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ABSTRACT 

This document presents an extension of the multiple factorial analysis to symbolic data and especially to space data. 
The analysis makes use of the characteristic coding method to obtain active individuals and the reconstitutive coding 
method for additional individuals in order to conserve the variability of assertion objects. Traditional analysis methods 
of the main components are applied to coded objects. Certain interpretation aids are presented after the coding process. 
This method was applied to poverty data. 
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1. Introduction 

Although the traditional analysis of data is based on a 
complete theory, it poses restrictive conditions for the 
resolution of problems: it requires that variables be 
single-valued (the value of a variable for an object is a 
unique and specific). 

Recent evolutions in the information system have 
made it possible to find increasing and more complex 
data which need a more in-depth formalization than the 
one indicated in the usual rectangular table. The later 
does not take into account the possible variability of des- 
cription as well as the uncertainty concerning certain 
variables or certain objects. A new formalism called 
symbolic objects has been developed to represent com- 
plex data like concepts, skills (see [1,2]). These objects 
concern complex data and provide new skills at the exit 
in the form of symbolic objects. 

The techniques of factorial analysis (see [3,4]) which 
are data reduction and representation methods, are well 
known and well used. Certain stakeholders have ex- 
tended these methods to symbolic objects by using the 
coding and decoding techniques (read [5,6]). The issue of 
multiple factorial analysis (MFA) is of particular interest 
to us (see [7,8]). A priori, this concerns the case where 
there is a group structure on variables. Its problem is en- 
hanced by the characterization of groups and the search 
for a typology of groups of variables. To our knowledge, 
this method is not yet applied to symbolic objects. 

In this article, we extend the MFA to a symbolic data 
base whose variables are structured into groups. It is a 
generalization of the MFA basic principle on the one 
hand, and the principle components analysis (PCA) tech-  

niques on the other hand (see [9]). We conclude this 
document with an application of the method presented to 
poverty data. 

2. Symbolic Data Base 

2.1. General Context 

A symbolic data base (SDB) is considered as represented  
in the Table 1 and made up of triplet  , ,B Y C A  
with  1 2, , , IC C C C   representing all the I objects, 

 1 2, , , JY y y y   and  1 2, , , IA a a a   represent-  

ing respectively the set of the J variables and the asser- 
tion objects used to describe I objects. We suppose that  
the SDB is associated with a measured space  , ,  ,  
an - algebra  on C,   1 2, , , JO O O O   where  

jO
y j

 is the space of observation of the variable  
, 1, 2, ,j J  . This space includes an tribe j . Let  

 , 1,2, ,ic j j J
X

 
 be a set of measurable functions defined  

on ,  deriving their value from the measurable spaces 
 ,j jO  and used to describe all the  objects. For   ic i

from 1 to I ,   is a Boolean  ia
,1

i

J
i

j a jj
a y X


 ∧




assertion so that from  from 1  to j J , there is a mea-  
surable part 

,i ja j
V   so that we can have 

,,i ic ja j
X X  and  

, ,
.i ia j a j

V X   In practice, it is 

written 

,1
.i

J
i

j a jj
a y V


   ∧             (1) 
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Table 1. Symbolic data base. 

 1y   jy   Jy  

1c  11 ,1a
y X    … 1,j a j

y X    … 1,J a J
y X    

ic  1 ,1ia
y X    … 

,ij a j
y X    … 

,iJ a J
y X    

Ic  1 ,1Ia
y X    … 

,Ij a j
y X    … 

,IJ a J
y X    

 
The observation space is therefore the product space  

1

.
J

j j
j

O


   This space includes an product tribe  

1

.
J

j j
j

   To proceed, it is supposed that the des-  

criptors are quantitative, i.e that jO  is a part of .  
Thus, it is generalized that  

, ,
,i i ij ija j a j

X V x x        

where ,ij ijx x  represent respectively the minimum and 
maximum values per  object for the ia jy  variable. 
Consequently, we shall treat the Boolean assertions 
whose SDB is indicated in the following Table 2. 

2.2. Group Structure 

We shall assume that the J variables are divided into K 
groups with kJ  as the number of k group variables; i  
the weight associated with the assertion object  and 

 the weight of the  variable. We shall designate 

p
ia

m y
, , kI K J

k kB Y
 as the set and its cardinal. Let us consider 

k  as the symbolic data base derived from 
 but reduced from the  group variables denoted 
. For i from 1 to I, the  object for the k group is  

 , , 

,i





interpreting the proximities between them. 

ssertions. 

 

C A
B

kY
k

ia

represented by the assertion . For-  
,i

kk

i
k j a jj J

a y V


    
∧

mula (1) may be re-written as follows, while taking into 
consideration the existence of the following groups:  

1
,

,

i r rkk r k r k

ir K rK r K r K

i
j j ja j a j jj J j J

j j a j jj J

a y V y V

y V

 

 

  

 

 

 

     
 

 
 





∧ ∧ ∧

∧ ∧
 

2.3. Objective 

Like in the traditional case, the MFA based on symbolic 
data corresponds to the following three majors objec- 
tives: 

1) Drawing up a typology of concepts, especially 
similar concepts from the point of view of all the 
variables after balancing the contribution of each group. 

2) Comparing the typologies of individuals defined by 
groups of variables. 

3) Exposing a typology of groups of variables and 

Table 2. Symbolic data base of boolean a

1y   jy   Jy  

… 1 1,j Jx x 
   1c 11 11,x x    … 1 1,J Jx x    

ic 1 1,i ix x    … ,ij iJx x 
   … ,iJ iJx x    

Ic 1 1,I Ix x    … ,Ij IJx x 
   … ,IJ IJx x    

 
However, taking into consideration the variability of 

ob

3. Analysis and Interpretation 

olic digital MFA. 

s; 
 data table; 

ata; 
d interpretation; 

 
an

 of assertions of variables and sym- 
bo

3.1. Data Coding 

jects adds an interesting element to this problem be- 
cause coherence warrants us to provide exit elements in 
keeping with the variability. 

We shall present algorithm for a symb
This approach essentially repeats the one used by the 
traditional MFA as well as that of the PCA on symbolic 
objects. The following stages shall be used: 

1) Data coding; 
2) PCA of group
3) Weighting of the
4) PCA symbolic digital of all d
5) Traditional MFA representation an
6) Superimposed representation of symbolic objects
d average cloud; 
7) Representation
lic factors of groups  

Either   all the assertions in the SDB, the m coding  

 a

re d sum

represented by a 
hy

order is ny C application to   with values in   .
mj   

In this work, we shall therefo  use the centre an - 
mit methods which is referred to as characteristic coding 
and reconstitutive coding respectively. 

An assertion object is graphically 
percube. The characteristic coding represents each ob- 

ject by a point which is the centre of gravity of the 
assertion object. The reconstitutive coding represents an 
object by 2J  points which constitute the summit of the 
hypercube. Characteristic coding gives us the active ele- 
ments of the analysis while reconstitutive coding gives 
the additional elements of the analysis that enable the 
reconstitution of the exit symbolic objects. 

3.2. Weighting of Variables 

 after data coding. A J  Let X be the data table obtained

columns and 1 2JI      lines table is obtained where  

I  individuals are active and the others in addition. For 
each group, a principle components analysis (PCA) on 
the , 1kX k K   tables where kX  is the X  table 
redu oup value. A seri f  ced to the k gr es o
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, 1, , , 1, , .k
i i k k K     eigenvalues is obtained for 

each analysis. It is assumed that the real values in each 
group are classified in descending order. Each y  vari-  

able is weighted by 
1
k

m


  if the y variable is derived    

from the group. The weighted table is evaluated k   pX . 

3.3. Data Processing 

internal structures of each group 
 of the overall cloud (see [10]). 

Weighting conserves the 
but changes the structure
In this case, it is referred to as the average cloud. As in 
the traditional case, we have represent equivalent objects 
by respective lines of the same K  bases  p

kB  rank, 
with  p

kB  being the weighted kB  base.  

       0 0 0p p p p
k kB X X     0k kB

The k
jN  K clouds may be simultaneously repres ted  

in the 

en
J  space of variables by breaking down J  

into dire um spaces isomorphic to kct s j  spaces. 
The a age cloud is obtained by a homothetic tra  

formation of the  
ver ns-

pB  1 K  relation weighted data base. 
It represents average individuals and average concepts in 

k . The average cloud is obtained by a homothetic trans- 
formation of the   1pB K  relation weighted data base. It 

esents average individuals and average concepts in 
k . Let us note DB of the average cloud where 

kB  constitutes its restriction in the k  group. 
roposition 1  symbolic digital PCA of the B

repr

P

B  t

. The

he S

  
e leads to the same factors as the bas

ch
ruc

 Variable 

B  base 
aracteristic coding MFA.  
Proof. It is immediate. The B  base is const ted to 

this effect. □ 

3.4. Canonic

The re-writing of table X   in the principle components 
base  , ,1 JF F  leads to a representation of objects by 
a new SDB  , , FB F O  whose assertion is written 

1

i
F j

j
a F


   ∧ rtions of the variables asso- 

A  

Asse


iables. 

 Individuals 
and Concepts 

A 

,
.i

Fa j
W  

ciated with concepts

J

 are written i

I
j

jF F W  ∧ .  

These factors are called canonic var

,1 Fa ji 

3.5. Superimposed Representation of

3.5.1. Equivalent Assertions 
 pB  based ia  assertion is represented in each  p

kB  
valent 

t re-
sub-base by i

ka  assertions which are called equi
assertions associated with ia . These are the differen  
presentatives in the  pB  sub-bases of the same asser- 
tion. 

3.5.2. Superimposed resentation of Individuals 
Here, in

Rep
dividuals are described by the characteristic cod- 

 ing. An individual representing an object is represented
by the expectation of unpredictable random. variable 
associated with the skill it represents. This representation 
no doubt has some shortcomings, but it gives us the first 
tendencies which are sometimes enough. In concrete 
terms, each group is projected with additional elements 
on the PCA of table .X   

Proposition 2. Each individual (average individual) of 
table X   is the cent f grare o vity of individuals observed 
fr

of. 
n of average cloud. 

Th n in- 
di

ts 
Symbolic digital PCA results will be used to obtain a 

 into 

of 

jects in the space
o this SDB. Let 

om the point of view of all groups. 
Pro This is the property of traditional MFA. □ 
This proposition explains the notio
e study of the attributes of variability of descriptio

cated below will comfort us in this notion. 

3.5.3. Superimposed Representation of Concep

superimposed representation of objects while taking
consideration variability. It based to the following 
proposition: 

Proposition 3. Either 
J

i     an assertion 
,1

ij a jj
a y V

  ∧

,1
i

K
i

k b kk
u V


  ∧   BDS B . We note b the assertion 

representing the ic  ob  of the PCA 
principle c mponents of  , ,G GX X  1 J

the centre of gravity of the characteristic coding and 
G 

jku  
is. Thus we have:the kth component of the jth factorial ax  

   , ,
, 0

min maxi i
G

 
   

 

,
, 0

, ,
, 0

,
, 0

min

max min

max

kj

i

kj

i i

kj

i

kj

j kjb k a j
j u

G
j kja j

j u

G
j kjb k a j

j u

G
j kja j

j u

V X u

W V

V X u









W V X u

X u

    

    

    

    







 



Proof. We note  
=1, ,

G
ij j J

x


 the coordinate of   

ce  assert

iG

ntre of gravity of ion, and  
=1, ,

G
kj

ia
j J

y


 the  

coordinate of the ima e of iG  in the new  Let g basis.

jk

noted ku ), we note 

u  be the jth component of e kth factorial axis (de-  th

 
1, ,

i r
r ij j J

x x





 the coodinate of an 

mentary indiv sertion for a point ,iR  
 

 

ele idual of as
and

 a  i

 i r

1, ,r kj j J 
We have:  

 
J

r G u

y y inate in the new basis.   his coord

1

r
kj k ij ij jk

j

y u x x


   

GR  

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then 

   
 

,

,
1

max max

max ,

i

i

r r
ki ijb k a j

J
r G r
ij ij jk ij a j

j

W y x V

x x u x V


  

     
   


 
,i



as  depend ofr
kjy  ,r

ijx  we have 

X u    
  

,

,
, 0

max min ,

max ,

i

kj

i

kj

r r G
j kja j

r r G
ij ij j kja j

j u

W x x V
,

, 0
i ij ijb k

j u

x x V X u





     

     




 

Therefore 

   
 

, ,
, 0

,
, 0

max min

max .

i i

kj

i

kj

G
j kjb k a j

j u

G
j kja j

j u

W V

V X u





    

   




 

X u



With the similar methode, we have  

   
 ,

, 0

min max

min .i

kj

G

, ,
, 0

i i

kj

j kj

G

b k a j
j u

j kja j
j u

W V

V X u


  

    




 

X u

□ 
This lead that the  representing group  will be 

projected successively with additional elements on t

 

. Let us note  the  asser-  

tio
he




kB  k

er
he 

B  base symbolic digital PCA. The sup imposed 
representation on the same factorial plan enables us to 
generally observe the position of an object, and the point 
of view of each group by using variability. We then have 
the following result : 

Proposition 4. Either ia  an assertion object repre- 

sented in B  by a  i ii
ka a

n observed from the k group point of view. In the  
B  base, t  ia  assertion is written 

1 ,

1
i

i
j a jj J

a y V
J 

 
 ∧

1
1

,

,

1

1

i
rkk r k r k

ir K rK r K r K

j j a j jrj J
k

j j a j jj J
K

y V
J

y V
J





 

 

 

 

 

 

 
  

 
 

  
 

 
  





∧ ∧

∧ ∧

 

Either  we note  

the ass senting the   

object from the k group point of view in the space of the 

PCA principle compone

,1
i

J
i

j a jj
a y V 


   ∧

,i
k

K
i
k k a k

a F W  
1k

    
∧ ertion repre ic

nts of this SDB. Either  

 1 , ,G
JG X X   G the centre of gravity of X  , and kjF   

the kth component of the jth factorial axis. Thus we have: 

   
, 0

max

 
   

 

, ,

,
, 0

, ,
, 0

,
, 0

min

min

max min

max

i i
F

k kj

i

k kj

i i
F

k kj

i

k kj

G
j kja j

j J F
a k

G
j kja j

j J F

G
j kja k a j

j J F

G
j kja j

j J F

W JV X F

JV X F

W JV X F

JV X F



 



 



 

  

  

    

    







 

 


 



Proof. This is the consequence of the notations of the 
previous proposition. □ 

The representation of superimposed objects in the 
ca

 
- 

tors analysis as well as in the different 

pre-supposes 

nonic base (that of factors) therefore respects the prin- 
ciple of centres of gravity. The hypercube representing 
an object is thus the centre of gravity of the hypercubes 
representing the same individual from the point of view 
of different groups. The MFA symbolic digital algorithm 
helps to preserve this essential property. 

3.6. Representation of Variables and Assertions 
of Variables 

The symbolic digital MFA enables us to define many
representatives that contribute to the illustration of fac

in the general 
groups. The determination of the main factors of groups 
and the general analysis lead to many representations of 
variables and assertions of variables. The superimposed 
representation of these factors (as assertions of variables) 
on canonic variables then helps to find and interpret com- 
mon factors and specific factors. 

3.6.1. Representation of Variables and Assertions of 
Variables 

The conduct of the MFA symbolic digital 
1K   factorial analysis (the K groups and the averag

cloud). Two representations can be made for each o
e 
f 

 

l 

these analyses: a representation of variables (dual analy- 
sis of centres of gravity) and an analysis of assertions of 
variables taking into account variability. These represen- 
tations clearly bring out the main variability factors of 
groups and the factors of general analysis. 

3.6.2. Superimposed Representation of Factors (as  
Assertions of Variables) on Canonic Variables 

This representation is the result of a MFA traditional
representation which consists in highlighting the main 
variability factors of groups in the form of additiona
variables over canonic variables. But in symbolic data 
analysis, these variability factors are also expressed as 
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 traditional indicator in MFA. It is a represen- 
tation of groups on canonic factors. The coordinates of 

- 
ables ponding MFA axis of table 

assertions of variables and the representation of these 
assertions of variables over the canonic variables calls 
for an original observation. The position and collection 
of assertions of variables give us precious indications on 
their importance and the link between the different 
groups. 

3.6.3. Link between Groups: Representation Quality 
of Groups 

This is a

an axis group is the combined inertia of the group’s vari
on the corres X  . For 

the two groups xK . and yK , we have  

     , ,p p
x y x yK K W D W D  where D is the diagonal  

I I  matrix of the weight of individuals and  p
jW

uals 
 is 

the matrix of scalar product  between ths e individ of 
 for the group j p

jX  weigh
A symbolic repr tation

Each

n e a e. The variabi- 
lit

 

ted matrix. 
 may be proposed for it. esen

 assertion of variables can be coded into many 
variables whose projection over canonic variables results 
in a mi imum valu nd a maximum valu

y associated to a group will therefore be displayed by 
two values: the sum of the minimum inertia of the 
group’s variables and the sum of its maximum inertia. 

The representation of groups is done in the 
2I  space. 

3.7. The Notion of Common Factor and Specific 
Factor 

MFA helps to portray the characteristics of groups 
 
 

bolic he common factor associated to the 

om the first Cameroonian survey in 
 conducted in 1996 by the National 

uals. We shall 
co

lysis and Interpretation 

llowing results are 

tia of the First Six Eigenvalues 
Please see Table 5. 

tween General Variables and 
Groups 

st 
impor  from all groups. The other variables con- 

ble

Quality 

compared to the canonic variables (also referred to as
factors). A common (or specific) factor to the MFA sym-

 digital will be t
traditional MFA of centres of gravity. 

4. Poverty Data 

 
Table 3. Varia

N Title Description 

4.1. Presentation 

The data is drawn fr
households (ECAM I)
Institute of Statistics. The sample is made up of 1800 
households with a total of 10230 individuals. The analy- 
sis is done on 13 continuous variables out of which 10 
are active and 3 illustrative (see Table 3). 

The average poverty line is used to establish the diffe- 
rence between poor and non poor individ

nsider 10 classes of individuals with 5 poor classes or- 
ganized in descending order from very poor to less poor 
individuals and 5 classes of non poor individuals or- 
ganized in ascending order from less rich to very rich in- 
dividuals. These classes constitute the concepts that we 
shall analyze. The groups of variables are regions. For 
presentation purposes, they shall be presented on a line 
and not in columns. An overview of the SDB for the 
Adamawa Region for three variables shows the following 
Table 4. 

4.2. Ana

After the algorithm application, the fo
obtained: 

4.2.1. Iner

4.2.2. Relationship be

The F1 variable is the variable which extracts the mo
tant inertia

vey specific information to certain regions (see Table 6). 

s of ECAM1. 

1 DEPEAD Additional Expenditure per adult equivalent 

2 DEPTET Expenditure per head Additional 

re 

iture 

e 

10 e 

11 DE

3 D  EPTOT Total expenditure Additional 

4 DEPALI Food expenditure Active 

5 DEPHAD Clothing expenditu Active 

6 DEPMAI Household expend Active 

7 DEPSAN Health expenditure Active 

8 DEPTRA Transportation expenditur

e 

Active 

9 DEPEDU Education expenditur Active 

DEPSOP Personal health care expenditur Active 

PLOI Leisure expenditure Active 

12 DE

13 DE

PLOY 

PLOG 

Rent expenditure 

Lodging expenditure 

Active 

Active 
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Table 4. An overview of SDB of ECAM1. 

 AD 

Concept DEPA DEPMLI DEPHAB AI 

Poor of class 1 [96,464, 173,375] [2000, 36,000] [3950, 36,000] 

Poor of class 2 [122,375, 573,832] [15,0 0] [28,800, 34,800] 

Poor [109,500, 57  [57  [10,8 0] 

[15

Non poor

Non poor [11,9  

Non poor [0, 297,3  [23,0

[35  

[80  [22,8

00, 31,20

 of class 3 3,032] 00, 46,800] 00, 28,80

Poor of class 4 7,210, 302,428] [5700, 38,200] [7200, 15,300] 

Poor of class 5 [126,967, 358,482] [0, 54,500] [12,000, 53,700] 

 of class 1 [102,982, 536,028] [0, 115,900] [2450, 55,100] 

 of class 2 [220,303, 568,617] [0, 82,000] 50, 57,600]

 of class 3 [95,421, 1,707,678] 00] 00, 65,100] 

Non poor of class 4 [146,782, 967,510] 00, 297,300] [600, 71,300] 

Non poor of class 5 [130,617, 813,428] 00, 485,200] 00, 199,800] 

 
am of eigenv

N envalue Inertia % Co

Table 5. Histogr alues. 

Eig mbined % 

1 6.80938 68.09 68.09 

2 1.08859 78.98 

6 0.29054 2.91 96.69 

10.89 

3 0.60479 6.05 85.03 

4 0.56497 5.65 90.68 

5 0.31109 3.11 93.79 

 
able 6. Relationship between ge iables and groups. 

 F1 F2 F3 F4 F5 F6 

T neral var

AD 52.70 20.95 5.81 3.94 1.15 1.31 

CE 77.57 0.26 

E  58.61  0

9.29 0.83 0.93 0.35 

S 4.60 9.72 8.58 .96 4.04 

EN 62.35 10.50 3.13 5.98 2.81 1.40 

LT 82.74 2.18 1.31 1.93 1.09 0.45 

NO 51.03 6.12 7.38 8.56 10.40 4.10 

NW 67.16 8.38 2.91 5.74 1.36 3.81 

OU 46.08 10.14 6.78 9.28 6.78 5.22 

SU 57.94 13.26 5.23 2.32 2.02 3.20 

SW 57.84 12.42 11.17 3.22 1.13 2.62 

 
4.2.3. r-Inertia l Inertia Re ship 
Table hows tha he first axis, there is a clos

roxim ween equi  classes. Broadly speaking, 
n their 

3rd axes. 

4.2.4. Degree of Resemblance between Groups

 Inte l/Tota lation
 7 s
ity bet

t on t
valent

e 
p
these equivalent classes have similar behaviours i
expenditure habits. The same phenomenon is observed 
in the descending values of r, on the 4th, 2nd, 6th and 

General Variables: Common and Specific 
Factors 

The first MFA component is a factor common to all the 

 and 
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Table 7. Inter-inertial/total 

Axis F1 F2 

inertia relationship. 

F3 F4 F5 F6 

Relationship 0.89 0.70 0.64 0.70 0.30 0.65 

 
Table 8. De iables. 

 F1 F2 F3 F4 F5 F

gree of resemblance between groups and general var

6 

AD 0.87 0.58 0.65 0.13 0.05 0.09 

CE 0.90 0.12 0.03 0.45 0.01 0.02 

ES 0.90 5 0.80 

E  0.98  0

0.15 0.31 0.66 0.1

N 0.75 0.45 0.50 .18 0.38 

LT 0.98 0.28 0.11 0.33 0.02 0.08 

NO 0.92 0.42 0.44 0.32 0.59 0.32 

NW 0.97 0.57 0.12 0.78 0.28 0.35 

OU 0.88 0.42 0.43 0.60 0.28 0.62 

SU 0.93 0.47 0.60 0.55 0.28 0.70 

SW 0.96 0.68 0.72 0.30 0.15 0.16 

 
10 re s. The sec tor is co n to the Far
North a South-West regions. The 3r or is specific 
to the -West an amawa regio ee Table 8). 

[2] E. Diday, “From the Objects of the Data Analysis to
Those of the A Symbolic and Nu-
meric Inductio , 1991. 
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