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ABSTRACT 

We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpan- 
sive operators in Hilbert spaces under the condition that operators are given with random errors. We prove mean square 
convergence and convergence almost sure (a.s.) of iterative approximations and establish both asymptotic and 
nonasymptotic estimates of the convergence rate in degenerate and non-degenerate cases. Previously the stochastic ap- 
proximation algorithms were studied mainly for optimization problems. 
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1. Introduction 

In this paper the following problem is solved: To find a 
fixed point x  of the operator  in other 
words, to find a solution 

:T G H ,
x G   of the equation 

,x Tx                 (1.1) 

where  is a Lipschitz continuous mapping, T H  is a 
Hilbert space,  is a closed convex subset. We 
suppose that 

G H
x  exists, i.e., the fixed point set  of 

 is nonempty. Note in different particular cases of the 
Equation (1.1), for example, when T G  the 
solution existence and solution uniqueness can be proved 
under some additional assumptions. 

N

: ,G
T



We separately consider two classes of mappings T: the 
class of weakly contractive maps and more general class 
of nonexpansive ones. Let us recall their definitions. 

Definition 1.1. A mapping  is said to be 
weakly contractive of class  t  on a closed convex 
subset  if there exists a continuous and increas- 
ing function 

:T G H
C

G H
 t  defined on IR  such that   is po-  

sitive on      t0 , 0 0, lim t  ,IR  and for  

all  

, , .x y G Tx Ty x y x y          (1.2) 

Remark 1.2. It follows from (1.2) that  t

Definition 1.3. A mapping  is said to be 
nonexpansive on the closed convex subset  if for 
all 

:T G H
G H

,x y G  

.Tx Ty x y    

It is obvious that the class of weakly contractive maps 
is contained in the class of nonexpansive maps because 
the right-hand side of (1.2) is estimated as 

 0 ,x y x y x y          (1.3) 

and it contains the class of strongly contractive maps 
because    1t q   t 1 with 0  gives us q 

.Tx Ty q x y            (1.4) 

We study the following algorithm of stochastic appro- 
ximation: 

 1 1, 1,2, ,n G n n n n ,x Pr x S x n x G       (1.5) 

where G  is the metric projection operator from Pr H  
onto G and deterministic step-parameters n  satisfy the 
standard conditions: 

2

1 1

and .n
n n

 
 

 
n           (1.6) 

t  and 
in real problems an argument  of the function t  t  
doesn’t necessary approaches to   obeying the con- 
dition  (see the example in Remark 3.4). :T G H

The factor n n  in (1.5) is an infinite-dimensional 
vector of random observations of the clearance operator 

S x

F I T   at random points nx G
 , ,

 given for all  
on the same probability space 

1n 
.A P  We set  
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,n n n nS x               (1.7) 

where n n nx Tx    and n  is a sequence of indepen- 
dent random vectors with the conditions 

  2

1 10 and , 0 .n nE E C C          (1.8) 

Here  is a symbol of the mathematical expectation. 
In order to calculate conditional mathematical expecta- 
tions of different random variables we define the 

E

 - 
subalgebra  1 2: , , ,n nA x x x   on  , , .A P  And  
then  n n  means n  function with 
the following property: for any   

E  A -measA urabl

nB A
e

     d dn n n
B B

P E A P .      

We also assume in the sequel that n  is An-mea- 
surable for all  1.n 

Let us recall the mean square convergence and almost 
sure (a.s.) convergence. 

We say that the sequence  n  of random variables 
 n   converges in mean square to   if   exists 

and  

2
lim 0.n
n

E  


     

The sequence n  converges to   almost surely or 
with probability 1 if  

    lim 1.n
n

P    


   

Almost sure convergence and convergence in mean 
square imply convergence in the sense of probability: 
The sequence  n  of random variables  n 

 
 con- 

verges in the sense of probability to    if for all 
0   

    lim 0.n
n

P     


    

So, we consider iterative processes of stochastic 
approximation in the form (1.5) for finding fixed points 
of weakly contractive (Definition 1.1) and nonexpansive 
(Definition 1.3) mappings in Hilbert spaces under the 
conditions (1.8). We prove mean square convergence and 
convergence almost sure of iterative approximations and 
establish both asymptotic and nonasymptotic estimates of 
the convergence rate. Perhaps, we present here the first 
results of this sort for fixed point problems. Formerly the 
stochastic approximation methods were studied mainly to 
find minimal and maximal points in optimization 
problems (see, for example, [1-6] and references within). 

2. Auxiliary Recurrent Inequalities 

Lemma 2.1. [3,4] Let      , andk k k 

 1 1 , 1k k k k k        , 2,    (2.1) 

Assume that 
1

k
k






   and  Then 
1

.k
k






   k   

is bounded and converges to some limit.  
Lemma 2.2. [3,4] Let        , , andk k k k     be 

sequences of nonnegative real numbers satisfying the 
recurrent inequality.  

   1 1 ,k k k k k k k            1,2, ,    (2.2) 

where 
1 1

,k k
k k

 
 

 

      and either 
1

k
k






   or 

lim 0.k

k
k




               (2.3) 

Assume that  t
IR

 is continuous and increasing func- 
tion defined on   such that   is positive on 

 I 0R ,  0 0.   Then 0.limk k   There exists 
an infinite subsequence  , 1, ,k l  2,l  such that 

1
0

1

1
,l

l l
l

k
k k

k
k

k

C


 






 
 
  
 
 
 


 

where  0
1

1 .k
k

C 




   

In the following two lemmas we want to present non- 
asymptotic estimates for the whole sequence , 1k k .   
For this the stronger requirements are made of para- 
meters k  and function  in the recurrent in- 
equality. 

 t

Suppose that  t  such that   ,kk    F t  and  

 t  are antiderivatives from  t  and 
 
1

,
t

 re-  

spectively, with arbitrary constants  (without loss of 
generality, one can put 

C
0C  ), i.e. 

       
d

d , .
t

F t t t t
t




     

Observe that  F t  has the following properties: 
i)    ;F t t   

ii)  F t  is strictly increasing on  and   1,
 F t   as  ;t 

iii) The function    
 

 
 

  be se- 
quences of nonnegative real numbers satisfying the re- 
current inequality. 

t F
g t

t

F t F t


 


 is decreasing; 

iv)    lnG t F t    as  .t 
Introduce the following denotations: 
1)  1 z   and  1 z  are the inverse functions to 
 t  and   ,t  respectively; 

2)    
   01

0

1
1 , 2, 1

1

c s
v s s s c

s

 
 


     

  
 is a  
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fixed control parameter;  

3)         1, 2u s C C a F s F        ,  

0

0

1
0, 1;

c
C a

c


    

4)           1,w s v r v r a F s F      2 ,  

2 ;r    

5)         1 2 1Q c c a F F        ,  where 

0c   is an arbitrary fixed number; 
We present now the based condition (P): The graphs 

of the scalar functions  and  with any 
fixed  are intersected on the interval 

 v s   ,w s v r 
 2,r   2,  

not more than at two points 1s  and 2s  (we do not con- 
sider contact points as intersection ones excepting 2s   
if any). 

For example, the graphs of the functions  v s  and  

  ,w s v r   calculated for   , 0, 0 1
b

s b
s

     ,

,

  

and  satisfy the condition (P).   , 1t t  
Lemma 2.3. [3,4] Assume that 1) the property (P) is  

carried out for the function     2 , 2u s v   and

2)  as

,w s v  

 v s ;      , 2u s v v s  ;s 
 

 3) the control 
ameter 

.      (2.4) 

Then for the sequence 

par 0c  is chosen such that

    , 2u s v v s as 2s  

 k  generated by the in- 
eq

,   (2.5) 

it follows: 

uality 

 1 , 1, 2,k k k k k k            

lim 0k k   and for all   

.   (2.6) 

Lemma 2.4. [3,4] Assume that 1) the proper
ca

1k 

   1, , ,k u k C C v      max 2Q 

ty (P) is 
rried out for all the function   , 2w s v r  and  ;v s  

2)     , 2u s v v s  as .s  he seq  


 Then for t uence
k  generated by the i ty (2.5) 0.limk knequali    
dition, 

a) if Q
In ad

  1 2v   
uch that u s

and the control parameter  is 
chosen s

            (2.7) 

b) in all remaining cases 

0c
    , 2v v s  as 2,s   then for 

all 2k   


 ;k v k   

      1, ,u k C C  max , 2 ,

1 ,

k Q v

k s



 
  (2.8) 

  , ,k v k k s             (2.9) 

where is a unique root of the equation 

   ,u s C v s              (2.10) 

on the interval 

s  

 2, . 
gThe followin

re
 lemmas deal with another sort of 

current inequalities: 
Lemma 2.5. [7,8] Let        , , andk k k k   

 real numbers satisfying 
 be 

sequences of non-negative the 
recurrence inequality.  

1k k , 1, 2,k k k k     .        (2.11) 

Assume that 

1 1

and .k k
k k

 
 

 

     

Then: 
e exists an infinite subsequence i) Ther    

k k   
such that 

1

1
,

k k

j
j









               (2.12) 

and, consequently, 0;lim
kk    

0ii) if limk k   and there exists  such that  0 

1k k k        (2.13) 

for all , then 1k  0.limk k    

] LetLemma 2.6. [7,8         , , andk k k k   
 real numbers satisfying 

 be 
sequences of non-negative the  

recurrence inequality (2.11). Assume that 


1
k

k

    

and (2.3) is satisfied. Then there exists an infin - ite sub
sequence    

k k   such that 0.lim
kk    

3. Mean Square Convergence of Stochastic 
Approximations 

eorem 3.1. Assume Th that  is a weakly :T G H
ss   ,Ccontractive mapping of the cla       1     

is a convex function with respect to 2 t   and  
2

1 .E x x      Then the seque n 
nce x  generated  

by (1.5)-(1.7) conv o a uerges in mean square t nique fixed 
point x  of .T  There exists an infinite subsequence 
 , 1, 2,ln l  such that ,  

2 1
0 1

1

1
,

2
l lln nn

n
n

E x x C C 


 



 
 

         
 
 


   (3.1) 

where    2
1   

 the inequality 
 and some positive constant

       (3.2) 

 0C  
satisfies  

 2
0

1

1 8 .n
n

C
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Remark 3.2. exists in view
condition in (1.6

no
on 

01 C    
). 

 of the second 

Proof. First of all, we te that the method (1.5)-(1.7) 
guarantees inclusi nx G  for all 1.n   Since the 
metric projection 


operator GPr  is nonexpansive in a 

Hilbert space and x G   exists, we can write 

  
 
 

 

2

1

2

nx x



 

2

1

2

2

1

2 ,

2 ,

2 , .

G n n n n n G

n n n n n

n n n n

n n n n n

Pr x x Tx Pr x

x x x x

x x x x

x x x x

 

  

 

 

 


 




    

    

   

   

      (3.3) 

Let us evaluate the first scalar product in (3.3). We 
have 

 
 

 

  
   

2

2

2

1

,n n nx Tx x x

,

,

n n n

n n n

n n n

n n n n

n n n

x x Tx Tx x x

x x Tx Tx x x

x x Tx Tx x x

x x x x x x x x

x x x x x x



 

  

  

  

   

  

   

    

    

      

    

  (3.4) 

We remember that 

 



   2
1 .   

(3.4) yield 
 Then the in- 

equalities (3.3) and 

 
 

2 2

1n nx x x x x 
    

2

22

2

2 , .

n n

n n n n n n

x

x x

 

    







   
   (3.5) 

Applying the conditional expectation with respect to 

nA  to the both sides of (3.5) we obtain  

 
 

2

1n nE x x A


    
2 2

22

2

2 , .

n n n

n n n n n n n n

x x x x

E x x A E A

 

    

 



   

        

(3.6) 

It is easy to see that  

2

2

n n 
  2

2 2

2 2

2 2 .

n

n n n n

n n n

E A

E A E A

E A

 

 

 

  

     
    

        (3.7) 

Since  is weakly contractive and therefore non- 
expansive, one gets 

T

22
4 .n n nx Tx x x    

Taking into account (3.7), the inequali
mated as follows:  

ty (3.9) is esti- 

   
 

2

22

2

2 , 2 .

n n

n n

n n n n n n n

E x x A

x x x

E x x A E A

 

  




 



  

 

       

 (3.8) 

1

2 221 8 n nx

  

  



Now the unconditional expectation implies  

   
 

2

1

2 22

22

1 8 2

2 , 2

n

n n n n

n n n n n

E x x

E x x E x x

E x x E

  

   




 



    
           

       

 (3.9) 

Next we need the Jensen inequality for a convex fun-  

ction  2
:nx x   

 2 2

n nE x x E x x             
 



(see [9,10]). This allows us to rewrite (3.9) in the form  

 

2

1nE x x
    

22

2 22

1 8

2 2

n n

n n n n

E x x

E x x E



   





     
            

   (3.10) 

because of 

 , 0n nE x x      .

Denoting 
2

n nE x x     
 we have  

   2 2
1 11 8 2 2 ,n n n n n C n             (3.11) 

ew of Definition 1.1, where in vi     
 0 0 

is a continuous 
ng function with .  Due to (6), 

from Lemma 2.2 it follows 
and increasi

2
lim 0

 n
n

E x x


 

and the estimate (3.1) holds too. The theorem is p
□ 

of we
 it is un
ample wa

roved. 

Remark 3.3. If a fixed point akly contractive 
mapping :T G H  exists, then ique [11]. 

Remark 3.4. The following ex s presented in  
[11]: Let sin ,Tx x   0,1

t 
G   and  It has 

been show
: .T G G

n in [11] tha
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31
sin sin

8
x y x y x y      

for all 0 1.x y    Then 

     3 4 2
1

1 1 1
, and .

8 8
t t          

8

que fixe
Definition 3.5. Let a nonexpansive mapping 
:T G H  have a uni d point x .

d c
in

 T is 
ve on the close onvex subset 

if there exists continuous and creasing func- 

said to 
be weakly sub-contracti
G H  
tion  t  defined on IR  such that   is positive on 

 0IR ,   0 0 , 
t

  ,t    lim  such that for all 

x G .  

 2
,x Tx x x x x      .    (3.12) 

Theorem 3.6. Assume that a mapping :T G H  is 
weakly sub-contractive and the function 

 
 t  in (3.12) 

i ex on s conv IR  Then the results of Theorem 3.1 holds 
for th uence  ne seq x  g erated by (1.5 (1.7). 

Th u ) can
en

e second .6
assume n t less than linear growth 

)-
 ineq ality in (1  be omitted if we 

o of     “on in- 
finity” d put  an 0n 

Assume
 as 

Theorem 3.7.  tha ing  is 
weakly sub-contractive and the function 
is convex 

n   
t a mapp  T G: H

t   in (3.12) 
on IR  Suppose that instead e 

conditions  

1

lim 0 and .n n
n

 




         (3.13) 

 of (1.6) th

n

hold. In addition, let 0.5n    and  

 
lim


4 .







     14) 

Then the sequence  n

      (3.

x  generated by (1.5), (1.7) and 
(3.13) converges in mean square to .x  There exists an 
infinite subsequence ch that   ln l, 1, 2, ,  su

2 31

1

1
.

2
2

l

lnE x x



   l

n

n

n
n

C 




 
 

     
 
 


 

where 

 

 

2 2

1
1

,

2 8 ,

4 .

C

C

  

   
 



 

3.15) 

Proof. Consider the inequality ( 11) in the for   

,n

2

3 1 1 2

2 1

2 8max ,C C x x C

C 



 

  

       (

m

  2 2
1 12 2 8n n n n n nC             

where 
2

.n nE x x     
 Observe that it is derived by  

making use of (3.4) and the nonexpansivity property of 
 We shall show that .T n  are bounded for all 

 1,2, .n I    Indeed, since     
oncl

is a
us function, ude that  

 convex in-  
creasing continuo  we c

   
1

 
 


  is nondecreasing and since (3.14) holds,  

the inequality   1 4C       has a solution  
 where   is the unique root of the scalar equ0 , 

  (3.16) 

ation   1 4 .C      Together with this, (3.4) and 
(3.14) are co-ordinated by the parameter 0.5.   

Only one alternative can happen for each :n I  
er eith

  2 2
1 1: 2 2 8 0n n n n nH C           

or 

  2 2
12 2n n   2 : 8 0.n n nH C        

Den te o  is trueI n I H   and  1 1

 2 2 is trueI n I H  . It is clear that 1 2 .I I I  From  

the hypothesis 1,H  it arises  

  1 4 ,n nC      

 for all From the hypothesis 1.n I  and then n 
2 ,H have: 1n n    for all 2 .n I we  Consider all 

1) 
the possible cases: 

2 .I    for all .n I   Then n 
2) 1I .   Then 1n   all n .I   for
3) Let  ,1 1,2, 0I N d  2      an 0 01, 2, .N I N 

Then n   for 01,2, , .n N   By (3.16),  

2n C
0 1 2 .N C    It i vious that s ob    for  

0 0 3, .2,N N    Therefore, 2n C   for all .n I   
4) Let  1, 2, ,2 0I N   and  1, 2, .I N N     1 0 0

Then 1n   for 01, 2,n N, .   and n   for  

0 01, 2,NN     T nhus,    fo .I  
5) Let 1

r all n
I  and 2I  be unbounded sets. Consider an 

ar ry ibitra val nter

 1s 21, ,s s 1I n n I  

where 1 1I s

   

 ., , 1,3,5,s sn n     I ure that t is easy to be s

sn   and 2n C   for all .sn I  
nded a6) The other situations of bou nd unbou setsnded  

1I  and 2I  
e th

are covered by ms 1)-5). Consequently
v e result: ll 

 the ite , 
we ha  final  max  for a1 2,n C 

.n I  
Thus, we obtain the inequality 

  2
1 32 ,n n n n C n            (3.17) 

where is defined by (3.15). Now Lemma 2.2 with 
n (2.3) implies the re

Rema . For a nction

3C  
ditiothe con sult. □ 

rk 3.8  linear fu    c    which 
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is convex and concave at the same time we suppose 
2 4 .c    

Remark 3.9. If G  is bounded enerally  or more g
 nx  
dif

is bounded, t e inequality (3.17) (with some 
ly follows from (3.16). 

4. Estimates of the Mean Square 

ble to gi

hen th
ferent constant 3C ) immediate

Convergence Rate 

Us aing Lemmas 2.3 and 2.4 we are ve two 
general theorems on the nonasymptotic estimates of the 
mean square convergence rate for sequence  nx  gene- 
rat ti
(1.7)

 re

ed by the stochas c approximation algorithm (1.5)- 
. 

Again we introduce denotations 1)-5) from Section 2 
induced now by the current inequality (3.11): 

1)  1 z   and  1 z  are the invers
 t  and   ,t  respectively; 

2)   1v s C c s  

e functions to 

1  is  

,

  21 2 1 ,C s c  1 0 1 0

a fixed control parameter;  

3)        1
2 2 2, 2 0,u s C C a F s F         C

0 1
1

c
a

c


   

0

4)           1, 2 ,w s v r v r a F s F        
;2 , r    s

5)       1
1 2 1 .x a F F         

 

ndition (P). 
orem 4.1. Assume that all the conditions o

Th  are fulfiled and  
i) the cond on (P) holds for the functions  

 and 

 as 

2
Q x

Introduce also the basic co
The f 
eorem 3.1

iti

     , 2 , 2w s v u s v  ;v s  

ii)     , 2u s v v s ;s    

iii)  chosen such that0 1c   is      , 2u s v v s  as 

en the sequence 
2.

Th
s  

 nx  generated by (1. )-(1.7) 
co oint

5
nverges in average to a unique fixed p  x  of 

an
T  

d for all 1n   

 0 2, ,nE x x C u n C        
 , 2v 2 max .C Q

    (4.1) 

orem 4.2. Assu hat a he conditions of 
Th m 3.1

i) th  con s

2 

The me t ll t
eore  are fulfiled and 

e dition (P) holds for the function   v s   

an  fixd   ,w s v z  with any ed  2, ;z   

ii)     , 2u s v v s  as ;s   

iii) If  and  is chosen such that 

 then the sequence   

generated by (1.5)-(1.7) converges in average to a unique 
fixed point 

 2Q v

   v s  as 

 0 1c 

2, , 2u s v s   nx

x  of and for all  T  1n   

 
2

0 ;nE x x C v n    

iv) In all the remainin

         (4.2) 

g cases, (4.1) holds for 
1 n s   and (4.2) for ,n s  where s  is a un  ique

of the eqroot uation  2,u s C v s   on the interval 
 2, . 

uLet xamps provide the tions e les of func     and 
   sui heorem  and 4.2 (see [12,13]). 
1) Below llaries 6 we use the functions 

table for T s 4.1
 in Coro 4.3-4.

      with 1.  them  For 

  1

ln , if 1,


 

 


    

, if 1,
1





 

         (4.3) 

and 

 
 

1
, if 1,

if 1,
z









   (4.4) 1

1

exp

1 ,

z

z 

 
   

2) If   exp 1, 0,       then  

       1ln 1 exp and ln 1 exp .z z          

  , 0
1

  


3) If , 


 then 

    1ln and ln 1 exp .z z          

4)  
2

, 0
1

  


 If , 


 then 

  1
ln . 


    

In this example we are unable to define  1 z
te it num

 in 
an l form, therefore sugg lcula e- 
rically by computer. 

We next present very important corollaries from The- 
or .1 and 4.2, where th ptions automatically 
guarantee accomplishment of the condition (P) (see [4]). 
The functions 

alitica est to ca

ems 4 eir assum

    
.3. Ass

coincide with the point 1) a . 
Corollary 4 ume that is a strongly 

co ive mapping, that is  satisfied with  

.

bove
:T G H  

ntract , (1.4) is

0 1q   Let in (1.5) , 0n .b
n

 b
  Then  

      11
1

1

ln
ln , , e , 1 ,q zt b t z q q

 

q
F         

   
1

0 12 1 2
abq

c C
v s

    

1

1

2

1

1

1
.

2

abq

b s s

Q x x

      

    
 

 

2 , , ,C u s C C
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I. Suppose that 
1

b
q

  and 
1 1

0
1

.
1bq 

 Then  
bq

c 

2 lim
n

E x
   

1) If  and 

0n x   and 

  2Q v 1
0

1

,
2

bq
c

bq



 we have for all 

1n   

 
2

;nE x x v n    
         (4.5) 

2) In all the remain cases  

 

  

2
, ,

ma 2 , 1

nE x x u n C

C Q n

    
  

.6) 

and 

x , ,v s
    (4

 
2

, ,nx n s     
     (4.7) 

e 

E x v s

wher s  is a unique root of the equation  

 on the interval 

II. Suppose that 

  ,u s C v s   2, . 

12q 1

1 1
b

q
   and 1

0
1

1.
1

bq
c

bq
 


  

Then 
2

lim 0n
n

E x x


    
r all 1.n   

 and the estimate (4.6) 

holds fo
Corollary 4.4. Assume that is a strongly 

active mapping, that is, in (1.4) is satisfied with  

.  Let in (1.5) 

 :T G H  
contr

0 1q  , 0,0 1n

b
b

n     .  Then  

   

 

 

   

 

1

1

0 1
1

1 11

11

ln

1
, 1

2
2

2

2 1 .
1

b

q
b

c C
v s C

b

abq
s

ab















 





  
 



  
 

Suppose that 

1

1

, ,F t t
q

 


  


1

1

1 ,z z q     


2

, exp ,
1

u s C C

q




   

 
 

1 expQ x x  

1
,

1s 
 

0 .
1

bq
c

bq



 Then 

2
lim 0n
n

E x x


    
  

and 

1) If  and  2Q v 1
0

1

,
2

bq
c

bq



 we have for all  

1n   

 
2

;nE x x v n    
         (4.8) 

2) In all the remain cases the estimates (4.6) and (4.7) 
hold. 

Corollary 4.5. Assume that is a weakly  

contractive mapping of the class ,  that  

is, in Theorem 3.1 

:T G H  

 
2 1, 1tC t 

  

  .    Let in (1.5)  

, 0n

b
b

n
 .   Then 

       

   

   

1 1
1 1

1

1

1
2 2 1 1

1 1

ln , , 1 ,
1

1 1 ,
2

1 1

F t b t z z

C

x x x




1, ln
s

u s C C ab

ln 2 .Q x ab



 

 





 




  

       

 
 

   

 

If is chosen from the condition  

    

   

0 1  c
1

10 1
1

2
2

c C
C ab

b



,


   
 

 

then 
2

lim 0
n

E x x 
n
   and for all > 1n     


2


1

C c 
1 0

1

, ,

2
x , 2 .

n C

Q C
b

maC

nE x x u    
 

     
   

     (4.9) 

Corollary 4.6. Assume that is a weakly  

contractive mapping of the class ,  that  

is, in Theorem 3.1 

:T G H  

 
2 1, 1tC t 

  

  .    Let in (1.5)  

, 0,0 1n

b
b

n  .     Then  

       

 

   

   

1 1
1 1 1

1

0 1
1

1

11 1 12 ,u s b s

1

12 2 1 1
1 1

, , 1 ,
1 1

2 1
2 ,

1

1
, 1

1

1
1 2

1

b
F t t z z

c C
v s C

b s

C C C a

Q x x x x ab


 

1 .



 

 

 

 

 








  





  

        
 
              

    

       

 

I. Suppose that 

 

1
.

1
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1) If  2Q v  and 0 1c   is  con-  chosen from the
dition  

11

0 12 2
,

c C
ab

b

 
12C




 
        

 

then 
2

lim 0n
n

E x x


    
 and for all 1n   

 
2

.nE x x v n    
         (4.10) 

2) In all the remain cases the estimates (4.6) and (4.7) 
hold. 

II. Suppose that 

1
.

1

 
 





 

If is chosen from the condition  0 1c   
11

0 1
1

2
2 ,

c C
C ab

b



 



 
        

 

then 
2

lim
n

0nE x x    
 and for all   1n 

  2 2
, , max , .nE x x u n C C Q v     

 (4.11) 

In addition to the examples presented in this section, 
roduce the functionwe p s     and    which 

have 0   as a tangency gree 
multiplicity and given logarithmic estimates of the con- 
vergence rate. 

 point of the infinite de

We define the function     by the following way:  
1      exp , 0,f f           

where  f   is differentiable and decreasing function,  
 and   ,  

0
lim f


        ,

where 

0
0 lim , 0,1,2,l l l


  

 
    

 l  
 0

denote the derivative degrees o  the function  f

     , .       It is easy to see that  

   exp f     

and  

    1 1 ln .z f z     

In particular, 

i)     21 1
, exp .f    

 
 
 

 We ha

 

  ve  

1
exp


    and    

1 1
.z   We have to  

ln z

verify that     is conve fact, it is true because x. In 

 2

2

d 2 1 1
2 exp 0, 0.

d

   
 

   


         

Beside this, it is easy to see that 

   

  ,    at least, 
on the interval  0,1

k these 
. In the next eave to 

readers to chec properties. 
examples we l

ii)     11 1
, 1, exp .

s s
sf s   

 
    

 
   

We have   1
pex

s



    and     

1
1 ln sz  .z


   

iii)     11 1 1
exp , exp exp s

s s
f

s
   

  
            

  

We have 

  1
exp exp

s



     
 

 and     
1

1 ln ln .sz z
    

5. Almost Su
Approximations for Nonexpansive 

ngs 

Consider next the almost surely convergence of sto- 
chastic approximations. First of all, we need th  sto- 
chastic analogy of Lemma 2.5: 

re Convergence of Stochastic 

Mappi

e

Lemma 5.1. Let  k  be sequences of no -negative  

real numbers and 

n

 k  be sequence of random kA -  

measurable variables, a.s. nonnegative for all 
Assume that 

k

1.k   

1 1

an .k k
k k

  
 

 

d     

and there exists such that for all 0c   If lim 0k
k




   

1k   

 1 a.s.,k k n kE A c           (5.1) 

then lim 0k
k




  a.s.  

The proof can be provided by the scheme of non- 
 

 [14] as 
ap ase of Hilbert spaces (the concepts of 

stochastic case (see Proposition 2 in [8]) or as it was
done in [5]. 

We need also the following lemma from
plied to our c

modulus of convexity  B   of Banach spaces B or 
Hilbert spaces H  can be found in [15] and [16]). 

Lemma 5.2. If F I T   with a nonexpansive 
mapping : ,T G H n for all  , , the x y D T  

  2
1

1

, ,
2H

Fx Fy  
Fx Fy x y R

R
    

 
 

where 
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 2 21
1 2 .R x y Tx Ty x       y

If x R  and y R  wit  h , ,x y D T  then 
1 2R R  and  

  1 2, .
4H

Fx Fy
Fx Fy x y L R

R
   

      
 

eorem 5.3  that a mapping  is 
no

Th . Assume  :T G H
nexpansive and its fixed point set N  is nonempty. If  

(1.8) holds and 0 ,n nE A C     then the sequence  

 nx  generated by (1.5)-(1.7) weakly almost surely 
converges to some .x N  

Proof. Let .x N   We next use Lemma 5.2 and the 
estimate (see [17], p. 49) 

 
2

8H

  

to get 

 

 
2

2
1

1

,
2 32H .

x Tx x Tx
x Tx x x R

R
    

    
 

 

is case the inequality (3.3) implies  In th

   

 

2

1

2 2

22

1

2 , 2 .

n

n n n n

n n n n n

x x

128 32n x x x Tx

x x



 








 

   



Similarly to (3.10), we have  



 



 

 (5.2) 

 
 

2

1

2

n nE x x A




    
221 8 n n n nx Tx A 

222 , 2 .n n n n n n nE x x A E A   

2 n nx E x         (5.3) 

       

Denote 
2

n nE x x   
 and 

2
E x Tx      n n n

and apply the unconditional expectation to both sides of 
(5.3). Then 

2
1 n



 2
1 1 8 2 2 .n n n n n C             (5.4) 

It follows from this that 

 1 11 8 2 .n n n nC2 2        

Since  and due to Lemma 2.1, we con-  

clude that 

2

1 n
  
 n  is bounded. Consequently,  nx  is 

bounded a. ollows from the theory of co
quasimartingales (see [5,18]). 

We now need Lemma 5.1. It is not difficult to see that 

s. that f nvergent 

2

1 1

.n n n n nE x Tx  
 

          (5.5) 

The last gives us 

2

1

a.s.n n nx Tx


    

Next we evaluate the following difference: 

 
 

2 2

1 1

1 1n n n nx Tx x Tx

1 1

n n n

n n n n

x Tx xnx T

x Tx x Tx

 

 

 

   

It is easy to see that 

      

 

n nx Tx  is bounded a.
si

s. Indeed, 
nce 1nx C  a.s., ther
ch that  

2 0C   e exists a constant 
su

22 a. .n n nx Tx x x C     s

Therefore 

1 1 22 a.s.n n n nx Tx x Tx C      

It is obviously that 

   
 

1 1

1 1 2 1

Pr

2 2 .

n n n n

n n n n n n

n n n n G n

n n n n n

x Tx x Tx

x

2 PrG n

x Tx Tx x x

x Tx x

x Tx

 

  

 

  

   

     

  

  

 

Thus, 

x 

 

2 2

1 1

2
2 2

2 2 0

4 4

4 a.s..

n n n n n

n n n n

n

E x Tx A x Tx

C C E A

C C C

  



 
     

    
 

 

By Lemma 5.1, 0nx T nx   a.s. as .n   
Since  nx  is bounded a.s., there is a subsequence 

 knx  weak onvergent to some point .ly c x  Sin  
is convex a

ce 
 closed, consequently, weak osed,

G
 we nd ly cl

assert that .x G
 T  

 It is known that a nexpansi
ng weakly demiclosed, there ore, 

no
f

ve 
mappi is x N

que
 

nce a.s. Weak almost surely convergence of w  sehole
 nx  

Coro
is e standard way [8]. □ 

 Assume that  

co of the class  If 

 shown 
llary 5.

by th
4. :T G  H  is a weakly 

ntractive mapping   .tC
1

,n


   

2

1
n



   and 0 ,n nE A C  then     th  e sequence 

 nx  generated by (1.5)-(1.7) strongly almost surely 
erges to unique fixed point conv x  of

 We have from (3.4) 
 .T  

Proof.

 2
.n n n nx Tx x x x x        (5.6) 
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Since  nx  is bounded a.s. and 0n nx Tx   a.s.

as  we conclude that

  

,n    2
0nx x    a.s.  

 The proof follows due to the properties of the function
.  □ 

s clear that all rema  still
va  sel
case, e

t

Remark 5.5. It i  the results in  
lid for f-mappings : .T G G  However, in this 

unlike any deterministic situation, th  algorithm 
(1.5)-(1.7) must use the projection operator GPr  be- 
cause the vec or n n n n nx S xv    not always belongs to 
G. If n n n nT x Tx G    for all 1n   and  
0 1,n   then (1.5) can be replaced by 

 1 , 1, 2,1 1n n n n n n , .x x T x n      x   G
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