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ABSTRACT

We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpan-
sive operators in Hilbert spaces under the condition that operators are given with random errors. We prove mean square
convergence and convergence almost sure (a.s.) of iterative approximations and establish both asymptotic and
nonasymptotic estimates of the convergence rate in degenerate and non-degenerate cases. Previously the stochastic ap-

proximation algorithms were studied mainly for optimization problems.
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1. Introduction

In this paper the following problem is solved: To find a
fixed point X" of the operator T:G — H, in other
words, to find a solution X" € G of the equation

x=Tx, (1.

where T is a Lipschitz continuous mapping, H is a
Hilbert space, G H is a closed convex subset. We
suppose that X* exists, i.e., the fixed point set N of
T is nonempty. Note in different particular cases of the
Equation (1.1), for example, when T:G —>G, the
solution existence and solution uniqueness can be proved
under some additional assumptions.

We separately consider two classes of mappings T: the
class of weakly contractive maps and more general class
of nonexpansive ones. Let us recall their definitions.

Definition 1.1. A mapping T:G —» H is said to be
weakly contractive of class C,, on a closed convex
subset G < H if there exists a continuous and increas-
ing function ¢(t) defined on IR* such that ¢ is po-

sitive on IR*/{0},¢(0) =0,lim ,..#(t) =+, and for
all
X,y €G,[Tx-Ty| <[[x—y|-¢(|x-y]).  (1.2)

Remark 1.2. It follows from (1.2) that w(t)<t and
in real problems an argument t of the function y/(t)
doesn’t necessary approaches to oo obeying the con-
dition T:G — H (see the example in Remark 3.4).
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Definition 1.3. A mapping T:G —»> H is said to be
nonexpansive on the closed convex subset G — H if for
all x,yeG

[mx=Ty] < [x~y]-

It is obvious that the class of weakly contractive maps
is contained in the class of nonexpansive maps because
the right-hand side of (1.2) is estimated as

0<[x=y[-d(x-vl)<lx-vl. a3

and it contains the class of strongly contractive maps
because ¢(t)=(1—q)t with 0<q<I givesus

||Tx—Ty|| < q||x— y|| (1.4)

We study the following algorithm of stochastic appro-
Ximation:

Xou = Pl (X, —,S,%,),n=12,---,x, €G, (1.5)

n=n’n

where Pry is the metric projection operator from H
onto G and deterministic step-parameters ¢, satisfy the
standard conditions:

ian =o0 and iaf < o0, (1.6)

n=1

n=
The factor S x, in (1.5) is an infinite-dimensional
vector of random observations of the clearance operator

F=1-T atrandom points x, € G given forall nx>1
on the same probability space (2, A,P). We set
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S X, =¢,+<&,, 1.7)

where ¢, =x,—TX, and &, is a sequence of indepen-
dent random vectors with the conditions

E[£]=0 and E[||§n||2JsCI,O<C1 <o (1.8)

Here E is a symbol of the mathematical expectation.
In order to calculate conditional mathematical expecta-
tions of different random variables we define the o -
subalgebra A =o(X,%,-,X,) on (Q,AP). And
then E[& /A/] means A -measurable function with
the following property: for any B e A,

lfndP(w):lE[én/An]dP(w).

We also assume in the sequel that &, is A,-mea-
surable for all n>1.

Let us recall the mean square convergence and almost
sure (a.s.) convergence.

We say that the sequence {fn} of random variables
&, (w) converges in mean square to & if & exists
and

lim E[ ¢, & | = 0.

n—owo

The sequence & converges to & almost surely or
with probability 1 if

P(limé, ()= £(w))=1.

Almost sure convergence and convergence in mean
square imply convergence in the sense of probability:
The sequence {&,} of random variables &, (@) con-
verges in the sense of probability to &(w) if for all
>0
lim P

n—o0

& (a))—f(a))" > 5) =0.

So, we consider iterative processes of stochastic
approximation in the form (1.5) for finding fixed points
of weakly contractive (Definition 1.1) and nonexpansive
(Definition 1.3) mappings in Hilbert spaces under the
conditions (1.8). We prove mean square convergence and
convergence almost sure of iterative approximations and
establish both asymptotic and nonasymptotic estimates of
the convergence rate. Perhaps, we present here the first
results of this sort for fixed point problems. Formerly the
stochastic approximation methods were studied mainly to
find minimal and maximal points in optimization
problems (see, for example, [1-6] and references within).

2. Auxiliary Recurrent Inequalities

Lemma 2.1. [3,4] Let {u}.{p} and {3} be se-
quences of nonnegative real numbers satisfying the re-
current inequality.
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ti ST+ p ) + 76 k=12, (2.1)

Assume that i P, <o and i 7 <o. Then {u}
k=1

k=1
is bounded and converges to some limit.
Lemma 2.2. [3.4] Let {x},{¢.}, {a}and {3, } be
sequences of nonnegative real numbers satisfying the
recurrent inequality.

by S+ p ) —aw () + 70 k=12, (2.2)

00 0 0
where ) o, =, p, <o andeither )y, <o or
k=1 k=1 k=1

lim 2 = 0.
k—o0 ak

2.3)

Assume that (t) is continuous and increasing func-
tion defined on IR" such that w is positive on
IR*/{O}, (//(0):0. Then limy_.t4 =0. There exists
an infinite subsequence {k },1=1,2,---, such that

_ 1 Yk
luk| SCOV/ : K +_I 5

2% %

where C, > 12[(1+pk ):
k=1

In the following two lemmas we want to present non-
asymptotic estimates for the whole sequence gz ,k >1.
For this the stronger requirements are made of para-
meters ¢, and function w(t) in the recurrent in-
equality.

Suppose that «(t) suchthat a(k)=¢,, F(t) and

b
w(t)
spectively, with arbitrary constants C (without loss of
generality, one canput C=0), i.e.

dt

F(t)=[a(t)d,o(t)= i}

Observe that F(t) has the following properties:

i) F'(t)=a(t);

ii) F(t) is strictly increasing on [1,00) and
F(t) > as t—ow;

F ’
iii) The function g(t)= ﬂ = (V)
F(t) F()

iv) G(t)=InF(t) > as t—oo.

Introduce the following denotations:

1) y'(z) and ®7'(z) are the inverse functions to
w(t) and ®(t), respectively;

2) v(s)zy/1{%};{5—1),522,0@% is a

®(t) are antiderivatives from «(t) and re-

is decreasing;
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fixed control parameter;
3) u(s.C)=0"[®(C)-a(F(s)-F(2))].

co—l<1'

Co

4 w(s.v(r) =" [(v(r))-a(F(s)-F(2))]:

2<r <oo;

5) Q(c)=o"'[@(c)-a(F(2)-F(1))], where
€ >0 is an arbitrary fixed number;

We present now the based condition (P): The graphs
of the scalar functions v(s) and W(S,V(r)) with any
fixed re[2,0) are intersected on the interval [2,00)
not more than at two points S, and S, (we do not con-
sider contact points as intersection ones excepting S =2
if any).

For example, the graphs of the functions Vv(s) and

C>0,a=

W(s,v(r)) calculated for a(s):%, b>0,0<x<1,
S

and y(t)=t",v>1, satisfy the condition (P).

Lemma 2.3. [3,4] Assume that 1) the property (P) is
carried out for the function w(s,v(2))=u(s,v(2)) and
v(s); 2) u(s,v(2))2v(s) as s —oo; 3) the control
parameter c, ischosen such that

u(s,v(2))=v(s)ass—2. (2.4)

Then for the sequence {z} generated by the in-
equality

/—lk+1S:uk_akl//(ﬂk)+7kak=1929"” (25)

it follows: lim, ,, 4 =0 andforall k>1
o <u(k,C),C=max{Q(s).v(2)}. (26

Lemma 2.4. [3,4] Assume that 1) the property (P) is
carried out for all the function w(s,v(2r)) and v(s);
2) u(s,v(z)) <v(s) as s—oo. Then for the sequence
{14} generated by the inequality (2.5) limk .ty =0.
In addition,

a) if Q(z4)<v(2) and the control parameter ¢, is
chosen such that u(S,V(Z)) <v(s) as s—2, then for
all k>2

e <v(): @)

b) in all remaining cases

(k.C).C =max{Q(s).v(2)},

H = 2.8)
1<k<s, '

s <v(k),k>F, (2.9)

where S 1is aunique root of the equation

Copyright © 2012 SciRes.

u(s,C)=v(s)
on the interval [2,0).
The following lemmas deal with another sort of
recurrent inequalities:
Lemma 2.5. [7,8] Let {x},{e}.{B} and {y} be
sequences of non-negative real numbers satisfying the
recurrence inequality.

(2.10)

M S =B+ 1o k=12, (2.11)

Assume that

iak =o0 and i;/k < oo,
k=1

k=1

Then:
i) There exists an infinite subsequence { B, } <{B}
such that

1
’B’i‘kgék >

2.9
j=1

and, consequently, 1imkﬁwﬂg,k =0
il) if limy_.0, =0 and there exists x>0 such that

1B —B| < ke, (2.13)

forall k>1,then limy .0 =0.

Lemma 2.6. [7.8] Let {x}.{e},{B}and {y} be
sequences of non-negative real numbers satisfying the

(2.12)

recurrence inequality (2.11). Assume that Zak =0
k=1

and (2.3) is satisfied. Then there exists an infinite sub-
sequence {ﬂ/k}c{ﬂk} such that limi.f3, =0.

3. Mean Square Convergence of Stochastic
Approximations

Theorem 3.1. Assume that T:G—H is a weakly
contractive mapping of the class C,.). v, (t)=14(7)
is a convex function with respect to t = r and

["x1 -X || }<oo. Then the sequence {x,} generated

by (1.5)-(1.7) converges in mean square to a unique fixed
point x* of T. There exists an infinite subsequence
{n},1=1,2,---, suchthat

il

where l//(TZ) =y, (r) and some positive constant C,
satisfies the inequality

1

* 2 -1
:| <Cyy m
D a

n=1

+Ca, | (D)

n

[T(1+8a2)<cC (3.2)

n=1
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Remark 3.2. 1<C, <o exists in view of the second
condition in (1.6).

Proof. First of all, we note that the method (1.5)-(1.7)
guarantees inclusion X, €G for all n>1. Since the
metric projection operator Pr; is nonexpansive in a
Hilbert space and X" € G exists, we can write

2
Xowl — X*"

= ||PrG (% =ty (%, =Tx, +&,)) - Per""2
[ 20, (6, + &% -X) (3.3)
X, —x""2 =20, (oo %, —x*)

-2a, (.fn,xn - x“‘)+||xn+1 - xn||2 .

<

X, — X"

Let us evaluate the first scalar product in (3.3). We
have

(xn—Txn,xn —X )
=(xn—x =TX, +TX ', X, =X )

* 2 * *
X, — X || —(Txn—Tx X, — X )

" . . 34
2%, — X || —|Tx, =Tx"||[|X, — X ||
2 =X = =x =4 x|
20 {0 =)o == w1 (o =x])
We remember that W(rz):wl(r). Then the in-
equalities (3.3) and (3.4) yield
2 2 2
xnﬂ—x*" < xn—x*” —2an1//( xn—x*" )
(3.5)

“a, (gn,xn —x*)+a§ I¢, +&I -

Applying the conditional expectation with respect to
A, to the both sides of (3.5) we obtain

LT /A |

X, x| —2an1//( X, - x*||2) (3.6)
—2anE[(§n,xn —x*)//ﬂme["gn +§n||2/An]

It is easy to see that

El¢.+&2]/A ]

<2€[|c. [ /A [+ 2E[ & /A | (3.7)
=2, +2E[ e /A, |

Since T is weakly contractive and therefore non-
expansive, one gets

<
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%, =T, [ < 4||xn - x*”z.

Taking into account (3.7), the inequality (3.9) is esti-
mated as follows:

e |- xT /|

<(1+8a;)

x,—x [ —2(1”(//( X, —x*||2) (3.8)

~20,E[(&,%, - X )/M+2an25[||§n||2/ﬂ.

Now the unconditional expectation implics

]

< (1+8aﬁ)E[ X, —x*"z}—ZanE[w( X, —x*||2)} (3.9)
~20,E[(&,% —x')|+2a2E [||§n ||2]

Next we need the Jensen inequality for a convex fun-

x| )
e[l T )] sv (e[l <11

(see [9,10]). This allows us to rewrite (3.9) in the form

E[ Xp. — x*"z}

S(l+8aﬁ)E[ xn—x*ﬂ

-2, E[ - x [ ])+ 20l ]

because of

ction 1//(

(3.10)

E[(&.%,-x)]=0.

Denoting A, = E[

« |12
X, — X " } we have

Aoy < (14807 ) 4, =20, (4,) +2Ci7,  (3.11)

where in view of Definition 1.1, (1) is a continuous
and increasing function with y(0)=0. Due to (6),
from Lemma 2.2 it follows

2
e[ ]

and the estimate (3.1) holds too. The theorem is proved.
O
Remark 3.3. If a fixed point of weakly contractive
mapping T :G — H exists, then it is unique [11].
Remark 3.4. The following example was presented in
[11]: Let Tx=sinx, G=[0,1] and T:G —G. It has
been shown in [11] that
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|sin X —sin y| < |x— y|—%|x— y|3

forall 0<x<y<1. Then

¢(T) = é‘l’3,l//1 (T) =%z’4 and l//(t) :%tz.
Definition 3.5. Let a nonexpansive mapping
T:G — H have a unique fixed point x". T is said to
be weakly sub-contractive on the closed convex subset
G < H if there exists continuous and increasing func-
tion y(t) defined on IR* such that y is positive on

IR"/{0}, w(0)=0, lim ¢(t)=+oc, such that for all

xeG.
<x—Tx,x—x*>ZV/(HX—X*”Z).

Theorem 3.6. Assume that a mapping T:G —> H is
weakly sub-contractive and the function y (t) in (3.12)
is convex on IR* Then the results of Theorem 3.1 holds
for the sequence {x,} generated by (1.5)-(1.7).

The second inequality in (1.6) can be omitted if we
assume not less than linear growth of y(4) “on in-
finity” and put ¢, >0 as n—> o

Theorem 3.7. Assume that a mapping T:G —>H is
weakly sub-contractive and the function y (t) in (3.12)
is convex on IR" Suppose that instead of (1.6) the
conditions

(3.12)

lime, =0 and ) a, =x. (3.13)
N—o0 =1
hold. In addition, let o, <a <0.5 and
A
im? A5 4z (3.14)
A—w l

Then the sequence {X,} generated by (1.5), (1.7) and
(3.13) converges in mean square to X*. There exists an
infinite subsequence {n},I =1,2,---, such that

il

2} <y L Cf”‘

N

X, — X

n
n

where

2

C, =2C, +8max{"x* - %

C}

C,=A+2Ca’ +8a’A,, (3.15)
A =y (Ca+4al,).
Proof. Consider the inequality ( 11) in the form
Aot S A —2a,w(4,)+2C,0) +8a; 4, (3.16)

Copyright © 2012 SciRes.

where 4, = E[

X, — X

2}. Observe that it is derived by

making use of (3.4) and the nonexpansivity property of
T. We shall show that A are bounded for all
nel={1,2,--}. Indeed, since w(4) is a convex in-
creasing continuous function, we conclude that

v (ﬂ') = ng/i)

the inequality y (1) <C,&+4aA has a solution
A< A, where A, is the unique root of the scalar equ0
ation 1//(/1) =C,a +4aA. Together with this, (3.4) and
(3.14) are co-ordinated by the parameter & < 0.5.

Only one alternative can happen for each nel:
either

is nondecreasing and since (3.14) holds,

H, = —20:n1//(/1n)+2C1a§ +8a;1,>0

or
H, =-2a,y(4,)+2Ca; +8a,4, <0.
Denote |, :{n € I|H1 is true} and
I, ={nel|H, is true} . It is clear that 1, U1, =1. From

the hypothesis H,, it arises
v (4,)<Ca+4ai,,

and then A4, <A, for all nel,. From the hypothesis
H,, we have: A, <A, for all nel,. Consider all
the possible cases:

1) I,=&. Then A4, <A, forall nel.

2) I, =C. Then A, <A forall nel.

3)Let I, ={1,2,---,Ny} and I,={N,+1,N,+2,---}.
Then A4, <A, for n=1,2,---,N,. By (3.16),
Anyn SC,. Itis obvious that 4, <C, for
N, +2,N,+3,---. Therefore, A4, <C, forall nel.

4)Let 1, ={1,2,---,Ny} and I,={Ny+1L,N;,+2,-}.
Then A4, <A for n=1,2,---,N,. and A4, <A, for
Ny, +1,Ny+2,--- Thus, 4, <4, forall nel.

5) Let I, and |, be unbounded sets. Consider an
arbitrary interval

I, =[n,+Ln,, —1]c1,,

where ng,n.,, el,,s=13,5,---. Itis easy to be sure that
A, <A, and 4 <C, forall nel,.

6) The other situations of bounded and unbounded sets
I, and |, are covered by the items 1)-5). Consequently,
we have the final result: A, <max{4,C,} for all
nel.

Thus, we obtain the inequality

Ao S A4 —2a,w (4,)+Cia,

n+1

(3.17)

where C; is defined by (3.15). Now Lemma 2.2 with
the condition (2.3) implies the result. O
Remark 3.8. For a linear function y(7)=cz which
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is convex and concave at the same time we suppose
22c>4a.

Remark 3.9. If G is bounded or more generally
{x,} is bounded, then the inequality (3.17) (with some
different constant C, ) immediately follows from (3.16).

4. Estimates of the Mean Square
Convergence Rate

Using Lemmas 2.3 and 2.4 we are able to give two
general theorems on the nonasymptotic estimates of the
mean square convergence rate for sequence {Xn} gene-
rated by the stochastic approximation algorithm (1.5)-
1.7).

Again we introduce denotations 1)-5) from Section 2
induced now by the recurrent inequality (3.11):

1) y'(z) and ®'(z) are the inverse functions to
w(t) and ®(t), respectively;

2) v(s)=y'[Ca(s-1)]+2Ca* (s-1),¢, >1 is
a fixed control parameter;

3) u(s,C,) =07 [@(C,)-a(F(s)-F(2))].C, >0,
a=Sl

C0
4) w(s,v(r))=o" [(D(v(r))—a(F (s)-F (2))]

2<S8,r <oo;

5) Q=o' [qn("x1 —x 2)—a(F(z)— F(l))]

Introduce also the basic condition (P).

Theorem 4.1. Assume that all the conditions of
Theorem 3.1 are fulfiled and

1) the condition (P) holds for the functions

w(s,v(2))=u(s,v(2)) and v(s);

ii) u(s,v(2))2v(s) as s—oo;

iii) c,>1 is chosen such that u(s,v(2))2v(s) as
S —2.

Then the sequence {X,} generated by (1.5)-(1.7)

converges in average to a unique fixed point X" of T
and forall n>1

E[ 2}scou(n,g),

C, = max{Q,v(2)}.

Theorem 4.2. Assume that all the conditions of
Theorem 3.1 are fulfiled and
i) the condition (P) holds for the functions v(s)

and W(S,V(Z)) with any fixed Ze[Z,oo);

X, — X

4.1)

ii) u(s,v(2))<v(s) as s—o;
iii) If Q<v(2) and ¢,>1 is chosen such that

u(s,v(z))gv(s) as s—2, then the sequence {X,}

Copyright © 2012 SciRes.

generated by (1.5)-(1.7) converges in average to a unique
fixed point x* of T andforall n>1

E["xn =X 2}scov(n); (4.2)

iv) In all the remaining cases, (4.1) holds for
1<n<S and (4.2) for n>S, where S is a unique
root of the equation u(s,C,)=v(s) on the interval
[2,00) .

Let us provide the examples of functions !//(T) and
® (1) suitable for Theorems 4.1 and 4.2 (see [12,13]).

1) Below in Corollaries 4.3-4.6 we use the functions
w(r)=7" with v>1. For them

InA,ifv=1,

D(A)=1 g1~ 4.3
() A ,f v #1, *3)

1-v
and
exp z,if v=1,

o' (z)= 4.4)

1
[(1-v)z]rr,if v =1,
2)If y(r)=expr—1,7>0, then

®(7r)=In(1-expr)and @' (z) =—In(1—expz).
3)If w(r):ﬁ,r>0, then
®(r)=Inr+rand @' (z)<In(l+expz).

2

HIF y(r)= ;1

,7>0, then

1
®(r)=Inz ~

In this example we are unable to define ®'(z) in
analitical form, therefore suggest to calculate it nume-
rically by computer.

We next present very important corollaries from The-
orems 4.1 and 4.2, where their assumptions automatically
guarantee accomplishment of the condition (P) (see [4]).
The functions (7) coincide with the point 1) above.

Corollary 4.3. Assume that T:G — H is a strongly
contractive mapping, that is, (1.4) is satisfied with

0<qg<l. Letin(1.5) anzg,b>0. Then
n

F(t)=blnt, d(r) =% @' (z) =, q =1-q,

a

abg,
v(s) =(2%Cl+zclji,u(s,c) =c[3) ,

S

2 (1 abgy
S

Q:"xl—x*

AM



YA.I. ALBER ET AL. 2129

I. Suppose that b > 1 and c,> bg, . Then
q, q, -
lim E[”Xn -x" 2:| =0 and
ba,
1) If Q<v(2) and c,> by W have for all
-
n>1
2
E[ X, — X" ]SV(n); 4.5)
2) In all the remain cases
E[ X, — X 2} <u(n,C),
(4.6)

C =max{Q,v(2)},1<n<s5,

il

where S 1is aunique root of the equation
u(s,C)=v(s) onthe interval [2,0).

and

xn—x*”stv(s),nZE 4.7

by,
1-Dbg,

II. Suppose that L<b<i and ¢, > >1.

2q, O

Then 2}20 and the estimate (4.6)

X, =X

lim E[
holds forall n>1.
Corollary 4.4. Assume that T:G — H is a strongly

contractive mapping, that is, in (1.4) is satisfied with

0<qg<l1. Letin(1.5) an=£K,b>O,O<K<l. Then
n

b Inz
F(t)=—t"",d(r)=—,
()=t ()=

X, — X

Suppose that c,> bbq 5 Then lim E[
q —

n—ow

T

, we have for all

and
ba,

1

1) If Q<v(2) and Cozb

n>1

Copyright © 2012 SciRes.

E[ Z}SV(H); (4.8)

2) In all the remain cases the estimates (4.6) and (4.7)
hold.
Corollary 4.5. Assume that T:G —> H is a weakly

contractive mapping of the class C m =t*",v>1, that

is, in Theorem 3.1 w(7)=17". Letin(1.5)

a, =9,b >0. Then
n

X, — X

F(t):blnt,cp(f):lf 07 (2)=[(1-v) 2],

u(S,C):C{H(V—I)Cv‘labln%} ,

1
Y abn 2} H.

.
Q:"xl—x

2[1+(v—1)||x1 -X

If ¢, >1 ischosen from the condition

v-1
(Z%Q+2Clj ab<v,

X, — X

E[ ZJSU(n,C),

1
C = max {Q(chlch +2C1}.

Corollary 4.6. Assume that T:G —> H is a weakly
contractive mapping of the class C,, =t*",v>1, that

is, in Theorem 3.1 y/(z)=7". Letin(1.5)

a =£K,b>0,0<1(<1. Then
n

n

then lim E[

n—o0

2}:0 and forall n>1

X, — X

(4.9)

b . . ' L
F(t):mt‘ ,@(r):l_v

L
0(s.0)=C|1+1=le e[ -2 7,
1

’ [1 +2 _’i”x, v ab(2" —I)T_1 .

Q =||x, X"

1-
1. Suppose that
Kk l-x
—< .
v v-1
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1) If Q<v(2) and c,>1 is chosen from the con-
dition
v-1

1
(%jv+2q ab>2 %
b v

then limE ["x -x

n—oo

2}:0 and forall n>1

E["xn -X" 2} <v(n).

2) In all the remain cases the estimates (4.6) and (4.7)
hold.

II. Suppose that

(4.10)

If ¢, >1 ischosen from the condition

v-1

1
(%jv +2C,| ab Sf,
b v

then imE [

n—oo

il

In addition to the examples presented in this section,
we produce the functions y(z) and ®(A) which
have 7=0 as a tangency point of the infinite degree
multiplicity and given logarithmic estimates of the con-
vergence rate.

We define the function (7) by the following way:

v(r)= —exp(—f (z’))[f’(z’)T1 ,7>0,

where f(r) is differentiable and decreasing function,

?L% f(r)=o0, and

X, — X

2}:0 and forall n>1

X, —x*ﬂ <u(n,C),C =max{Q,v(2)}. (4.11)

p"(0) = lim " (),1 =0,1,2,---,

750+

where (1) denote the derivative degrees of the function
y/(r),y/(o) (r)=w(z). Itis easy to see that
®(7)=—exp f(7)
and
@' (z)=f"(In(-2)).
In particular,

i) f(r):%,w(r):rz exp[—%). We have

O(7) = —expl and ®7'(z)= We have to
T

1
In(-z)

Copyright © 2012 SciRes.

verify that w(7) is convex. In fact, it is true because

d*y (7)

:[2+ 2lejexp(—lj >0,V7r>0.
dr T T

Beside this, it is easy to see that y(7)<7, at least,
on the interval [0,1]. In the next examples we leave to
readers to check these properties.

ii) f(r):is, s>1, y/(r)zexp(—isjrs”.
T T

1
We have @(7)= —expls and @' (z)=(In(-2)) =.
T

1 1 1
f _ -, _ - o s+1
iii) f(7) eXst v (7) exp( Ls+exp(TS]Dr
We have

1

@(T)z—exp(exp%) and ' (2) = (Inln(~2)) .

5. Almost Sure Convergence of Stochastic
Approximations for Nonexpansive
Mappings

Consider next the almost surely convergence of sto-
chastic approximations. First of all, we need the sto-
chastic analogy of Lemma 2.5:

Lemma 5.1. Let {¢,} be sequences of non-negative
real numbers and {3} be sequence of random A -

measurable variables, a.s. nonnegative for all k>1.
Assume that

00 0
D = and Y o f <oo.
k=1 k=1

If llim o, =0 and there exists ¢ >0 such that for all
k>1
B —E[B/A] < cay as. (5.1)

then ilim B =0 as.

The proof can be provided by the scheme of non-
stochastic case (see Proposition 2 in [8]) or as it was
done in [5].

We need also the following lemma from [14] as
applied to our case of Hilbert spaces (the concepts of
modulus of convexity &, (&) of Banach spaces B or
Hilbert spaces H can be found in [15] and [16]).

Lemma 52. If F=I1-T with a nonexpansive
mapping T:G — H, thenforall x,yeD(T),

Fx—-Fy
(Fx—Fy,x—y)zRfSH{—" R "]

where
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R =2 (= vI +Ime=TvF) <[lx- ],

If |[x|<R and |y|<R with x,yeD(T), then
R <2R and

| <
_ _ -1p2 "FX_Fy"
(Fx—Fy,x—y)>L"'R*s, (—4R .

Theorem 5.3. Assume that a mapping T:G —>H is
nonexpansive and its fixed point set N is nonempty. If

(1.8) holds and E[||£[/A ]<C,. then the sequence
{x,} generated by (1.5)-(1.7) weakly almost surely
converges to some X e N.

Proof. Let x" € N. We next use Lemma 5.2 and the
estimate (see [17], p. 49)

2
&
5H (8)2?

to get

(x—Tx,x—x*)z R’S, [”X_TX”] >

2R,

[x-7x
32

In this case the inequality (3.3) implies

«|12
Knag —X ||

<(1+8a; )|, ~(32)"|er,
“2a, (&% - X )+ 227 |¢, I

Similarly to (3.10), we have

%xm—ﬂh%}

<( Ell -l /A ] 63
~2¢ E[ X, X /A1]+2a Ell& /A |

X, ~Tx,|[ (5.2)

Denote A, = E[ N

«||? 2
| and 4 =E[l, -7 ]
and apply the unconditional expectation to both sides of

(5.3). Then
A

n+l —

<(1+8a7 ) 4, —2a, 8, +2Cia;.  (5.4)
It follows from this that
o < (14827 ) 4, +2Ca;.

n+l —

Since Zla <oo and due to Lemma 2.1, we con-

clude that {4} is bounded. Consequently, {x,} is
bounded a.s. that follows from the theory of convergent
quasimartingales (see [5,18]).

We now need Lemma 5.1. It is not difficult to see that

S af, = ianE[”xn T [ |< (59)

Copyright © 2012 SciRes.

The last gives us
A
Next we evaluate the following difference:
P =T = =T |
< ([ =Tt =T,

(P =T =[x =T}

It is easy to see that ||X -Tx || is bounded a.s. Indeed,
since ||X ||<C1 a.s., there exists a constant C, >0
such that

-Tx, ||2 <o a.s.

[, =T, | = 2||xn -x' || <C, as.

Therefore

It is obviously that

— T || +]|%, =X, || < 2C, as.

I‘I+1
oot =T = [0 =T ||

(Xor =%, )+ (T, — || < 2| X =%
= 2||PrG X, —a, (X, —Txn +&)—Prg X,
<2a, %, =T, [+ 2, ||,

<|

Thus,

E |:||Xn+l _TXn+l "2 /A’I :| _”Xn _TXn "2

<4a,C; +4a,CE[]4, /A ]
<4C,(C,+Cy)a, as.

By Lemma 5.1, ||Xn -Tx, || —0 as.as n—oo.
Since {x,} is bounded a.s., there is a subsequence
{Xnk} weakly convergent to some point X. Since G
is convex and closed, consequently, weakly closed, we
assert that XeG. It is known that a nonexpansive
mapping T is weakly demiclosed, therefore, Xe N
a.s. Weak almost surely convergence of whole sequence
{X,} is shown by the standard way [8]. O

Corollary 5.4. Assume that T:G —> H is a weakly

0

contractive mapping of the class C¢(t)' If >a,=0w

n 5
1

iaﬁmo and E[||£[/A ]<C,. then the sequence
1

{xn} generated by (1.5)-(1.7) strongly almost surely
converges to unique fixed point x* of T.
Proof. We have from (3.4)

X, =Tx, X, —x*||2). (5.6)

X, —x*”zw(

AM
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Since {x,} is bounded as. and |x,-Tx,|—>0 a.s.

as N— oo, we conclude that 1//(

«|12
X, — X || )—>0 a.s.

The proof follows due to the properties of the function
V. O

Remark 5.5. It is clear that all the results remain still
valid for self-mappings T:G — G. However, in this
case, unlike any deterministic situation, the algorithm
(1.5)-(1.7) must use the projection operator Prgy be-
cause the vector v, =x, —a,S,x, notalways belongs to
G.If T.x,=Tx,+& €G forall n>1 and
0<a, <1, then (1.5) can be replaced by

Xoor =(1—a ) %, + o, T X,,n=1,2,---,% €G.

n'n“*n>
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