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ABSTRACT

This document presents an extension of the multiple factorial analysis to symbolic data and especially to space data.
The analysis makes use of the characteristic coding method to obtain active individuals and the reconstitutive coding
method for additional individuals in order to conserve the variability of assertion objects. Traditional analysis methods
of the main components are applied to coded objects. Certain interpretation aids are presented after the coding process.

This method was applied to poverty data.
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1. Introduction

Although the traditional analysis of data is based on a
complete theory, it poses restrictive conditions for the
resolution of problems: it requires that variables be
single-valued (the value of a variable for an object is a
unique and specific).

Recent evolutions in the information system have
made it possible to find increasing and more complex
data which need a more in-depth formalization than the
one indicated in the usual rectangular table. The later
does not take into account the possible variability of des-
cription as well as the uncertainty concerning certain
variables or certain objects. A new formalism called
symbolic objects has been developed to represent com-
plex data like concepts, skills (see [1,2]). These objects
concern complex data and provide new skills at the exit
in the form of symbolic objects.

The techniques of factorial analysis (see [3,4]) which
are data reduction and representation methods, are well
known and well used. Certain stakeholders have ex-
tended these methods to symbolic objects by using the
coding and decoding techniques (read [5,6]). The issue of
multiple factorial analysis (MFA) is of particular interest
to us (see [7,8]). A priori, this concerns the case where
there is a group structure on variables. Its problem is en-
hanced by the characterization of groups and the search
for a typology of groups of variables. To our knowledge,
this method is not yet applied to symbolic objects.

In this article, we extend the MFA to a symbolic data
base whose variables are structured into groups. It is a
generalization of the MFA basic principle on the one
hand, and the principle components analysis (PCA) tech-
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niques on the other hand (see [9]). We conclude this
document with an application of the method presented to
poverty data.

2. Symbolic Data Base
2.1. General Context

A symbolic data base (SDB) is considered as represented
in the Table 1 and made up of triplet B={Y,C,A}
with C={C,,C,,---,C,} representing all the | objects,

2..

Y ={y.Y,,,Y,} and Az{a',a ,
ing respectively the set of the J variables and the asser-
tion objects used to describe | objects. We suppose that
the SDB is associated with a measured space (Q, F, u) ,
an o-algebra C onC, 0={0,,0,,-,0,} where

O; is the space of observation of the variable

Y;>»i=1,2,---,3 . This space includes an tribe O;. Let

-a' } represent-

(XC, j), s be a set of measurable functions defined
12 j=12,-,

on Q, deriving their value from the measurable spaces

(O i ,OJ-) and used to describe all the ¢, objects. For i
J

from 1 to |, a' a' 2/\[yj :Xai J} is a Boolean

j=1
assertion so that from j from 1 to J, there is a mea-
surable part Vv, | € O; so that we can have

Xai,j =X, and Vai,j = Xai,j (Q). In practice, it is

written

a,

AM



B. T. AHANDA

Table 1. Symbolic data base.
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Table 2. Symbolic data base of boolean assertions.

The observation space is therefore the product space

J
0, = HO ;- This space includes an product tribe

j=1

J

E; :HOJ-. To proceed, it is supposed that the des-
j=1

criptors are quantitative, i.e that OJ- is a part of R.

Thus, it is generalized that X, (Q)=V, =[x.. x_]
a,) a,)

ij > Nij

where xij,x_ij represent respectively the minimum and
maximum values per a' object for the y; variable.
Consequently, we shall treat the Boolean assertions

whose SDB is indicated in the following Table 2.

2.2. Group Structure

We shall assume that the J variables are divided into K
groups with J, as the number of k group variables; p,
the weight associated with the assertion object a' and
m, the weight of the Yy, variable. We shall designate
I,K,J, as the set and its cardinal. Let us consider
B, ={Y,.C,A} as the symbolic data base derived from
B but reduced from the k group variables denoted
Y, . For i from 1 to I, the a' object for the k group is
represented by the assertion a; = j/} [y i :Va‘k j] For-
€Jyg >

mula (1) may be re-written as follows, while taking into
consideration the existence of the following groups:

i:/\[.: _J/\.../\ =V,
S RN (A T TR AT

jedk yHKZKJr Ve x i

r<K

2.3. Objective

Like in the traditional case, the MFA based on symbolic
data corresponds to the following three majors objec-
tives:

1) Drawing up a typology of concepts, especially
similar concepts from the point of view of all the
variables after balancing the contribution of each group.

2) Comparing the typologies of individuals defined by
groups of variables.

3) Exposing a typology of groups of variables and
interpreting the proximities between them.
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However, taking into consideration the variability of
objects adds an interesting element to this problem be-
cause coherence warrants us to provide exit elements in
keeping with the variability.

3. Analysis and Interpretation

We shall present algorithm for a symbolic digital MFA.
This approach essentially repeats the one used by the
traditional MFA as well as that of the PCA on symbolic
objects. The following stages shall be used:

1) Data coding;

2) PCA of groups;

3) Weighting of the data table;

4) PCA symbolic digital of all data;

5) Traditional MFA representation and interpretation;

6) Superimposed representation of symbolic objects
and average cloud;

7) Representation of assertions of variables and sym-
bolic factors of groups

3.1. Data Coding
Either A all the assertions in the SDB, the m coding
order is any C application to A with values in (Rj )m .

In this work, we shall therefore use the centre and sum-
mit methods which is referred to as characteristic coding
and reconstitutive coding respectively.

An assertion object is graphically represented by a
hypercube. The characteristic coding represents each ob-
ject by a point which is the centre of gravity of the
assertion object. The reconstitutive coding represents an
object by 2’ points which constitute the summit of the
hypercube. Characteristic coding gives us the active ele-
ments of the analysis while reconstitutive coding gives
the additional elements of the analysis that enable the
reconstitution of the exit symbolic objects.

3.2. Weighting of Variables
Let X be the data table obtained after data coding. A J
columns and | x[1+23} lines table is obtained where

| individuals are active and the others in addition. For
each group, a principle components analysis (PCA) on
the X, ,k=1---K tables where X, is the X table
reduced to the k group value. A series of
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ﬂ,,k,izl,-u,k,kzl,---,K. eigenvalues is obtained for
each analysis. It is assumed that the real values in each
group are classified in descending order. Each Yy, vari-

m
k

able is weighted by if the y, variable is derived

from the k group. The weighted table is evaluated X (®)

3.3. Data Processing

Weighting conserves the internal structures of each group
but changes the structure of the overall cloud (see [10]).
In this case, it is referred to as the average cloud. As in
the traditional case, we have represent equlvalent Obj ects
by respectlve lines of the same K bases B P) rank,
with B” being the weighted B, base.

B =0 B |o|=X"=|0[Xx{ |0

The N;( K clouds may be simultaneously represented

in the R’ space of variables by breaking down R’
into direct sum spaces isomorphic to R*  spaces.

The average cloud is obtained by a homothetic trans-
formation of the B'” 1/K relation weighted data base.
It represents average individuals and average concepts in
R* . The average cloud is obtained by a homothetic trans-
formation of the B'” 1/ K relation weighted data base. It
represents average individuals and average concepts in
R* . Let us note B* the SDB of the average cloud where
B, constitutes its restriction in the k group.

Proposition 1. The symbolic digital PCA of the B’
base leads to the same factors as the B base
characteristic coding MFA.

Proof. It is immediate. The B" base is constructed to
this effect. o

3.4. Canonic Variable

The re-writing of table X” in the principle components
base (F,---,F;) leads to a representation of objects by
a new SDB B={F,0,A.} whose assertion is written

a = /\I[F =W, J Assertions of the variables asso-
j

|
ciated with concepts are written F! :_/\I[Fj =W, J}.
i= Fs

These factors are called canonic variables.

3.5. Superimposed Representation of Individuals
and Concepts

3.5.1. Equivalent Assertions

A B' based a' assertion is represented in each B(”
sub-base by a,'( assertions which are called equivalent
assertions associated with a'. These are the different re-
presentatives in the B(") sub-bases of the same asser-
tion.

Copyright © 2012 SciRes.

3.5.2. Superimposed Representation of Individuals
Here, individuals are described by the characteristic cod-
ing. An individual representing an object is represented
by the expectation of unpredictable random. variable
associated with the skill it represents. This representation
no doubt has some shortcomings, but it gives us the first
tendencies which are sometimes enough. In concrete
terms, each group is projected with additional elements
on the PCA of table X”.

Proposition 2. Each individual (average individual) of
table X* is the centre of gravity of individuals observed
from the point of view of all groups.

Proof. This is the property of traditional MFA. o

This proposition explains the notion of average cloud.
The study of the attributes of variability of description in-
dicated below will comfort us in this notion.

3.5.3. Superimposed Representation of Concepts
Symbolic digital PCA results will be used to obtain a
superimposed representation of objects while taking into
consideration variability. It based to the following
proposition:

J

Proposition 3. Either a' = _/\l[yj =V, J} an assertion
]: 5

K
of BDS B. We note b’ :k/—\l[uk =V, k} the assertion

representing the C; objects in the space of the PCA
principle components of this SDB. Let G = (X 1G TN Xf )
the centre of gravity of the characteristic coding and U,
the kth component of the jth factorial axis. Thus we have:

min(Wbi‘k ) = _max(Vai,j )— X jGJukj

<0 =
+ > mln( " ) ]ukj
max(Wb,’k ) = Z

],Ukj<0—

max(V, ) :|ukj
) a',j

J,ukj<0
Proof. We note (X-G)‘
j=1

Joug <0 =
min (Va, J ) ] Uy
>
ij

, the coordinate of G'
centre of gravity of a' assertion, and (YS) s the
=l

coordinate of the image of G' in the new basis. Let
Uy be the jth component of the kth factorial axis (de-

noted U, ), we note X, = (Xi; ) . the coodinate of an
j=Loe

elementary individual of a' assertion for a point R',
and y, :(yij)-,, his coordinate in the new basis.
We have: -

[

Yii :G_R.'uk :Z(Xi; _Xi?)ujk

j=1
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then

max (Wb‘,k ) = max { y;i/xi; eVai’j }

T Py

as Y, dependof X, we have

ij°

max(Wbi’k): > [(mm{xu,xIJ eV, })—Xje}ukj

j,ukj<0
+ > [(max{xu,xIJ ev, })—Xf}ukj
j,ukj>0
Therefore
max(Wbi’k): 2 [min(Vaiqj)—X?Jukj
JiUj <0
+ [max( -)_XjG:|ukj'
Jukj>0

With the similar methode, we have

min(Wbi’k ) = [max(vai,j )— X }ukj

j‘ukj <0

+ [mm( _)—XJ-G}UM.
IB U >0

o
This lead that the B, representing group k will be
projected successively with additional elements on the
B* base symbolic digital PCA. The superimposed
representation on the same factorial plan enables us to
generally observe the position of an object, and the point
of view of each group by using variability. We then have

the following result :
Proposition 4. Either a' an assertion object repre-

sented in B* by (ai) . Let us note a, the a' asser-

tion observed from the k group point of view. In the
B* base, the a' assertion is written

1
Ql{yj J\/Zvafl:|

1
/\ Jgk[yj+r§k1r = J\/ZVaL.i+r§kJr‘|
A A {

Yieyj =

1y
r<K ‘]"/IK aIK’j+r§K I

=V J we note
a,j

jedk
. J
Either a'= _/\[yj
i1

a, = /\[F =W, } the assertion representing the c

object from the k group point of view in the space of the
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PCA principle components of this SDB. Either
G= (XIG,---, Xf) the centre of gravity of X", and F;

the kth component of the jth factorial axis. Thus we have:

min(WaiF’k):_ 3 [max(JVa’?,j)—XjG}ij
jedy,Ryj<0
£ 3 [min(av )-x5 R,
jedi, R >0 &l
max(WaiF’k):' D [min(JV‘;,j)—Xf]ij
jedy,Ryj<0
£ 3 [max(v; )= x5 R,

jedy, RG>0

Proof. This is the consequence of the notations of the
previous proposition. 0

The representation of superimposed objects in the
canonic base (that of factors) therefore respects the prin-
ciple of centres of gravity. The hypercube representing
an object is thus the centre of gravity of the hypercubes
representing the same individual from the point of view
of different groups. The MFA symbolic digital algorithm
helps to preserve this essential property.

3.6. Representation of Variables and Assertions
of Variables

The symbolic digital MFA enables us to define many
representatives that contribute to the illustration of fac-
tors in the general analysis as well as in the different
groups. The determination of the main factors of groups
and the general analysis lead to many representations of
variables and assertions of variables. The superimposed
representation of these factors (as assertions of variables)
on canonic variables then helps to find and interpret com-
mon factors and specific factors.

3.6.1. Representation of VVariables and Assertions of
Variables

The conduct of the MFA symbolic digital pre-supposes
K +1 factorial analysis (the K groups and the average
cloud). Two representations can be made for each of
these analyses: a representation of variables (dual analy-
sis of centres of gravity) and an analysis of assertions of
variables taking into account variability. These represen-
tations clearly bring out the main variability factors of
groups and the factors of general analysis.

3.6.2. Superimposed Representation of Factors (as
Assertions of Variables) on Canonic Variables
This representation is the result of a MFA traditional
representation which consists in highlighting the main
variability factors of groups in the form of additional
variables over canonic variables. But in symbolic data
analysis, these variability factors are also expressed as
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assertions of variables and the representation of these
assertions of variables over the canonic variables calls
for an original observation. The position and collection
of assertions of variables give us precious indications on
their importance and the link between the different
groups.

3.6.3. Link between Groups: Representation Quality
of Groups
This is a traditional indicator in MFA. It is a represen-
tation of groups on canonic factors. The coordinates of
an axis group is the combined inertia of the group’s vari-
ables on the corresponding MFA axis of table X*. For
the two groups K, .and K, we have
E(KX,Ky)=<WX(p)D,Wy(p)D> where D is the diagonal
I x| matrix of the weight of individuals and Wj(p) is
the matrix of scalar products between the individuals of
group | forthe X jp weighted matrix.

A symbolic representation may be proposed for it.
Each assertion of variables can be coded into many
variables whose projection over canonic variables results
in a minimum value and a maximum value. The variabi-
lity associated to a group will therefore be displayed by
two values: the sum of the minimum inertia of the
group’s variables and the sum of its maximum inertia.

. . . 2
The representation of groups is done in the R'~ space.

3.7. The Notion of Common Factor and Specific
Factor

MFA helps to portray the characteristics of groups
compared to the canonic variables (also referred to as
factors). A common (or specific) factor to the MFA sym-
bolic digital will be the common factor associated to the
traditional MFA of centres of gravity.

4. Poverty Data
4.1. Presentation

The data is drawn from the first Cameroonian survey in
households (ECAM I) conducted in 1996 by the National
Institute of Statistics. The sample is made up of 1800
households with a total of 10230 individuals. The analy-
sis is done on 13 continuous variables out of which 10
are active and 3 illustrative (see Table 3).

The average poverty line is used to establish the diffe-
rence between poor and non poor individuals. We shall
consider 10 classes of individuals with 5 poor classes or-
ganized in descending order from very poor to less poor
individuals and 5 classes of non poor individuals or-
ganized in ascending order from less rich to very rich in-
dividuals. These classes constitute the concepts that we
shall analyze. The groups of variables are regions. For
presentation purposes, they shall be presented on a line
and not in columns. An overview of the SDB for the
Adamawa Region for three variables shows the following
Table 4.

4.2. Analysis and Interpretation

After the algorithm application, the following results are
obtained:

4.2.1. Inertia of the First Six Eigenvalues
Please see Table 5.

4.2.2. Relationship between General Variables and
Groups

The F, variable is the variable which extracts the most

important inertia from all groups. The other variables con-

vey specific information to certain regions (see Table 6).

Table 3. Variables of ECAM1.

N Title Description Quality
1 DEPEAD Expenditure per adult equivalent Additional
2 DEPTET Expenditure per head Additional
3 DEPTOT Total expenditure Additional
4 DEPALI Food expenditure Active
5 DEPHAD Clothing expenditure Active
6 DEPMAI Household expenditure Active
7 DEPSAN Health expenditure Active
8 DEPTRA Transportation expenditure Active
9 DEPEDU Education expenditure Active
10 DEPSOP Personal health care expenditure Active
11 DEPLOI Leisure expenditure Active
12 DEPLOY Rent expenditure Active
13 DEPLOG Lodging expenditure Active

Copyright © 2012 SciRes.
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Table 4. An overview of SDB of ECAM1.

2153

AD

Concept

DEPALI

DEPHAB

DEPMAI

Poor of class 1
Poor of class 2
Poor of class 3
Poor of class 4

Poor of class 5

Non poor of class 1

Non poor of class 2

Non poor of class 3

Non poor of class 4

[96,464, 173,375]
[122,375, 573,832]
[109,500, 573,032]
[157,210, 302,428]
[126,967, 358,482]
[102,982, 536,028]
[220,303, 568,617]
[95,421, 1,707,678]

[146,782, 967,510]

[2000, 36,000]
[15,000, 31,200]
[5700, 46,800]
[5700, 38,200]
[0, 54,500]
[0, 115,900]
[0, 82,000]
[0, 297,300]

[3500, 297,300]

[3950, 36,000]
[28,800, 34,800]
[10,800, 28,800]
[7200, 15,300]
[12,000, 53,700]
[2450, 55,100]
[11,950, 57,600]
[23,000, 65,100]

[600, 71,300]

Non poor of class 5 [130,617, 813,428] [8000, 485,200] [22,800, 199,800]

Table 5. Histogram of eigenvalues.

N Eigenvalue Inertia % Combined %

1 6.80938 68.09 68.09

2 1.08859 10.89 78.98

3 0.60479 6.05 85.03

4 0.56497 5.65 90.68

5 0.31109 3.11 93.79

6 0.29054 291 96.69

Table 6. Relationship between general variables and groups.
F, F» Fs Fs Fs Fs

AD 52.70 20.95 5.81 3.94 1.15 1.31
CE 77.57 9.29 0.83 0.93 0.35 0.26
ES 58.61 4.60 9.72 8.58 0.96 4.04
EN 62.35 10.50 3.13 5.98 2.81 1.40
LT 82.74 2.18 1.31 1.93 1.09 0.45
NO 51.03 6.12 7.38 8.56 10.40 4.10
NW 67.16 8.38 291 5.74 1.36 3.81
ou 46.08 10.14 6.78 9.28 6.78 5.22
SU 57.94 13.26 523 2.32 2.02 3.20
SW 57.84 12.42 11.17 3.22 1.13 2.62

4.2.3. Inter-Inertial/Total Inertia Relationship 3rd axes.
Table 7 shows that on the first axis, there is a close
proximity between equivalent classes. Broadly speaking,
these equivalent classes have similar behaviours in their
expenditure habits. The same phenomenon is observed

in the descending values of r, on the 4th, 2nd, 6th and

4.2.4. Degree of Resemblance between Groups and
General Variables: Common and Specific
Factors

The first MFA component is a factor common to all the
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Table 7. Inter-inertial/total inertia relationship.
AXiS F1 Fz F3 F4 F5 F6
Relationship 0.89 0.70 0.64 0.70 0.30 0.65
Table 8. Degree of resemblance between groups and general variables.
Fi F Fs Fs Fs Fs

AD 0.87 0.58 0.65 0.13 0.05 0.09
CE 0.90 0.12 0.03 0.45 0.01 0.02
ES 0.90 0.15 0.31 0.66 0.15 0.80
EN 0.98 0.75 0.45 0.50 0.18 0.38
LT 0.98 0.28 0.11 0.33 0.02 0.08
NO 0.92 0.42 0.44 0.32 0.59 0.32
NW 0.97 0.57 0.12 0.78 0.28 0.35
ou 0.88 0.42 0.43 0.60 0.28 0.62
SU 0.93 0.47 0.60 0.55 0.28 0.70
SW 0.96 0.68 0.72 0.30 0.15 0.16

10 regions. The second factor is common to the Far-
North and South-West regions. The 3rd factor is specific
to the South-West and Adamawa regions (see Table 8).

(1]
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