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ABSTRACT 

This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of 
global solutions for the ECQP problem. The novel features of this proposed algorithm are its uniqueness and faster rate 
of convergence to the solution. The merit of this algorithm is base on cost, accuracy and number of operations. 
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1. Introduction 

Usually the general quadratic programming  GQP  
problem has a structure of the form  

  T T1
: min

2x
GQP q x x Gx x c   

Tsubject to , ,i ia x b i    
T , .i ia x b i   

where  is a symmetric  matrix, G n n   and   
are finite sets of indices. In quadratic programming 
problems, the matrix G  is called the Hessian matrix. 
The vectors  and i  are column vectors in . 
To make computational life easier, we consider only the 
equality constraints and formulate the equality con-
strained quadratic programming  problem as 
follows  

,c x a n

ECQP

  T T1
: min

2x
ECQP q x x Gx x c   

subject to Ax b  

where A  is a  jacobian matrix of constraints 
(with ) [1]. Throughout this paper, we will as-
sume that 

m n
m  n

A  can be of any form, since it is not a par-

ticipant in the determination of the ECQP’s global 
minimum. Quadratic programming problems occur natu-
rally, and sometimes stem as subproblems in general 
constrained optimization methods, such as sequential 
quadratic programming, augmented Lagrangian methods, 
and interior point methods. This type of programming 
problems occurs in almost every discipline and as a result 
became a topic of interest to a lot of researchers [1-3]. 

In sequential quadratic programming   algo-
rithms, an  phase that employs second derivative 
information (Hessian matrix) is usually added to enhance 
rapid convergence to the solution [4-7] SQ  algo-
rithms [8] that utilize the exact Hessian matrix are often 
preferred to those that use convex quasi-Newton ap-
proximations [9-11] since they need lesser time to con-
verge to the solution. 

SQP

P

ECQP

In 1985, Gould investigates the conditions under 
which the  problem can be said to have a finite 
solution. Gould’s analysis of the  problem is 
based on the concepts of the reduced Hessian matrix 

ECQP
ECQP

 TZ GZ  and signs of the eigenvalues of the Ka-
rush-Kuhn Tucker  KKT  matrix [3]. The well known 
 KKT  matrix has the form  

T

0

G A
K

A

 
  
   *Corresponding author. 
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[1]. For small-scale  problems it is possible to 
solve the  matrix (and hence, the  prob-
lem ) analytically [1,3,12]. The matrix 

ECQP
KKT ECQP

Z  is one whose 
columns are a basis for the null space of A  (matrix of 
contraints), and is obtained from the  factorization 
of 

QR
A . We investigated the method and found that the 

reduced Hessian matrix is not always accurate due to 
rounding off errors arising in the calculation of Z  
[13-15]. 

Our goal in this paper is to present a new method that 
utilizes a necessary and sufficient condition for the exis-
tence and uniqueness of the solutions of the  
problem. In this paper, we show that for the  
problem to have a global solution, its Hessian matrix 
must possess a Cholesky factor. As we shall see in Sec-
tion 2, this paper focuses only on the condition(s) under 
which the  problem is said to have a global solu-
tion [16]. 

ECQP
ECQP

ECQP

This paper is organized as follows. In Section 2, we 
discuss our method. Gould’s method is reviewed in Sec-
tion 3. The analysis follow in Section 4 and some con-
cluding remarks are made in Section 5.  

2. Method 

In this section, we introduce our new method of analyz-
ing the solution of the  problem. It is based on 
the fact that the Cholesky decomposition is unique for 
positive definite matrices. 

ECQP

Cholesky Decomposition 

Let n nM   be a matrix that can undergo Cholesky 
decomposition with a Cholesky factor  (Lower trian-
gular matrix) then we can write  

L

TM L L                  (2.1) 

where  is the transpose of . We let  TL L

0
.

s
L

 
 

 
 

               (2.2) 

Substituting Equation (2.2) into Equation (2.1) gives  

2

2 2

0

0

s s s s
M

s

 
     

  
         


   (2.3) 

From Equation (2.3), we see that the conditions for 
M  to be positive definite are satisfied. Therefore,our 
conditions for positive definiteness are; the matrix must 
be a square matrix and possesses a Cholesky factor. 

We let X  to be a  column vector say  2 1

1

2

x
X

x

 
  
 

                 (2.4) 

and we write  

 

 

2
1T

1 2 2 2
2

2 2 2 2 2
1 2 2 1 2

xs s
X MX x x

xs

s x x s


  

  

  
      

    x x

    (2.5) 

From Equation (2.3), it is clear that the first and sec-
ond terms are always positive, which implies their sum is 
also always positive and greater than the third term if 

1 2 0x x  . When 1 2 0,x x   the matrix TX MX
T

 
always equals zero. Therefore, the matrix X MX  is 
always positive if and only if the column vector X  has 
entries 1x  and 2x  (such that ) and the ma-
trix 

1 2 0x x 
M  has a Cholesky factor. 

In the above demonstration , which means that a 2n 
2 2  matrix M  and a  column vector 21 X  pro-
duces Equation (2.5). Analogously, any n n  matrix 
M  and any 1n  column vector X  (where ) 
shall produce an equation similar in properties to Equa-
tion (2.5). If and only if 

2n

01 2 x3 nx x x     . 
Corollary 2.1: Let A  be any non-singular matrix 

and the Hessian matrix being Cholesky factorizable. 
Then the KKT  matrix  

T

0

G A
K

A


 
 


              (2.6) 

is nonsingular and has a unique solution. 
Corollary 2.2: Let K  be the Karush-Kuhn-Tucker 

matrix  
T

0

G A
K

A

 
 
 

              (2.7) 

and assume A  is any matrix. Then the  prob-
lem has a global minimum if and only if the Hessian ma-
trix has a Cholesky factor.  

ECQP

3. Review of Gould’s Method 

In this section, we review Gould’s method. The method 
consists of three approaches: Null-space methods, La-
grangian methods and Schur complement methods [12].  

Null-space methods: For x  to be a solution of the 
 problem, a vector ECQP   (i.e. Lagrange multipliers) 

must exist such that the system of equations below is 
satisfied  

T

.
0

cG A x

bA 





    
    
   

        (3.1) 

We let  

,x x p                   (3.2) 

with x  being some estimate of the solution and  the 
desired step. By expressing 

p
x  as in Equation (3.2), 

Equation (3.1) can be written in a form that is more use-
ful for computational purposes as given below  
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T

,
0

p gG A

hA 

    
    

    
       (3.3) 

where  

,h Ax b                  (3.4) 

,g c Gx                  (3.5) 

.p x x                  (3.6) 

This method finds  and p   first, by partitioning 
the vector  into two components as follows  p

,Yp Yp Zp  Z               (3.7) 

where  and Y Z  have orthonormal columns and can 
be obtain from the  factorization of QR A . An inter-
esting property of this approach is that 0AZ   [1,3], 
which makes the calculation of  and p   possible by 
solving the four equations below  

  ,ZAY p h               (3.8) 

T ,Y ZGYp GZp A g           (3.9) 

 T T ,Z Y
TZ GZ p Z GYp Z g        (3.10) 

   T T .AY Y g G   p         (3.11) 

This method has a wider application than the Range- 
space methods because; it doesn’t require G  being 
nonsingular. According to this paper, the condition, that 

 must undergo Cholesky decomposition is the only 
requirement for the  problem to have a global 
minimum. A knowledge of the null space basis matrix 

G
ECQP

Z  is not important at all.  
Lagrangian methods: This method calculates the 

values of  and p   directly from Equation (3.3), i.e. 
the Karush-Kuhn-Tucker equations for the  
problem. 

ECQP

In this paper, the  problem can only have a 
global minimum if  possesses a Cholesky factor 

.  

ECQP
G

 Corollary 2.1, 2.2
Schur complement methods: Here we assume that 
 has a Cholesky factor and derive two equations from 

Equation (3.3) for the solutions of  and 
G

p  . These 
equations are as follows  

   1 T 1 ,AG A AG g h         (3.12) 

T .Gp A g             (3.13) 

It is easy to see that both  and  are positive 
definite. In this paper, we show that  and 

G 1G

G 1G  have 
Cholesky factors and hence 1 TAG A  is always positive 
definite, which indicate the existence of a global solution 
for the  problem Section 2.  ECQP

4. Analysis 

In this section we will solve a numerical example from [1] 

using our algorithm and compared our results with those 
of Gould’s method. Let us consider the  problem 
below and deduce whether it has a global minimum or 
not by using Gould’s method and our algorithm.  

ECQP

  2 2
1 1 2 1 3 2

2
2 3 3 1 2 3

min 3 2 2.5

               2 2 8 3 3 ,

q x x x x x x x

x x x x x x

   

    
 

1 3 2 3subject to 3, 0.x x x x         (4.1) 

We will write the above  problem in the stan-
dard form described in the introduction by defining  

ECQP

6 2 1 8

2 5 2 , 3 ,

1 2 4 3

G c

  
     
     


 







 

1 0 1 3
, .

0 1 1 0
A b

  
   
  

 

For Gould’s algorithm we need to find Z  from the 
 factorization of matrix QR A  i.e. A QR .  

0.7071 0.4082 0.5774

0 0.8165 0.5774 ,

0.7071 0.4082 0.5774

Q

  
   
 
 

 

1.4142 0.7071

0 1.2247

0 0

R

 
   
 
 

.  

We can obtain Z  from the column space of matrix 
 and the matrix Q Z  must satisfies the constrain 

0AZ  . Hence we have  

0.5774

0.5774 .

0.5774

Z

 
   
 
 

 

Therefore, T 4.3341 0Z GZ  
ECQP

 and according to 
Gould’s algorithm the  problem has a global 
minimum. 

For our algorithm we only need to show that the ma-
trix  has a Cholesky factor. Let  be the Cholesky 
factor of .  

G L
G

2.4495 0 0

0.8165 2.0817 0 .

0.4082 0.8006 1.7867

L

 
   
 
 

 

According to our algorithm,this implies the matrix  
is positive definite and therefore the  problem 
has a minimum solution. To show this fact we select any 
matrix that is a subset of the set of matrices described in 
subsection (2.1) and suppose we have that matrix to be  

G
ECQP

 8 3 3P ,     then . T 645 0P GP  

Copyright © 2012 SciRes.                                                                                 OJOp 



A. F. KAMARA  ET  AL. 18 

Let us consider another matrix  

4 8

1 0 .

3 2

Q

 
   
 
 

 

We will have result  

T 189 268
0.

268 432
Q GQ

 
  
 

 

Finally, we consider a matrix with all negative entries 
as follows  

4 8

1 0

3 2

K

  
   
   

.  

This gives the result  

T 189 268
0.

268 432
K GK

 
  
 

 

From the above example, we observed the following 
result: 

1) Multiplying a matrix  that has a Cholesky factor 
with any other matrix except the zero matrix, doesn’t 
alter the positive definite property of matrix  and 
hence the existence of global minimum. 

G

G

2) Decimals are encountered in Gould’s approach 
which may lead to rounding off errors and hence inaccu-
racy. Decimals have no effects on our method as long as 
the Hessian matrix has a Cholesky factor. 

3) The number of matrix operations that are involved 
in Gould’s approach are far more than those that are in-
volved in our algorithm which implies that our method is 
faster than that of Gould. 

Gould’s approach uses the notion of the reduced Hes-
sian matrix and the signs of the eigenvalues of the Ka-
rush-Kuhn-Tucker matrix to analyze the conditions under 
which the  problem shall have a global solution 
[3]. It is clear that 

ECQP
TZ GZ  is sometimes incorrect due to 

rounding off errors in the calculation of Z . In this paper, 
we present a method that directly utilizes the Hessian 
matrix to analyze global minimum conditions for the 

 problem. ECQP
Finally, this proposed method has fewer iterations than 

Gould’s algorithm, inexpensive and naturally faster 
(Cholesky factorization) than Gould’s approach (with 
more iterations).  

5. Conclusions 

In 1985, Gould investigates the practical conditions for 
the existence and uniqueness of solutions of the  
problem based on 

ECQP
TZ GZ  and inertia of the KKT  ma-

trix. In this piece of work, we present a new method that 

directly works with G  to analyze global solutions of 
the  problem. ECQP

The advantages of our method lie in its accuracy, cost 
and number of operations. It is true that this noble algo-
rithm is unique and computationally faster (i.e. Cholesky 
decomposition) than Gould’s method. Our method also 
revealed that if the Hessian matrix has a Cholesky factor 
then, the Hadamard inequality [17] for positive definite-
ness is satisfied as well. 

We finally conclude that the existence and uniqueness 
of solutions of the  problem is independent of its 
constraints but depend wholly and solely on the Hessian 
matrix 

ECQP

 G . 
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