 
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pure cubic) satisfying the following conditions: 
a) 2 does not split on L  , 
b) The narrow class number of  is coprime to 6. L
Then there are no admissible curves over L (= elliptic 

curves with everywhere good reduction over L which 
have L-rational point of order 2). 

In this paper, we extend Theorem 1.1 and apply our 
method to determine the existence and nonexistence of 
elliptic curves having good reduction everywhere over 
certain pure cubic fields. The following two theorems are 
our main result: 

Theorem 1.4. 
1) There are no elliptic curves with everywhere good 

reduction over mK  if m = 43, 46, 59, 62, 67, 71, 103, 
107, 127, 137, 139, 151 and 163. 

2) The elliptic curves with everywhere good reduction 
over mK  are determined completely for . 109m 

3) There are admissible curves over mK  if m = 118, 
134, 161 and 166.  

4) There are no admissible curves over mK  if m = 
131, 179 and 199.  

5) There is an elliptic curve  with everywhere good 
reduction and not having 

E

mK -rational point of order 2 if 
m = 158 and 161. 

Theorem 1.5. 
1) There are no elliptic curves with everywhere good 

reduction over  if  mL

3,5,6,10,12,17,18, 29,116,137,173 and 197.m   

2) If , there are no ad- 
missible curves and elliptic curves with everywhere good 
reduction over  which have cubic discriminant. 

23,44, 45,75 and 87m 

L
E

m

3) There is an elliptic curve  with everywhere good 
reduction and not having -rational point of order 2 
over  if . 

mL

m

We would like to remark that this result is an exten- 
sion of the author’s previous result [19]. 

L 46m 

2. Strategy 

In this section, we introduce the strategy to prove our 
results. Our strategy for the proof is close to that of T. 
Kagawa [7]. However, we use different kinds of com- 
puter softwares and computational techniques. 

Important processes of our result are the following: At 
first, we divide all elliptic curves having everywhere 
good reduction into two types. One is “admissible case”, 
and the other is “nonadmissible case”. Next we consider 
some criteria of S. Comalada to determine whether ad- 
missible curves exist or not (Section 2.1). After that, we 
observe (non)existence of all nonadmissible curves using 
some criteria from algebraic number theory (Section 2.2). 
Using this method, we can get the list of important in- 
variants having constraint condition, and this condition 
can be expressed using certain elliptic curves over mK  

or m . Finally, we directly compute Mordell-Weil 
groups of specific elliptic curves (Section 2.3). Explicit 
data are given from Section 2.4 to 2.6. We note that 
easy-to-read sorted tables will be given in Chapter 3. 

L

2.1. For the Case of Admissible Curves 

First of all, S. Comalada [20] determines all admissible 
curves defined over mK  with . Comalada also 
gives some criteria to find admissible curves over 

100m 
mK  

for an arbitrary . m
Definition 2.1. An elliptic curve defined over mK  is 

called g-admissible if it is admissible and has a global 
minimal model. 

Proposition 2.2. The following two conditions are 
equivalent: 

1) There exists a g-admissible elliptic curve over mK . 
2) 1023m   or either of these sets of diophantine 

equations has a solution: 

a) 2 24 7x my   , , 7 | m

b) 2 24 6x my 5  , , 65 | m

c) 2 2 2x my   , ,  2 mod 8m  

d) 2 2 8x my    and ,  is odd, 2 2 256r ms   r

 od 81 mm . 

e)  and ,  2 2 16384r ms   2 2 8t mw r 
 od 4r  3 m ,  , 1t r  , ,   128 modw st r

 1 m od 8m . 

Thus we can find some admissible curves appearing 
Theorem 1.4 using Comalada’s method. 

2.2. For the Case of Nonadmissible Curves 

Next we assume that a number field K is mK  or . 
We also assume that the class number of K is 1 and every 
elliptic curve E with everywhere good reduction over K 
has no K-rational point of order 2. For our convenience, 
we say “nonadmissible” if E has everywhere good re- 
duction over K with no K-rational point of order 2. First 
we use the following result: 

mL

Proposition 2.3. ([21]) Let E be an elliptic curve over a 
number field K. If the class number of K is prime to 6 
then E has a global minimal model. 

Let E be an elliptic curve with everywhere good re- 
duction over a number field K. By Proposition 2.3, E has 
a global minimal model 

2 3 2
1 3 2 4:E y a xy a y x a x a x a6       

with coefficients  1,2,3, 4,6i Ka O i 
E

. 
The discriminant of  (denoted by  E ) is 

 
3 2
4 6

1728

c c
E


   
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4 6, Kc c O  
 as polynom

where are, as in [22] (Chapter III, p. 42), 
written ials in the ’s with integer coeffi- ia
cients. Moreover, the following conditions are equivalent 
(cf. [22], Chapter VII, Prop. 5.1): 

1) E  has everywhere good reduction over K , 
2)   KE O  . 
In our case, all elements of KO  are written in
rm n

 the 
fo   where   is a fundamental unit of  ( K let us 
fix   for each m  Thus to determine the elliptic curves 
with everywhere good reduction over K, we shall com- 
pute the sets 

 
 

).

 ,

n KE O

x y



 
   2 3 1728 0n

K KO O y x n    

However, the set of coefficients 

12 .

  5
1 2 3 4 6, , , , Ka a a a a O , which gives rise to  

  2
4 6, Kc c O , does not necessarily exist. Therefore, we  

check whether the curv

er K, has trivial conductor for 
each 

Actu hard to compute all 

e 
2 3

4 6: 27 54CE y x c x c   , 

which is isomorphic to E ov
   4 6, n Kc c E O . 
ally, it is very  E O  

hat some 
 results.

n K

because of the limitation of efficiency of equipments. To 
reduce om the amount of c putation, we show t
values of n  are irrelevant by using Kagawa’s  
Before that, we can easily reduce for the cases of 
6 12n   because the map 

       2 3
6 , , ,n K n KE O E O x y x y  

   

ion. Hence, we obsis a biject erve  only for 

 whether
erywher

duct

 n KE O

0 6n  . 
In [7], Kagawa shows a criterion  the dis- 

criminant of an elliptic curve with ev e good re- 
verion o  mK  is a cube in mK : 

Lemma 2.4. If the following five conditions hold, then 
the discriminant of every elliptic curve with everywhere 
good reductio ver n o mK  is a cube in mK : 

1) The class number of mK  is prime to 6; 
2) mK   is unramified at 3; 

3) The class number of  K 3  is prime tom  3; 

he cla4) T ss number of  3
mK   is odd; 

 P of 5) For some prime ideal mK  dividing 3, the con-  

gruence  3 2modX P ot have a  does n solution in  

mKO . 
Using wa shows the following: 
Lemm 107, 127, 161, 166 or 193

the criterion, Kaga
a 2.5. ([23]) If m  , 

with everywhere good reduction over every elliptic curve 

mK  has a global minimal model whose discriminant is a 
be in mcu K . 

Therefore, we have   3nE     for some n . 
y applying the next lemma, we can further discard 

some cas  
B

es:
et K be a nu nd E n 

el
 has no K-rational point of order 2, then  

Lemma 2.6. ([7]) L mber field a  a
liptic curve defined over K. If E has good reduction 

outside 2 and

     2K E K E  is a cyclic cubic extension un-  

ramified outside 2. In particular, the ray class number of  

  K E  modulo 
2P
PM  is a multiple of 3. 

Note that     nK E K     is either K, 

 1K   or  K  . Thus we compute the ray class 

number of   K E  modulo  

computa n Tables
(Same type e o
26]). The um

 

M . The following

tions i  1 and 2 are carried out by using 
Pari/GP [24]  results wer btained in [25] by 
using KASH [ bold-faced n bers in this table 
are the ones divisible by 3. 

Remark 2.7. Using Lemma 2.6 with some arguments, 
we conclude that if the class number of K  is 2 and the 

ray class numbers of K,  1K   and  K   are 

of 

 

Table 1. Ray class number   K E  m . odulo

Ray class number 

 M

m  
 1K  mK    mKm    

43 3 1 10 

46 4 1 3 

103 5 20 

107 

15 6 

12 

15 

59 9 6 1 

62 8 3 1 

67 3 14 1 

71 7 3 4 

1 

1 9 6 

109 

127 5 

3 1 1 

3 16 

131 1 

137 4 1 1 

139 9 14 1 

151 7 1 

161 8 3 1 

163 3 22 3 

179 

193 2 

1 

1 

6 

1 

199 9 20 1 
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 mL E  Table 2. Ray class number of  modulo

Ray class number 

 M . 

m  
  1mL   mL    mL   

M1 1 1 1 

M2 3 1 1 

M3 1 3 1 

M 1 3 

M5 3 3 1 

4 1 

M6 3 1 3 

M7 6 1 1 

M8 21 1 1 

kM ’s appearing in the above are a ollows:  1 k 8  s f

 1 2, 6,10,12,17,18, 2 16,137,173,197M   3,5, 9,1 ,

 2 2 44, 46,53, 71,82 9,145,167,179 ,M  3,33, ,9  

 3 4 ,M   5,87  4 75 ,M    5 41,55 ,M    6 59,69,188 ,   M

 7 107 ,M    8 177 .M   

 
all prime to 3  everywhere 
good reduction over K is admissible (See [25], Cor. 2.3). 
In this way, we compute them for

 then each elliptic curve with

 mK  with m = 118, 
134, 158, 1 6 and we nclude th it cannot  
termined for these 4 cases whether t ere is an elliptic 
curve with everywhere good redu er 

6  co at be de- the 
h

ction ov mK  which 
ave noh  mK -rational point of orde Me while, we 

 w

r 2. an
can show the (non)existence of an admissible curve (see 
the next section). 

For example, the case of 46m  e can conclude  

that  
,

   m mK E K     thus the discriminant 

has the form    2 1
0

kE k 
    . Hence  should 

determine three sets of integral points  1 mKE O ,  

 E

 we

omputing Mordell-We

pute the dell- 

3 mKO  and  5 mKE O . 

2.3. C il Basis and Integral 
Points 

To compute  n KE O , we first com Mor
Weil group 

 
    2 3, 1728 0 6 .nx y K K y x n      

is decom

nE K

 

It posed into a direct-sum of  (tor- 

it rsion pa  deter- 
mined by observing reduction at good primes and de- 

composition of division polynomials. On the other hand, 
the free part can be computed by applying two-de ent 
and infinite descent (the process of decompression from 

 n tors
E K

rt can be
sion part) and r

free

   (free part, which is not 
canonical, w

 nE K

h 0r  ). The to

sc

   2n nK E K  to E   nE K ). We used mon’s 
two-descent program . [27]) on Pari-GP [24]. To com- 
pute some related data efficiently, we executed the Pari- 
GP program on Sage [28] as a built-in software. We also 
use Magma [29] for verification. 

The procedure of explicit computation of 



(cf
 Denis Si

 E K  is 
the following: 

1) Determine 1, ,p p ose images in  r  wh

   tors
E K E K  generate a subgroup of finite index of 

   tors
E K E K . Usually, these are obtained by per- 

forming an m -descent for some 2m  , especially we 
often choose 2m

 

 .  
2) Compute an upper bound on the index: 

    1p: , , rtors
K E K pE   . 

3) A sieving 
used to deduce a M

We certainly w

procedure (See [30], Section 4) is then 
ordell-Weil basis for  E K . 

ish to have an upper bound for  

    1: , , rr
E K E K p p

to s
    as  as possible. In  

pa

small

ordell-Weil 
basis of 

rticular, 1, , rp p  will certainly be a M
 E K  if the value is equal to 1. 

To co of integral points in mpute the subset  n KE O  
 n K , we use the method of elliptic logarithm to 

compute the linear form: 
E

r    1, , ,K rm m n   
1 i i ni

L m p nT E O


  

where ip ’ are generators of the free part and 
the torsio . Moreover, the maximum o

s and 
 part f the absolute 

va  the line

T  
n

lues of the coefficients of ar form 

 1max , , ,rM m m n   

can be bounded using the LLL-algorithm (by Lenstra- 
Lenstra-Lovasz, cf. [31]). 

ly p

Fi ble curves: 
Proposition 2.8. 
1) There are no g-admissible curves over 

Final , we com ute that the elliptic curve 
2 3

4 6: 27 54CE y x c x c    

has trivial conductor. 

2.4. Computation I: Admissible Curves for Real 
Quadratic Case 

rst we prove the (non)existence of g-admissi

mK  if m = 
1, 137, 139, 151, 15 , 179, 

and 199. 
103, 107, 109, 127, 13 8, 163

2) There are g-admissible curves over mK  if m = 118
 161 and 166. 

, 
134,

Proof. For all m’s appearing in 1), the third equivalent 
conditions a)-e) of Proposition 2.2 does not be satisfied. 
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For 118, 134m   and 166 , we can find a solution of 
2)

n get the 

-c) of Prop. 2.2. The equation has the form 
2 2 2x my    

and we ca following solutions: 

(Case 118m  ) 2 2554 118 51 2   , 

(Case 134m  ) 2 2382 134 33 2    , 

Case 166m  ) 2 24124( 2 166 3201 2    . 

For 161m  , we can find a solution of 2)-a) of Prop. 
2.2. The equation has the form 

and we can get the following solution 

Rem 9. In fa 20] proved that the num er of 
g- sible e

2 24 7x my    

2  2203 4 161 8 7    . 

ark 2. ct, [ b
admis lliptic curves over mK  (up to isomor- 

phism) for 118,134,166m   is 2 

lude that the num- 
ber of admissible elliptic curves over 

if 
2 2 2x my    

is solvable and 6m  . Thus we conc

mK  
ote

for m = 118, 
134, 166 is gr or equal to 2.  that it is not 
tru

eater than N
e in general that all admissible curves defined over 

mK  are g-admissible. However, ass e the class num- 
ber of m

um
K  is odd, it is true except som  cases. 

2.5. Computation II: Nonadmissible Curves for 

e

Real Quadratic Case 

Proposition 2.10. If m = 43, 46, 59, 62, 67, 71, 107, 127, 
139, 151 and 163, there are no elliptic curves with every- 
where good reduction over mK . 

Proof. We compute Mordell-Weil bases and the sets of 
integra ints for each of the 11 cases usingl po  method 

f 
o 

avoi ailable from 

curve w

appearing in Section 2.3. In this paper, we omit data o
bases of  n mE K  and the sets of integral points t

d being intricate. A complete data are av
the author’s website: 
http://www2.math.kyushu-u.ac.jp/~s-yokoyama/ECtable.
html (*). 

As a result, there are no pairs    4 6,
mn Kc c E O  for 

which the elliptic curve CE  has trivial conductor. 
For the case m = 109, we can find  4 6,c c  (that gives 

the elliptic ith everywhere good reduction appear-  

ing in Theorem 1.4) from  1094 KE O . 

Proposition 2.11. The elliptic curves with everywhere
good reduction over 

 

mK  are determined completely for 
m 109 . 

Proof. First, we compu  Mordell-Weil bases: te

1)  0 109 2E K   ; basis is    10 12,0T T   . 

2)   2E K   ; basis is  ,p p  where 

9 109

2 109 109 109A B

 
  307444 125 29452 125 109 

, 
109 5688 5Ap   25 544 2 109,

 
  7 109

109 3026 9 290 9 109,Bp  
. 

277340 27 26564 2 

3)   2
4 109E K   ; basis is  where  109 109,C Dp p

 109 6 109, 12 96 109p 5596 53 86204 1231C     , 

 
  

109 916346 81 87770 81 109,

1613792380 729 154573276 729 109

Dp  


. 

The sets of integral points are 

1)    
1090 109,KE O O T  , 

2) 

 
 

1092

109 109 109 109 109 109, , 2 , 2 2

K

A B A B A B

E O

O p p p p p p     
, 



   
1094 109 109 109 9, , 2 , 3K C C CE O O p p p p      . 3) 10 D

From  in 1092 Cp  1094 KE O , we can construct the elli-  

pt od reduction over ic curve having everywhere go 109K  
as follows: 

   

2 31 109 3 109

2 2

274 29 109 3259 315 109 .

y xy x x

x

 
  

   
 

2

ording to [16], there are no elliptic curves having 
go eduction everywhere and no 

Acc
od r 109K -rational poi  

er 2 ( -admissib
nt

of ord = non le) except the above up to 
isogenies. 

For the case 158m  , the class number of mK  is 2
gy pply. However, we can  one 

elliptic curve here good reduct

 
so our strate  cannot a

 with everyw
find

ion over mK   

with computing  1583 KE O . 

Proposition 2.12. There is an elliptic curve  having 
everywhere good reduction over 

E

158K . E  is n by give

   
2

3 2

158

158 158

y xy y

x x A B x C D

 

     
 

where 
361817559192191668851A   , 
28784659475803145415B   , 

3691288333C 191863812738417681108 , 
293663132146367649175848062813D  . 

For the case 161m  , we can find  4 6,c c  (that 
gives the elliptic curve with ever er ood reductionywh e   g
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appearing in Theorem 1.4) from 

Proposition 2.13. There is an elliptic curve ving 
everywhere good reduction over 

 1613 KE O . 

E  ha

161K . E  is n by give

 
 

2 3 2 3680 290 161

148482 11702 161 .

y xy y x x x      

  
 

2. n III: Curve

ere are no 
el  o

Proof. In this case, it is enough to determine 

6. Computatio Nonadmissible s for 
Pure Cubic Case 

Proposition 2.14. If 23, 44,7m   th5 and 87 ,

t o rd
liptic curves with everywhere good reduction ver mL  

which have no mL -rational poin f o er 2 (not ad- 
missible) and cubic discriminant. 

         23 44 45 75 870 0 3 3 3, , , ,L L L L LE O E O E O E O E O      .

 
  

(*). e no pairs 

The result of computing Mordell-Weil bases and the
sets of integral points is available from the online data

As a result, there ar    4 6,c c E O
mn L

for which the elliptic curve CE  has trivial conductor. 
Finally, to complete the proof of Theorem 1.5, we 

show the existence of an elliptic curve having every- 
wh

  

ere good reduction over 46L . We can find  4 6,c c   

from

Proposition 2.15. The elliptic curve E as follows is 
ha

   . 
460 LE O

ving everywhere good reduction and not admissible 
over 46L : 

 

3 2 3
2 3 46 46 1

3 2 3
3 23 1 2 346 46

46 1
3

C C C

3 3
4 5 646 462

46
3

y xy y

3

x x x
 

     

C C C 


C4 = 23258423334479295709473275474986025640457 
867, 
C5 = 827892116462926667504946133778759990377913 
857, 
C6 = 326497412111533344905526205920140161442668 
6175. 

f. W can easily iminant of the 
curve and the result is 

 
 

where kC ’s  1 6k   are as follows: 

1C  94219593757433390681493864706,  

2 1081334709186632184731947617604,C   

3 5084087035543830437128808550119,C   

Proo e compute the discr

  24E     

3 2 3309 46 48 46 4139   where  is a ndamental 

fined over certain number fields. We note that 

e, 
PEX = Partly existence, 
PNEX = Partly nonexistence, 

ET = Undetermined, 
is generator of each base field, given by 

Magma’s setup “K<a>: = Number Field (f);” where f is 
nomial of K. 

4.

In he (non)existence of elliptic 
cu  reduction over certain 
re ases and partly determined 

 

Existence result 

fu
unit of 46L . 

3. Tables 

We give Tables 3 and 4 showing the existence or 
nonexistence of elliptic curves with everywhere good re- 
duction de

DET = Determined, 
NEX = Nonexistenc

UND
and a a 

defining poly
We remark that precise version of the following tables 

are available from the author’s website (*). These contain 
data of fundamental units and references. 

 Conclusion 

 this paper we proved t
rves having everywhere good
al quadratic fields for 14 c

the (non)existence for 9 cases. We also proved such re- 
sults over certain pure cubic fields for 12 cases and par- 
tially proved for 6 cases. 

Table 3. The case of real quadratic fields mK . 

m  
Admissible Non admissible Progress 

1 1m S  No No NEX 

2 2m S  Yes Yes DET 

3 3m S  Yes No DET 

4 4m S  No Yes DET 

5 5m S  Yes No PEX/UNDET 

m S6 6  No Yes PEX/UNDET 

7m 7S  Yes Yes PEX DE/UN T 

8 8m S  Yes - PEX/UNDET 

9 9m S  No - PNEX/UNDET 

PN10 10m S  - No EX/UNDET 

where 

1 2,3,5, ,11,13,1 9, 21, 23,30, 35,37,

39, 42, 43, 46, 47 ,57,58,59, 6 66,67,

69, 70, ,73, 74, 2,83,85,89,9 ,97,

101,103,107,113,127,129,137,139,141,149,151,

163,16 173,177 91,

S 

197 ,

 

10 5,17,1 31,34,

,53,55 1, 62,

71 78,8 3,94,95

7, ,181,1

 2 38,77S  ,  3 4, 22, 41,65S  6,7,1 , 

 4 29,33, 09,133,15S  1 7 ,  5 118S  , 

 6 26,79 58S  , ,1  7 86,161S ,   8 134,166S  , 

 9 51,87,91,131,17S  , 9,199  10 193S  . 
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Table 4. The case of s 

Existence result 

pure cubic field mL . 

m 
Adm ible Non issible iss  adm Progress 

1 1m T  No No NEX 

2 2m T  No - PNEX/UNDET

46 No Yes PEX/UNDET 

107 - - UNDET 

where 

 1 2,3,5,6, 12,17,18, 29,116,137,17 97T  , 10, 3,1

 2 23,33, 41, 44, 45,53,55 59,69,71,75 2,87,99,145,167,177,179,188T  . , ,8

 
It seems extremely difficult to xtend hese results us-

ing sam of com-
putation ese re
sults, we need to discover rithms or new 
math atical t
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