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ABSTRACT

In this paper, we propose a nonmonotone line search combining with the search direction (G. L. Yuan and Z. X.\Wei,
New Line Search Methods for Unconstrained Optimization, Journal of the Korean Satistical Society, 38(2009),pp.
29-39) for regression problems. The global convergence of the given method will be established under suitable condi-
tions. Numerical results show that the presented algorithm is more competitive than the normal methods.

Keywords:. regression analysis, fitting method, optimization, nonmonotone, global convergence

1. Introduction

It is well known that the regression analysis ofs&gises where his the data valuation of the ith response variable
in economies, finance, trade, law, meteorology, icied, Xi1, Xiz, ..., Xip are p data valuation of the ith predictor
biology, chemistry, engineering, physics, educatiuis- variable, and m is the number of the data. If thees-
tory, sociology, psychology, and so on [1,2,3,48,6 sionp and the number m is small, then we can olbkein
The classical regression model is defined by parameters 8= (8,,5,:--,B,) from extreme value of

Y=h(Xy, Xp, ..., Xp)+ & calculus. From the definition (2), it is not diffit to see

whereY is the response variable, Xi is predictor variable that this problem (2) is the same as the followingon-
i=1,2, ...,p, p>0 is an integer constant, and is the Strained optimization problem

error. The functiomh(Xy, X, ..., X) describes the relation mirn1 f(X) )

betweenY and X=(Xi, X,, ..., Xp). If h is linear function, X

then we can get the following linear regression ehod In this paper, we will concentrate on this probléa)
Y=Bo+ B Xat By Xot. A B Xy +E (1) wheref: O"— O is continuously differentiable (lin-

ear or nonlinear). For regression problem (3)hé di-
mension n is large and the function f is compleentthe

B, ..., B, are regression parameters. On the othemethod of extreme value of calculus will fail. Irder to
hand, the regression model is called nonlinearessjon. ~ Solve this problem, numerical methods are ofterduse
We all know that there are many nonlinear regressiosuch as steepest descent method, Newton method, and
could be linearization [8,9,10,11,12,13]. Then many  Guass-Newton method [5,6,7]. Numerical method, i.e.
thors are devoted to the linear model [14,15,168,29].  the iterative method is to generates a sequengeiofs

Now we will concentrate on the linear model to dise  {Xd which will terminate or converge to a pointix some

the following problems. One of the most importamtrky ~ Sense. The line search method is one of the miesttieé

of the regress analysis is to estimate the parametenumerical method, which is defined by

B=(By, B B,) - Xy = X +a, 0, k=012 4)
The least squares method is an important fitting,nere o
method to determined the parametefs-(4,, 3, 53,), “
which is defined by
min S(p) = Z(h (B + BXiy+ B Xip +-oe 4+ ﬁpxip))z
i=1

AO0p+l

which is the most simple regression model, whég

is determined by a line search is the ste-
plength, andd, which determines different line search
methods [20,21,22,23,24,25,26,27] is a descenttitire
of f atx,.

Due to its simplicity and its very low memory re-
(2) quirement, the conjugate gradient method is a plver

*This work is supported by China NSF grands 107@1&0d the Scien- Il.ne search metho_d for solving the Iqrge_ scalenoti-
tific Research Foundation of Guangxi Universityg@rNo. X081082).  tion problems. This method can avoid, like steejiest
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scent method, the computation and storage of soate mied by [43,44] etc. Grippo, Lamparillo, and LucidiO]
trices associated with the Hessian of objectivections.  proposed the following nonmonotone line search that

Conjugate gradient method has the form they call it GLL line search. GLL line search: Sulete-
; _{_ G+ Bl if k21 - plength a, satisfying
k+1 — .
- , if k=0
() fra < OSrﬂan-()f() fies *+ &0y 9y (10)

where g, =0f (x) is the gradient of f(x) at, £ OO

is a scalar which determines the different conjeigat- g0, = max{gz,l—(ak IId, ||)p}gIo|k (11)
dient method [28,29,30,31,32,33,34,35,36,37]. Thhou

out this paper, we denofé) by f, Of (x,) by g, and where pO(-w1), k=0, 1, 2, ..., &0 (0D, D(O,%),

Of (X1) by Gees, respectively. | .| denotes the Euclid-
ian norm of vectors. However, the following suféintly
des cent condition which is very important to irestine
global convergence of the optimization problems

n(k) = min{H,k}, H=0 is an integer constant. Combinng

this line search and the normal BFGS formula, Hath a

Liu [45] established the global convergence of tbae-

vex objective function. Numerical results show thas

g dk < —c"gk"Z, for all k = 0 and some constani>0 method is more competitive to the normal BFGS nettho
©6) with WWP line search. Yuan and Wei [46] proved e

o o ) . ) perlinear convergence of the new nonmonotone BHGS a
is difficult to be satisfied by nonlinear conjugaeadient  gorithm.

method, and this condition may be crucial for cgafe
gradient methods [38]. At present, the global conve ) .
gence of the PRP conjugate gradient method isogtéh nonmonotone methqd on the baglg of Yuan and.We}| [27
when the weak Wolfe-Powell line search rule is usedanOI Grippo, Lamparillo, and Lucidi [40]. The majmn-

Considering this case, Yuan and Wei [27] proposed gibution of this paper is an extension of the rdisection
new direction defined by in [27] to the nonmonotone line search scheme, tand

concentrate on the regression analysis problemgetn
_ N |9y IP 4 ifa’.d £0 suitable conditions, we establish the global cogeace
de,, = Y —gr.d, © Gl (6) of the method. The numerical experiments of the- pro
~Oi otherwise poseq method on a set of problems indicate thiatiit-
teresting.

Motivated by the above observations, we propose a

e T .
where di="Vfo="o. If dy .., #0, it is easy to see that 15 haper is organized as follows. In the nextieag
the search direction,ds the vector sum of the gradient o proposed algorithm is given. Under some redsena
~0k and the former search directidp,, which is similar  congitions, the global convergence of the givenhoubtis
to conjugate gradient method. Otherwise, the sw&epeestaplished in Section 3. Numerical results andnelasion

descent method is used as restart condition. Camputare presented in Section 4 and in Section 5, régplyc
tional features should be effective. It is easysé¢e that

the sufficiently descent condition (6) is true with car- 2, Algorithms
rying out any line search technique by this waye Th
global convergence has been established. Moreaver, The proposed algorithm is given as follows.
merical results of the problems [39] and two regi@s  Nonmonotone line search Algorithm (NLSA).
&naillﬁ'z i?hoev;lst;rrﬁitlé?erngelt\;leorélsm[ezt?]c,d IS more cortpet Step 0: Choose an initial poirg[] 0", 0< & <1, 0<
: £ <¢g,<1, pd(-=J). an integer constant H>0. Set
Normally the steplengtha, is generated by the fol- d,= —Vfy=—g,, k :=0;
lowing weak Wolfe-Powell (WWP): Find a steplength Step 1: If ||g, ||, < £, then stop; Otherwise go to step
a, such that 2:

Step 2: Compute steplength, by Wolfe line search
. . (10) and (11), letx,,, =%, +a,d,.
Oy 20,9, d, ( Step 3: Calculate the search directin by (7).

where 06< g, < g, <1. The monotone line search tech- Step 4: Sek: =k+1 and go to step 1. _
. is oft dt t the stepsi h Yuan and Wei [27] also presented two algorithmsehe
nique 1s often used to get the stepsiag, NOWEVEr e stated them as follows. First another line deasc

monotonicity may cause a series of very small stieje given [47]: find a steplengtha, satisfying
contours of objective function are a family of ceswvith

f (% +ad) < f(x)+0.a,0.d, 8)

large curvature [40]. More recently, the nonmonaton fix +a.d)V<C. +o.a.a7d 12
line search for solving unconstrained optimizatiin (% *+ @) < G + 01, Gy 0y (12)
proposed by Grippet al. in [40,41,42] and further stud- Oeady 20,0¢d, (13)
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where < g, < g, <1, grd 2
UQ.C, + f 'kim(—é k] = (16)
Cen = k ka k+1 \Q = H4Q, +1, ==l |l
k+1

C,=1,Q, =1 u [ 1.0< < <1 Proof. Denote that
o = Tor, o =4l U M s Hinax sV S My S By S f(xh(k)) = Oma)ﬁ f(xk—j ),n(k) = min{H , k} .

Algorithm 1 [27]. <j<n(k)

Step 0: Choose an initial poimg] 0", 0< & <1, 0<

0, <0, <1. Set g= -Vfo=—0p, k :=0; fas max f,, +£0,d,g, < max fiei = F (%)

Using Lemma 3.1 and (10), we have

o< j<n(k) o< j<n(k)
Step 1: If || g, |L,< €, then stop; Otherwise go to step 2;
Step 2: Compute steplength, by Wolfe line search Thus, we get
(8) and (9), letx,,, = X, +a,d, . f (%) = omax f (%)
Step 3: Calculate the search directityn by (7). _
Step 4: Sek :=k+1 and go to step 1. = max{f (X9) = MaXocjengy T (K- ): fk}
. = f ,f
Algorithm 2[27]. max f (X,gep), F (%)}
Step 0: Choose an initial poing® 0", 0< £ <1, 0<u<1, = f (X ) K =12, 17)
0<0, <0, <1 SetC,=f,,Q =1,d= -Vfe=-0o, k=0; i.e., the sequence(f,} monotonically decreases. Since
Step 1:If || g, |L< € , then stop; Otherwise go to step 2; f (Xyo)=f (%), we deduce that
Step 2: Compute steplengtly, by the nonmonotone f (%) S fF(Xypny) S-S F (X)) = Fo

Wolfe line search (12) and (13), let,, = %, +a,d,

kL thenx¢ . By Assumption 3.1: 1), we know that there
Step 3: Calculate the search directign @by (7).

exists a positive constant M such that

Step 4: Let
M
_ _HQC + iy lIxIis
Qk+1 =U Qk +lck+1 - Qk+1 (14) Therefore,

Step 5: Set k: =k+1 and go to step 1. Nl [ %z = % [ Xt 1+ 11 %, [l 2M.

We will concentrate on the convergent results of
NLSA in the following section. By (11), we have
3. Convergence Analysis ma><{£2 1-(ay Ild, II")}2 max{e, 1~ (2M)}°

In order to establish the convergence of NLSA, fitle Let &, =ma>{£2 ,1—(2M)P}D (01 . Using (11) and
lowing assumptions are often needed [27,29,31,3/BB5 : :
] i Assumption 3.1: 2), we have
Assumption 3.1: 1) f is bounded below on the boudnde : .
level set ¢= {xO0O": f <f (x)}; 2) In ¢, fis dif- (& =Dk < (G~ 9)" 0k Sl G = 9 MMl [ AL [Id IF
ferentiable and its gradient is Lipschitz continspou Then we get
namely, there exists a constahtsO such that ||g(x)- .
gW)ISLIk-yIl, for allx, yO ¢. o, >~ D% A (18)

k= 2
In the following, we assume thdg,||#0 for all k, for Lild, I

otherwise a stationary point has been found. Thewimg By (10) and Lemma 3.1, we obtain
lemma shows that the search direction dk satifiesuffi- N2
ciently descent condition without any line seasthhique. &l-&)(d
enty Honwi _u v ) qu fran < f(xh(k))+£1akdl;rgk = f(xh(k))_—l( 2) (—k ng
Lemma 3.1 (Lemma 3.1 in [27]) Consider (7). Then L Il d |l
we have (6). (19)
Based on Lemma 3.1 and Assumption 3.1, let us prove

the global convergence theorem of NLSA. By Lemma 2.5 in [45], we conclude that from (19)

Theorem 3.1 Let &, 0y, X1, Ok} De generated by > (gld 2
the NLSA, and Assumption 3.1 holds. Then we have Z[ﬁ] <o (20)
k=0 k
o0 Td 2
[gk kj <o (15)  Therefore, (15) holds. (15) implies (16). The prisf
o\ [l complete.
and thus
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Remark. If there exist's'a constagg>0 such that (e relative error between RM?Q,B*) and RMSp B)
lld k¢ |lg, || for all sufficiently large k. By (6) and RMS. (3') - RMS, (8)
. . ' _ o b
(16), it is easy to obtairg||| -0 as k->w. defined by ¢, = o .
RMS,(8)

4. Numerical Results Problem 1. In the following table, there is datssoie

In this section, we report some numerical resulih w kind of commodity between year demand and price:
NLST, Algorithm 1, and Algorithm 2. All codes were The statistical results indicate that the demandd wi
written in MATLAB and run on PC with 2.60GHz CPU Possibly change though the price is inconveniemd, the
processor and 256MB memory and Windows XP operademand will be possible invariably though the price

tion system. The parameters and the rules areathe Changes. Overall, the demand will decrease withirihe
those of [27], we state it as follows: crease of the price. Our objective is to find ce &ap-

proximate function between the demand and the ,price
N namely, we need to find the regression equatiahtofthep.
cannot always ensure the descent condititfrg, <0, It is not difficult to see that the price p and themand
uphill search direction may occur in the numerieat  d are linear relations. Denote the regression fandby

periments. In this case, the line search rule mdsite d=B,+B.p, where B, and £, are the regression pa-
In order to avoid this case, the stepsize _k wdl dz- rameters

cepted if the searching number is more than twéagy _
in the line search. We will stop the program if tendi- Our work is to getf, and f3,. By least squares

tion ||Of (B)||1le—5 is satisfied. We also stop the pro- method, we need to solve the following problem

0,=010,=09,u=10"¢=10". Since the line search

gram if the iteration number is more than one thods L X
and the corresponding method is considered to itexifa man(di (Bt Bip))
In this experiment, the direction is defined by: =0

19 I and obtain 8, and B, where n=10. Then the corre-
+ H T
d = "Gt le d. if g.,d, <1e-10 1) sponding unconstrained optimization problem israfiby
k+l — k+1%k
"G otherwise min f () = >.(di -4 p))* (22)
The parameters of the presented algorithm is chasen - i=
g =001¢,=01 p=5, H=8. Problem 2. In the following table, there is datatlug

) , . . age x and the average height H of a pine tree:
In this section, we will test three practical pmink to

show the efficiency of the proposed algorithm, veher hSimiIar o prr]o_blﬁm 1,itis eaS{)t(l) seel that the mgmr:g
Problem 1 and 2 can be seen from [27]. In Tabladly the average height H are parabola relations. Detitete

the initial points are the same to those of pa@&t ind regression function byﬁ =B, + X + BX%,, where 3,
the results of Algorithm 1 and Algorithm 2 can alse B, and B, are the regression parameters. Using least

seen from [27]. In order to show the efficiencytioése squares method, we need to solve the following lprab
algorithms, the residuals of sum of squares isdefby '
minZ(h = (B + B +B2Xi2))2
i=0

SSE,(B) =2 (% ~ %)
= and obtain 5,, £, and fS,, where n=10. Then the cor-

responding unconstrained optimization problem is de
and f3,, 3., 3,....3, are the parameters when the progranfined by

where 91:/§0+/3’1xi1+/§2xi2+...+,f3’pxip, i=1,2,..,n,

is stopped or the solution is obtained from one.\Wway min f (B) = Zn:(h -BLx &2))2 (23)
~ 3 4 '
RMS. (5) = X0 (P) & B
o(B) = n-p It is well known that the above problems (22) add)(

can be solved by extreme value of calculus. Heraville
solve these two problems by our methods and other t
methods, respectively.

Problem 3. Supervisor Performance (Chapter 3 i}).[49

where n is the number of terms in problems, ansl the
number of parameters, if RM$ smaller, then the cor-
responding method is better [49].

The columns of the tables-@ have the following
meaning: Table 1. Demand and price

[ : the approximate solution from th\e method of ex- Price ()
treme value of calculus or some softwagz.the solution Demand ¢
as the program is terminated? : the initial point. &, : (5009)

212123252628 3 (33|35
5|35(3|27|24|25| 2 |15/12(1.2

Copyright © 2009 SciRes JSSM
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Table 2. Data of the age x and the average height H of a
pinetree

X| 2|3]| 4 5 6 7 8 9 | 10 | 11
hi| 56| 8 110.4{12.8/15.3]17.8]/19.9|21.4|22.4| 23.2

Table 3. The data of appraisal to supervisor

line Y X1 X2 X3 X4 X5 X6

1 43 51 30 39 61 92 45
2 63 64 51 54 63 73 a7
3 71 70 68 69 76 86 48
4 61 63 45 47 54 84 35
5 81 78 56 66 71 83 47
6
7
8
9

43 55 49 44 54 49 34

58 67 42 56 66 68 35

71 75 50 55 70 66 41

72 82 72 67 71 83 31
10 67 61 45 47 62 80 41
11 64 53 53 58 58 67 34
12 67 60 a7 39 59 74 41
13 69 62 57 42 55 63 25
14 68 83 83 45 59 77 35
5 77 77 54 72 79 77 46
16 81 90 50 72 60 54 36
17 74 85 64 69 79 79 63
18 65 60 65 75 55 80 60
19 65 70 46 57 75 85 46
20 50 58 68 54 64 78 52
21 50 40 33 34 43 64 33
22 64 61 52 62 66 80 41
23 53 66 52 50 63 80 37
24 40 37 42 58 50 57 49
25 63 54 42 48 66 75 33
26 66 77 66 63 88 76 72
27 78 75 58 74 80 78 49
28 48 57 44 45 51 83 38
29 85 85 71 71 77 74 55
30 82 82 39 59 64 78 39

where Y is overall appraisal to supervis¥i,denotes to
processes employee’'s complaining, refer to do not
permit the privilegeXs is the opportunity about study, X
is promoted based on the work achievem&gtrefer to

too nitpick to the bad performance, axglis the speed of
promoting to the better work. The above data cao be
found at: http://www.ilr.cornell.edu/%7Ehadi/RABE3/
Data/P054. txt.

Assume that the relation between Y and Xi (i=1,.2,
6) is linear [49], similar to Problem 1 and 2, tberre-
sponding unconstrained optimization problem israfiby

min 1(8) =20 -AlXu Kk (24

where n = 30. The regression equation from onmnditt
way (see Chapter 3.8 in [49]) is given by
Y =10.787+0.613;-0.073,+0.320X;+0.081X,
+0.038X5—-0.217%¢

which means that g~ =(10.787,0.613,-0.073,0.320,
0.081,0.038,-0.217). For Problem 3, the initialnt®iare
chosen as follows:

B,=(10, 0.1, -0.05, 1, 0.1, 2, -0.1)3,=(10, -0.1,
0.05, -1, -0.1, -2, 0.1);

B3,=(10.1, -0.01, 0.5, -0.2, -0.01, -0.2, 4%, =(10.8,
-100, 20, -70, -50, —40, 60);

Bs= (9, 0.01, -0.5, 1, 0.01, 2, -0.01)3,= (11, 0.01,
-0.5, 1, 0.01, 2, -0.01).

These numerical results of Table 4-6 indicate frat
posed algorithm is more competitive than those lgbA
rithm 1 and 2, and the initial points do not infhoe the
results obviously about these three methods. Magov
the numerical results of NLSA, Algorithm 1, and Alg
rithm 2 are better than those of these methods f&m
treme value of calculus or some software. Then are ¢
conclude that the numerical method will outperfaihme
method of extreme value of calculus in some sessé,
some software for regression analysis could benhdurt
improved in the future. Overall, the direction defil by
(7) is notable.

Table 4. Test resultsfor Problem 1

£'=(6.5-1.6) B 3 RMSp () RMSp(s’) &
(1, -0.01) (6.438301-1.575289) 0.039736 0.040100 0.908%
Aldorithim 1 (-10,0.04) (6.438280;-1.575313) 0.039736 0.040100 0.908%
9 (-2, ~1.0) (6.438285,1.575314) 0.039736 0.040100 0.908%
(15,15) (6.438287-1.575316) 0.039736 0.040100 0.908%
(1, -0.01) (6.438301,-1.575289) 0.039736 0.040100 0.908%
Aldorithm 2 (-10,0.04) (6.438280;-1.575313) 0.039736 0.040100 0.908%
9 (-2,-1.0) (6.438285,-1.575314) 0.039736 0.040100 0.908%
(15,15) (6.438287,-1.575316) 0.039736 0.040100 0.908%
(1, -0.01) (6.438280;,-1.575312) 0.039736 0.040100 0.908%
NLSA ~10,0.04) (6.438292:-1.575317) 0.039736 0.040100 0.908%
(-2,-1.0) (6.438291,1.575316) 0.039736 0.040100 0.908%
(15,15) (6.438280,-1.575312) 0.039736 0.040100 0.908%
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Table 5. Test resultsfor Problem 2

£=(-1.33, 3.46, -0.11) B B RMSp 8) RMSp ) &
(-1.1,3.0,-0.5) (-1.296574, 3.4502470.107896) (0.171774 0.183900 6.5938%
Aldorithm 1 (-1.2,3.2,-0.3)  (-1.328742, 3.4608760.108650) 0.171712  0.183900 6.6273%
g (-0.003,7.0,-0.8) (-1.328504, 3.460798;0.108646) 0.171713  0.183900 6.6272%
(-0.001,7.0,-0.5)  (-1.321726, 3.4585580.108483) 0.171717  0.183900 6.6248%
(-1.1,3.0,-0.5) (-1.296574, 3.4502470.107896) 0.171774 0.183900 6.5938%
Algorithm 2 (-1.2,3.2,-0.3)  (-1.328742, 3.4608760.108650) 0.171712  0.183900 6.6273%
9 (-0.003,7.0,-0.8)  (-1.328504, 3.4607980.108646)  0.171713  0.183900 6.6272%
(-0.001,7.0,-0.5)  (-1.321726, 3.4585580.108483)  0.171717  0.183900  6.6248%
(-1.1,3.0,-0.5) (-1.331296, 3.4617260.108711) (.171712 0.183900 6.6274%
(-1.2,3.2,-0.3)  (-1.331232, 3.4616990.108709)  0.171712  0.183900 6.6274%
NLSA (-0.003,7.0,-0.8)  (-1.331140, 3.4616690.108707)  0.171712  0.183900 6.6274%
(-0.001,7.0,-0.5)  (-1.202673, 3.4221060.106011)  0.172583  0.183900  6.1539%

Table6. Test resultsfor Problem 2
F B p RMSp@) RMSpf) e
B

Algorithm 2,
1 B,

Algorithm 2,
2 B,

NLSA
i3
By

(10.011713, 0.502264, -0.002329, 0.361596, 0.06187152295, -0.353686) 85.261440 89.5842914.8255%
(10.124457, 0.502394, -0.002598, 0.361313, 0.061@461381, -0.353527) 85.235105 89.5842914.8549%
(10.294617, 0.502056, -0.002462, 0.360523, 0.06204@9161, -0.354270) 85.196215 89.5842914.8983%
(11.404702, 0.501820, -0.004943, 0.357265, 0.0609240326, -0.354036) 84.963796 89.5842915.1577%
(9.542516, 0.503279, -0.001805, 0.362715, 0.0612156318, -0.352638) 85.375457 89.5842914.6982%
(11.071364, 0.501290, -0.004085, 0.358312, 0.0621.883081, -0.354614) 85.029566 89.5842915.0843%

(10.011713, 0.502264, -0.002329, 0.361596, 0.06187152295, -0.353686) 85.261440 89.5842914.8255%
(10.166214, 0.502293, -0.002549, 0.360902, 0.0620051044, -0.354147) 85.225461 89.5842914.8656%
(10.639778, 0.502423, -0.003742, 0.360018, 0.0600.647253, -0.353327) 85.119812 89.5842914.9836%
(11.404239, 0.501827, -0.004935, 0.357227, 0.0609880322, -0.354037) 84.963893 89.5842915.1576%
(11.404239, 0.501827, -0.004935, 0.357227, 0.0602880322, -0.354037) 85.506424 89.5842914.5520%
(11.032035, 0.501940, -0.004251, 0.358407, 0.0610.143518, -0.353940) 85.037491 89.5842914.5520%

(10.326165, 0.502177, -0.002900, 0.360625, 0.06107A%49611, -0.353760) 85.189017 89.5842914.9063%
(10.042910, 0.501267, -0.001983, 0.359836, 0.0658.151241, -0.354909) 85.254692 89.5842914.8330%
(10.525637, 0.502094, -0.003292, 0.359987, 0.061B427873, -0.353823) 85.144572 89.5842914.9559%
(11.431772, 0.501805, -0.005001, 0.357160, 0.0602090080, -0.354047) 84.958622 89.5842915.1635%
(9.653770, 0.502364, -0.001653, 0.362701, 0.06204465364, -0.353611) 85.347711 89.5842914.7292%
(11.504977, 0.501791, -0.005132, 0.356938, 0.0608889459, -0.354060) 84.944709 89.5842915.1790%

5. Conclusions [2]

S. Chatterjee and M. Machler, “Robust regression: A

The major contribution of this paper is an extensid

the direction (7) to a nonmonotone line searchniple 3]
(GLL line search). The presented method possedmblo
convergence and the numerical results show that the
given algorithm is successful for the test probleiese [4]
test numerical results further show that the dioactle-
fined by (7) is notable. We hope the method cambe
further topic for the regression analysis. (5]

For further research, we should study other liregcde 6
methods for regression analysis. [6]

Moreover, more numerical experiments for large prac
tical problems about regression analysis shouldidree 7]
in the future.
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