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ABSTRACT 

In this paper, we propose a nonmonotone line search combining with the search direction (G. L. Yuan and Z. X.Wei, 
New Line Search Methods for Unconstrained Optimization, Journal of the Korean Statistical Society, 38(2009), pp. 
29-39.) for regression problems. The global convergence of the given method will be established under suitable condi-
tions. Numerical results show that the presented algorithm is more competitive than the normal methods. 
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1. Introduction 

It is well known that the regression analysis often arises 
in economies, finance, trade, law, meteorology, medicine, 
biology, chemistry, engineering, physics, education, his-
tory, sociology, psychology, and so on [1,2,3,4,5,6,7]. 
The classical regression model is defined by 

Y=h(X1, X2, …, Xp)+ε  

where Y is the response variable, Xi is predictor variable, 
i=1,2, …, p, p＞0 is an integer constant, and ε  is the 
error. The function h(X1, X2, …, Xp) describes the relation 
between Y and X=(X1, X2, …, Xp). If h is linear function, 
then we can get the following linear regression model 

Y= 0β + 1β X1+ 2β X2+…+ pβ Xp +ε         (1) 

which is the most simple regression model, where 0β , 

1β , …, pβ  are regression parameters. On the other 

hand, the regression model is called nonlinear regression. 
We all know that there are many nonlinear regression 
could be linearization [8,9,10,11,12,13]. Then many au-
thors are devoted to the linear model [14,15,16,17,18,19]. 
Now we will concentrate on the linear model to discuss 
the following problems. One of the most important work 
of the regress analysis is to estimate the parameters 

),,,( 10 pββββ L= . 

The least squares method is an important fitting 
method to determined the parameters ),,,( 10 pββββ L= , 

which is defined by 
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where hi is the data valuation of the ith response variable, 
Xi1, Xi2, …, Xip are p data valuation of the ith predictor 
variable, and m is the number of the data. If the dimen-
sionp and the number m is small, then we can obtain the 
parameters ),,,( 10 pββββ L=  from extreme value of 

calculus. From the definition (2), it is not difficult to see 
that this problem (2) is the same as the following uncon-
strained optimization problem 

)(min xf
nx ℜ∈

                    (3) 

In this paper, we will concentrate on this problem (3) 

where f : nℜ → ℜ  is continuously differentiable (lin-
ear or nonlinear). For regression problem (3), if the di-
mension n is large and the function f is complex, then the 
method of extreme value of calculus will fail. In order to 
solve this problem, numerical methods are often used, 
such as steepest descent method, Newton method, and 
Guass-Newton method [5,6,7]. Numerical method, i.e., 
the iterative method is to generates a sequence of points 
{ xk} which will terminate or converge to a point x* in some 
sense. The line search method is one of the most effective 
numerical method, which is defined by 

L,2,1,0,1 =+=+ kdxx kkkk α            (4) 

where kα  is determined by a line search is the ste-

plength, and kd  which determines different line search 

methods [20,21,22,23,24,25,26,27] is a descent direction 
of f at xk. 

Due to its simplicity and its very low memory re-
quirement, the conjugate gradient method is a powerful 
line search method for solving the large scale optimiza-
tion problems. This method can avoid, like steepest de-
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scent method, the computation and storage of some ma-
trices associated with the Hessian of objective functions. 
Conjugate gradient method has the form 
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where )( kk xfg ∇=  is the gradient of f(x) at xk, ℜ∈kβ  

is a scalar which determines the different conjugate gra-
dient method [28,29,30,31,32,33,34,35,36,37]. Through-
out this paper, we denote f(xk) by fk, )( kxf∇  by gk, and 

)( 1+∇ kxf  by gk+1, respectively. .  denotes the Euclid-

ian norm of vectors. However, the following sufficiently 
des cent condition which is very important to insure the 
global convergence of the optimization problems 

2
, 0 and some constantT

kg dk c gk for all k c≤ − ≥ ＞0 

(6) 

is difficult to be satisfied by nonlinear conjugate gradient 
method, and this condition may be crucial for conjugate 
gradient methods [38]. At present, the global conver-
gence of the PRP conjugate gradient method is still open 
when the weak Wolfe-Powell line search rule is used. 
Considering this case, Yuan and Wei [27] proposed a 
new direction defined by 
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where d0=-∇f0=-g0. If 01 ≠+k
T
k gd , it is easy to see that 

the search direction dk is the vector sum of the gradient 
-gk and the former search direction dk-1, which is similar 
to conjugate gradient method. Otherwise, the steepest 
descent method is used as restart condition. Computa-
tional features should be effective. It is easy to see that 
the sufficiently descent condition (6) is true without car-
rying out any line search technique by this way. The 
global convergence has been established. Moreover, nu-
merical results of the problems [39] and two regression 
analysis show that the given method is more competitive 
than the other similar methods [27]. 

Normally the steplength kα  is generated by the fol-

lowing weak Wolfe-Powell (WWP): Find a steplength 

kα  such that 

k
T
kkkkkk dgxfdxf ασα 1)()( +≤+          (8) 
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where 0＜ 1σ ＜ 2σ ＜1. The monotone line search tech-

nique is often used to get the stepsize kα , however 

monotonicity may cause a series of very small steps if the 
contours of objective function are a family of curves with 
large curvature [40]. More recently, the nonmonotonic 
line search for solving unconstrained optimization is 
proposed by Grippo et al. in [40,41,42] and further stud-

ied by [43,44] etc. Grippo, Lamparillo, and Lucidi [40] 
proposed the following nonmonotone line search that 
they call it GLL line search. GLL line search: Select ste-
plength kα  satisfying 

1+kf ≤ k
T
kkjk
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where )1,(−∞∈p , k = 0, 1, 2, …, )
2

1
,0(),1,0( 21 ∈∈ εε , 

n(k) = min{H,k}, H≥0 is an integer constant. Combinng 
this line search and the normal BFGS formula, Han and 
Liu [45] established the global convergence of the con-
vex objective function. Numerical results show that this 
method is more competitive to the normal BFGS method 
with WWP line search. Yuan and Wei [46] proved the su-
perlinear convergence of the new nonmonotone BFGS al-
gorithm. 

Motivated by the above observations, we propose a 
nonmonotone method on the basic of Yuan and Wei [27] 
and Grippo, Lamparillo, and Lucidi [40]. The major con-
tribution of this paper is an extension of the new direction 
in [27] to the nonmonotone line search scheme, and to 
concentrate on the regression analysis problems. Under 
suitable conditions, we establish the global convergence 
of the method. The numerical experiments of the pro-
posed method on a set of problems indicate that it is in-
teresting. 

This paper is organized as follows. In the next section, 
the proposed algorithm is given. Under some reasonable 
conditions, the global convergence of the given method is 
established in Section 3. Numerical results and a conclusion 
are presented in Section 4 and in Section 5, respectively. 

2. Algorithms 

The proposed algorithm is given as follows. 

Nonmonotone line search Algorithm (NLSA). 

Step 0: Choose an initial point x0∈ nℜ , 0＜ ε ＜1, 0＜

1ε ＜ 2ε ＜1, )1,(−∞∈p . an integer constant H>0. Set 
d0= −∇f0=−g0, k :=0; 

Step 1: If 2|||| kg ≤ ε , then stop; Otherwise go to step 

2; 
Step 2: Compute steplength kα  by Wolfe line search 

(10) and (11), let kkkk dxx α+=+1 . 

Step 3: Calculate the search direction dk+1 by (7). 
Step 4: Set k: =k+1 and go to step 1. 
Yuan and Wei [27] also presented two algorithms; here 

we stated them as follows. First another line search is 
given [47]: find a steplength kα  satisfying 

k
T
kkkkkk dgCdxf ασα 1)( +≤+         (12) 

k
T
kk

T
k dgdg 21 σ≥+                (13) 
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where 0＜ 1σ ＜ 2σ ＜1, 
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Algorithm 1 [27]. 
Step 0: Choose an initial point x0∈ nℜ , 0＜ε ＜1, 0＜

1σ ＜ 2σ ＜1. Set d0= −∇f0=−g0, k :=0; 

Step 1: If ε≤2|||| kg , then stop; Otherwise go to step 2; 
Step 2: Compute steplength kα  by Wolfe line search 

(8) and (9), let kkkk dxx α+=+1 . 

Step 3: Calculate the search direction dk+1 by (7). 
Step 4: Set k :=k+1 and go to step 1. 

Algorithm 2 [27]. 
Step 0: Choose an initial point x0∈ nℜ , 0＜ ε <1, 0<µ<1, 

0＜ 1σ ＜ 2σ ＜1. Set 1, 000 == QfC , d0= −∇f0=−g0, k:= 0; 
Step 1: If ε≤2|||| kg , then stop; Otherwise go to step 2; 

Step 2: Compute steplength kα  by the nonmonotone 

Wolfe line search (12) and (13), let kkkk dxx α+=+1  

Step 3: Calculate the search direction dk+1 by (7). 
Step 4: Let 
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Step 5: Set k: =k+1 and go to step 1. 
We will concentrate on the convergent results of 

NLSA in the following section. 

3. Convergence Analysis 

In order to establish the convergence of NLSA, the fol-
lowing assumptions are often needed [27,29,31,34,35,48]. 

Assumption 3.1: 1) f is bounded below on the bounded 

level set φ = {x ∈ nℜ : f (x)≤f (x0)}; 2) In φ , f is dif-

ferentiable and its gradient is Lipschitz continuous, 
namely, there exists a constants L>0 such that ||g(x)− 
g(y)||≤L||x–y||, for all x, y∈ φ . 

In the following, we assume that 0≠kg  for all k, for 

otherwise a stationary point has been found. The following 
lemma shows that the search direction dk satisfies the suffi-
ciently descent condition without any line search technique. 

Lemma 3.1 (Lemma 3.1 in [27]) Consider (7). Then 
we have (6). 

Based on Lemma 3.1 and Assumption 3.1, let us prove 
the global convergence theorem of NLSA. 

Theorem 3.1 Let { kα , dk, xk+1, gk+1} be generated by 

the NLSA, and Assumption 3.1 holds. Then we have 
2

0 ||||∑
∞

=











k k

k
T
k

d

dg
＜+ ∞               (15) 

and thus 

0
||||

lim
2

=










∞→
k

k
T
k

k d

dg
              (16) 

Proof. Denote that 
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i.e., the sequence {f(xh(k)} monotonically decreases. Since 
f (xh(0))=f (x0), we deduce that 

0)0()1( )(...)()( fxfxfxf hkhk =≤≤≤ −  

then xk φ∈ . By Assumption 3.1: 1), we know that there 

exists a positive constant M such that 

Mx ≤||||  
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By (10) and Lemma 3.1, we obtain 
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By Lemma 2.5 in [45], we conclude that from (19) 
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Therefore, (15) holds. (15) implies (16). The proof is 
complete. 
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Remark. If there exists a constant c0>0 such that 
|||||||| 0 kk gcd ≤  for all sufficiently large k. By (6) and 

(16), it is easy to obtain ||gk||→0 as k→∞. 

4. Numerical Results 

In this section, we report some numerical results with 
NLST, Algorithm 1, and Algorithm 2. All codes were 
written in MATLAB and run on PC with 2.60GHz CPU 
processor and 256MB memory and Windows XP opera-
tion system. The parameters and the rules are the same to 
those of [27], we state it as follows: 

54
21 10,10,9.0,1.0 −− ==== εµσσ . Since the line search 

cannot always ensure the descent condition k
T
k gd ＜0, 

uphill search direction may occur in the numerical ex-
periments. In this case, the line search rule maybe fails. 
In order to avoid this case, the stepsize _k will be ac-
cepted if the searching number is more than twenty five 
in the line search. We will stop the program if the condi-
tion 51||)(|| −∇ ef β  is satisfied. We also stop the pro-

gram if the iteration number is more than one thousand, 
and the corresponding method is considered to be failed. 
In this experiment, the direction is defined by: 

2
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The parameters of the presented algorithm is chosen as: 
,1.0,01.0 21 == εε  p=5, H=8. 

In this section, we will test three practical problems to 
show the efficiency of the proposed algorithm, where 
Problem 1 and 2 can be seen from [27]. In Table 1 and 2, 
the initial points are the same to those of paper [27] and 
the results of Algorithm 1 and Algorithm 2 can also be 
seen from [27]. In order to show the efficiency of these 
algorithms, the residuals of sum of squares is defined by 
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where n is the number of terms in problems, and p is the 
number of parameters, if RMSp is smaller, then the cor-
responding method is better [49]. 

The columns of the tables 4-6 have the following 
meaning: 

*β : the approximate solution from the method of ex-

treme value of calculus or some software. : the solution 

as the program is terminated. β
(

: the initial point. *ε : 

the relative error between RMSp ( *β ) and RMSp ( ) 

defined by 
)(

)()(
*

*

* β
ββ

ε
p

pp
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Problem 1. In the following table, there is data of some 
kind of commodity between year demand and price: 

The statistical results indicate that the demand will 
possibly change though the price is inconvenient, and the 
demand will be possible invariably though the price 
changes. Overall, the demand will decrease with the in-
crease of the price. Our objective is to find out the ap-
proximate function between the demand and the price, 
namely, we need to find the regression equation of d to the p. 

It is not difficult to see that the price p and the demand 
d are linear relations. Denote the regression function by 

p10 ββ += , where 0β  and 1β  are the regression pa-

rameters. 

Our work is to get 0β  and 1β . By least squares 

method, we need to solve the following problem 
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and obtain 0β  and 1β , where n=10. Then the corre-

sponding unconstrained optimization problem is defined by 
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Problem 2. In the following table, there is data of the 
age x and the average height H of a pine tree: 

Similar to problem 1, it is easy to see that the age x and 
the average height H are parabola relations. Denote the 

regression function by 22110
ˆ xxh βββ ++= , where 0β , 

1β  and 2β  are the regression parameters. Using least 

squares method, we need to solve the following problem 

∑
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n

i
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22
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and obtain 0β , 1β  and 2β , where n=10. Then the cor-

responding unconstrained optimization problem is de-
fined by 
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It is well known that the above problems (22) and (24) 
can be solved by extreme value of calculus. Here we will 
solve these two problems by our methods and other two 
methods, respectively. 

Problem 3. Supervisor Performance (Chapter 3 in [49]). 
 

Table 1. Demand and price 

Price pi($) 
Demand di 

(500g) 

1 
5 

2 
3.5 

2 
3 

2.3 
2.7 

2.5 
2.4 

2.6 
2.5 

2.8 
2 

3 
1.5 

3.3 
1.2 

3.5 
1.2 
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Table 2. Data of the age x and the average height H of a 
pine tree 

xi 
hi 

2 
5.6 

3 
8 

4 
10.4 

5 
12.8 

6 
15.3 

7 
17.8 

8 
19.9 

9 
21.4 

10 
22.4 

11 
23.2 

 
Table 3. The data of appraisal to supervisor 

line Y X1 X2 X3 X4 X5 X6 

1 43 51 30 39 61 92 45 
2 63 64 51 54 63 73 47 
3 71 70 68 69 76 86 48 
4 61 63 45 47 54 84 35 
5 81 78 56 66 71 83 47 
6 43 55 49 44 54 49 34 
7 58 67 42 56 66 68 35 
8 71 75 50 55 70 66 41 
9 72 82 72 67 71 83 31 
10 67 61 45 47 62 80 41 
11 64 53 53 58 58 67 34 
12 67 60 47 39 59 74 41 
13 69 62 57 42 55 63 25 
14 68 83 83 45 59 77 35 
15 77 77 54 72 79 77 46 
16 81 90 50 72 60 54 36 
17 74 85 64 69 79 79 63 
18 65 60 65 75 55 80 60 
19 65 70 46 57 75 85 46 
20 50 58 68 54 64 78 52 
21 50 40 33 34 43 64 33 
22 64 61 52 62 66 80 41 
23 53 66 52 50 63 80 37 
24 40 37 42 58 50 57 49 
25 63 54 42 48 66 75 33 
26 66 77 66 63 88 76 72 
27 78 75 58 74 80 78 49 
28 48 57 44 45 51 83 38 
29 85 85 71 71 77 74 55 
30 82 82 39 59 64 78 39 

 
where Y is overall appraisal to supervisor, X1 denotes to 
processes employee’s complaining, X2 refer to do not 
permit the privilege, X3 is the opportunity about study, X4 
is promoted based on the work achievement, X5 refer to 

too nitpick to the bad performance, and X6 is the speed of 
promoting to the better work. The above data can also be 
found at: http://www.ilr.cornell.edu/%7Ehadi/RABE3/ 
Data/P054. txt. 

Assume that the relation between Y and Xi (i=1, 2, …, 
6) is linear [49], similar to Problem 1 and 2, the corre-
sponding unconstrained optimization problem is defined by 

∑
=∈
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n
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R
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where n = 30. The regression equation from one fitting 
way (see Chapter 3.8 in [49]) is given by 

Ŷ =10.787+0.613X1−0.073X2+0.320X3+0.081X4 

+0.038 X5−0.217X6 

which means that *β =(10.787,0.613,−0.073,0.320, 

0.081,0.038,−0.217). For Problem 3, the initial points are 

chosen as follows: 

1β
(

=(10, 0.1, −0.05, 1, 0.1, 2, −0.1); 2β
(

=(10, −0.1, 

0.05, −1, −0.1, −2, 0.1); 

3β
(

=(10.1, −0.01, 0.5, −0.2, −0.01, −0.2, 4); 4β
(

=(10.8, 

−100, 20, −70, −50, −40, 60); 

5β
(

= (9, 0.01, −0.5, 1, 0.01, 2, −0.01); 6β
(

= (11, 0.01, 

−0.5, 1, 0.01, 2, −0.01). 

These numerical results of Table 4-6 indicate that pro-
posed algorithm is more competitive than those of Algo-
rithm 1 and 2, and the initial points do not influence the 
results obviously about these three methods. Moreover, 
the numerical results of NLSA, Algorithm 1, and Algo-
rithm 2 are better than those of these methods from ex-
treme value of calculus or some software. Then we can 
conclude that the numerical method will outperform the 
method of extreme value of calculus in some sense, and 
some software for regression analysis could be further 
improved in the future. Overall, the direction defined by 
(7) is notable. 

 
Table 4. Test results for Problem 1 

β*=(6.5-1.6) β
(

  RMSp ( ) RMSp(β*) ε* 

Algorithm 1 

(1, -0.01) 
(-10,0.04) 
(-2, -1.0) 
(15,15) 

(6.438301, -1.575289) 
(6.438280, -1.575313) 
(6.438285, -1.575314) 
(6.438287, -1.575316) 

0.039736 
0.039736 
0.039736 
0.039736 

0.040100 
0.040100 
0.040100 
0.040100 

0.908% 
0.908% 
0.908% 
0.908% 

Algorithm 2 

(1, -0.01) 
(-10,0.04) 
(-2,-1.0) 
(15,15) 

(6.438301, -1.575289) 
(6.438280, -1.575313) 
(6.438285, -1.575314) 
(6.438287, -1.575316) 

0.039736 
0.039736 
0.039736 
0.039736 

0.040100 
0.040100 
0.040100 
0.040100 

0.908% 
0.908% 
0.908% 
0.908% 

NLSA 

(1, -0.01) 
-10,0.04) 
(-2,-1.0) 
(15,15) 

(6.438280, -1.575312) 
(6.438292, -1.575317) 
(6.438291, -1.575316) 
(6.438280, -1.575312) 

0.039736 
0.039736 
0.039736 
0.039736 

0.040100 
0.040100 
0.040100 
0.040100 

0.908% 
0.908% 
0.908% 
0.908% 
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Table 5. Test results for Problem 2 

β*=(−1.33, 3.46, −0.11) β β RMSp (β) RMSp (β*) ε* 

Algorithm 1 

(-1.1,3.0, -0.5) 
(-1.2,3.2, -0.3) 

(-0.003,7.0, -0.8) 
(-0.001,7.0, -0.5) 

(-1.296574, 3.450247, -0.107896) 
(-1.328742, 3.460876, -0.108650) 
(-1.328504, 3.460798, -0.108646) 
(-1.321726, 3.458558, -0.108483) 

0.171774 
0.171712 
0.171713 
0.171717 

0.183900 
0.183900 
0.183900 
0.183900 

6.5938% 
6.6273% 
6.6272% 
6.6248% 

Algorithm 2 

(-1.1,3.0, -0.5) 
(-1.2,3.2, -0.3) 

(-0.003,7.0, -0.8) 
(-0.001,7.0, -0.5) 

(-1.296574, 3.450247, -0.107896) 
(-1.328742, 3.460876, -0.108650) 
(-1.328504, 3.460798, -0.108646) 
(-1.321726, 3.458558, -0.108483) 

0.171774 
0.171712 
0.171713 
0.171717 

0.183900 
0.183900 
0.183900 
0.183900 

6.5938% 
6.6273% 
6.6272% 
6.6248% 

NLSA 

(-1.1,3.0, -0.5) 
(-1.2,3.2, -0.3) 

(-0.003,7.0, -0.8) 
(-0.001,7.0, -0.5) 

(-1.331296, 3.461720, -0.108711) 
(-1.331232, 3.461699, -0.108709) 
(-1.331140, 3.461669, -0.108707) 
(-1.202673, 3.422106, -0.106011) 

0.171712 
0.171712 
0.171712 
0.172583 

0.183900 
0.183900 
0.183900 
0.183900 

6.6274% 
6.6274% 
6.6274% 
6.1539% 

 
Table 6. Test results for Problem 2 

β* β β RMSp(β) RMSp(β*) ε* 

Algorithm 
1 

1β
(  

2β
(  

3β
(  

4β
(  

5β
(  

6β
(  

(10.011713, 0.502264, -0.002329, 0.361596, 0.061871, 0.152295, -0.353686) 
(10.124457, 0.502394, -0.002598, 0.361313, 0.061446, 0.151381, -0.353527) 
(10.294617, 0.502056, -0.002462, 0.360523, 0.062746, 0.149161, -0.354270) 
(11.404702, 0.501820, -0.004943, 0.357265, 0.060921, 0.140326, -0.354036) 
(9.542516, 0.503279, -0.001805, 0.362715, 0.061217, 0.156318, -0.352638) 
(11.071364, 0.501290, -0.004085, 0.358312, 0.062185, 0.143081, -0.354614) 

85.261440 
85.235105 
85.196215 
84.963796 
85.375457 
85.029566 

89.584291 
89.584291 
89.584291 
89.584291 
89.584291 
89.584291 

4.8255% 
4.8549% 
4.8983% 
5.1577% 
4.6982% 
5.0843% 

Algorithm 
2 

1β
(  

2β
(  

3β
(  

4β
(  

5β
(  

6β
(  

(10.011713, 0.502264, -0.002329, 0.361596, 0.061871, 0.152295, -0.353686) 
(10.166214, 0.502293, -0.002549, 0.360902, 0.062002, 0.151044, -0.354147) 
(10.639778, 0.502423, -0.003742, 0.360018, 0.060167, 0.147253, -0.353327) 
(11.404239, 0.501827, -0.004935, 0.357227, 0.060988, 0.140322, -0.354037) 
(11.404239, 0.501827, -0.004935, 0.357227, 0.060988, 0.140322, -0.354037) 
(11.032035, 0.501940, -0.004251, 0.358407, 0.061171, 0.143518, -0.353940) 

85.261440 
85.225461 
85.119812 
84.963893 
85.506424 
85.037491 

89.584291 
89.584291 
89.584291 
89.584291 
89.584291 
89.584291 

4.8255% 
4.8656% 
4.9836% 
5.1576% 
4.5520% 
4.5520% 

NLSA 

1β
(  

2β
(  

3β
(  

4β
(  

5β
(  

6β
(  

(10.326165, 0.502177, -0.002900, 0.360625, 0.061701, 0.149611, -0.353760) 
(10.042910, 0.501267, -0.001983, 0.359836, 0.065677, 0.151241, -0.354909) 
(10.525637, 0.502094, -0.003292, 0.359987, 0.061542, 0.147873, -0.353823) 
(11.431772, 0.501805, -0.005001, 0.357160, 0.060909, 0.140080, -0.354047) 
(9.653770, 0.502364, -0.001653, 0.362701, 0.062144, 0.155364, -0.353611) 
(11.504977, 0.501791, -0.005132, 0.356938, 0.060866, 0.139459, -0.354060) 

85.189017 
85.254692 
85.144572 
84.958622 
85.347711 
84.944709 

89.584291 
89.584291 
89.584291 
89.584291 
89.584291 
89.584291 

4.9063% 
4.8330% 
4.9559% 
5.1635% 
4.7292% 
5.1790% 

 
5. Conclusions 

The major contribution of this paper is an extension of 
the direction (7) to a nonmonotone line search technique 
(GLL line search). The presented method possess global 
convergence and the numerical results show that the 
given algorithm is successful for the test problems. These 
test numerical results further show that the direction de-
fined by (7) is notable. We hope the method can be a 
further topic for the regression analysis. 

For further research, we should study other line search 
methods for regression analysis. 

Moreover, more numerical experiments for large prac-
tical problems about regression analysis should be done 
in the future. 
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