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ABSTRACT 

In this paper, we propose a new class of discrete time stochastic processes generated by a two-color generalized Pólya 
urn, that is reinforced every time. A single urn contains a white balls, b black balls and evolves as follows: at discrete 
times  we sample 1, 2, ,n    nM  balls and note their colors, say  are white and nR n nM R  are black. We return 

the drawn balls in the urn. Moreover,  new white balls and n nN R  n n nRN M  new black balls are added in the urn. 

The numbers nM  and  are random variables. We show that the proportions of white balls forms a bounded 

martingale sequence which converges almost surely. Necessary and sufficient conditions for the limit to concentrate on 
the set  are given. 

nN

 0,1

 
Keywords: Urn Model; Martingale; Asymptotic Exchangeability 

1. Introduction 

Urn models have been among the most popular probabi- 
listic schemes and have received a lot of attention in the 
literature (see [1,2]). Let us describe the Pólya urn 
scheme briefly. In 1923, [3] proposed the following urn 
scheme to model processes such as the spread of in- 
fectious diseases. In this scheme, a single urn contains 

 white balls and  black balls. One ball is 
drawn at random and then replaced, together with  
balls of the same color. The procedure is repeated n times. 
It is known that the sequence of the proportions of white 
balls is a martingale converging almost surely to a 
random variable having a beta distribution with para- 
meters 

0a  0b 
0c 

a c  and b c . Since then, numerous generaliza- 
tions and extentions of the Pólya urn have been studied : 
see [4-14]. In 1990, [6] generalized the Pólya urn model 
with the single change that the number of extra balls 
added in the urn is a function of time. One ball is drawn 
and is replaced in the urn along with F(n) balls of the 
same color. In his setup  can be any 
function. He showed that the proportions of white balls 
converge almost surely and the limit has no atom except 
possibly at 0 or 1. 

 : 0,  F 

In this paper, we propose a new class of discrete time 
stochastic processes generated by a two-color genera- 
lized Pólya urn that is reinforced every time. This is a 
generalization of the urn model considered in [10]. A 
single urn contains  white balls and  black  0a  0b 

balls: at discrete times 1,2, ,n    we draw nM  balls 
and note their colors, say n  are black and n nR M R  
are white. We return the drawn balls to the urn. More- 
over, n n  new white balls and n n  new 
black balls are added in the urn. The numbers n

N R  nRN M
M  and 

n  are random variables in . We show that the pro- 
portions of white balls form a bounded martingale se- 
quence which converges almost surely. Necessary and 
sufficient conditions for the limit to have no atoms at 0 or 
1 are given. 

N 

This paper is organized as follows. In Section 2, we set 
the probabilistic model for a randomly reinforced urn. In 
Section 3, we show that the proportions of white balls 
form a bounded martingale sequence which converges 
almost surely. Necessary and sufficient conditions for the 
limit to concentrate on the set   are given. We 
conclude the paper by proving that interacting reinforced 
urn process are asymptotically exchangeable. 

0,1

2. Model Description and Notation 

On a rich enough probability space  , define 
two sequences 

, ,  
 nM

W

 and   of positive, integer- 
valued random variables and let  and b  are fixed 
positive integers. A randomly reinforced urn generates 
the stochastic processes  n n n . The se- 
quences n  and n  respectively denote the number of 
black balls and white balls in the urn at time . The 
dynamics of the processes  n  and 

nN



,W

a

 W B



 , , R

nB

B
n

 nR

0 0,W a B b  
 are 

governed by the following: set  and let  *Corresponding author. 
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1  be a R  1 0 0Hypergeometric ,  ,  M W B

1n  
1 1 1 1,  ,  ,  ,  ,  ,  n nM M N N  

 1, ,n n

 random varia- 
ble. Now we iterate this sampling scheme forever. Thus, 
at time , given the sigma-field n  generated by 

, we consider that 

1n  is a Hypergeometric n

,
R 

,R R n

M W B

R 

n

 random va- 
riable and we assume that 1n  and 1n  are in- 
dependent conditionaly on . Finally, we set  

N

 
1 1 1

1 1 1

1
1

1 1

,

,

.

n n n n

n n n n n

n
n

n n

W W N R

B B N M R

W
Z

W B

  

  




 


     

 
 

1      (2.1) 

This is a generalization of the reinforced urn model 
considered in [10]. Assume that, at each time periode 

 a new firm appears on the market and 
have to choose operative systems among the systems A 
and B, for its n n  computers. The firm can choose 

n  blocks of size n  of computers having the 
operative system 

1,  2,  ,n  

R
N M

N
A . This choice depends on the number 

of computers having the operative system A on the 
market. The process  nZ  given in (2.1) is going to 
describe the evolution along time of the proportion of 
computers operating systems A. 

3. Martingale Property 

The process   is of primary interest for 
studying the stochastic processes generated by this 
generalization of Pólya’s urn. Here n

: 0nZ n 

Z  represents the 
proportion of white balls in the urn at time . We show 
that these proportions form a bounded martingale. This 
martingale converges almost surely. The next theorem is 
of fundamental importance, this is our main result.  

n

Theorem 3.1. The sequence  : 0nZ n   is a bounded 
martingale with respect to the filtration n  taking 
values in 


 0,1 .  Therefore, it converges almost surely to 

a random variable  0,1Z  .  
Proof. 

Here n nZ W n  with  be-  
1

n

n jj
a b M N


   j

ing the total number of balls in the urn at time . Now 
let us show that 

n
 nZ  is a martingale. In fact 

1 1
1

1 1

1 1

1

1 1

1

.

n n n n
n n n n

n n

n n n n
n

n

n n n n n
n n

n

W W N R
Z

W N M Z

Z N M Z
Z

 






 


 

 



 



   
        

    
 

  
  
 

  


  





1







 

This shows that  nZ  is  0,1

n

-bounded martingale 
with respect to the filtration  . Hence, there exists a 

random variable  0,1Z   such that limn nZ Z   
on a set of probability one. 

The exact distribution of Z  is unknown except in a 
few particular cases. The situation where 1nM   
almost surely for all  and n  almost surely 
for all n corresponds to the classical Pólya-Eggenberger 
contagious urn scheme. In this case 

n 0N c 

Z  has a beta 
distribution with parameters a c  and b c . Let us 
continue with the general case.  

Theorem 3.2. The limit Z

 

 is Bernoulli distributed if 
and only if  

  
 

2

2
1 1n nN M 

0

1

2
1

1
with .

1

n
n

n n n n
n

n n

ab

a b

Z Z M






 












  
  

  




 

Proof. From (2.1) we have 

 

 
   

2 2 2
1 1 1

2 2
1 1 1

2
1 1 1

2 2 2
1 1

   

ar

1

1

  ,

n n n n n n

n n n n n n

n n n n n n
n

n

n n n n

W W N R

N R R

N M Z Z M

N M Z




  

  

  

 

          
            
  

  
  

   

 

  






 

thus we get 

 

   

   
 

2

12
1 2

1

2

1
12 2

1 1

2

2
1

2
1 1 1

2
1

2 2 2
1 1

2
1

   

2

  

1

1

  

2
  

n n n
n n n

n

n n n
n n n

n n

n
n

n

n n n n n n
n

n n

n n n
n

n

n

W W W
Z

W W W
W W

W

N M Z Z M

N M Z

Z



 




 













 



  



 



           
   
 

n     
     
 

  
  

  
  

  
 

  
  



 

 









   
 

2 2

1 12 2
1 1

2
1 1 1 2

2
1

1
.

1

n n
n n n n n

n n

n n n n n n
n n

n n

Z
N M Z

N M Z Z M
Z


 


 

 
 

  



n
   

     
      

  
  

  



 

1

 

The transition between the second equality and the 
third equality relies on the fact that, conditionally on 

1, andn n nN R   are independent. As a result  
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2
1n n

2
nZ Z        ,       (3.1) 

with 
   
 

2
1 1 1

2
1

1
.

1
n n n n n n

n
n n

N M Z Z M


 
  



  
  

  
  

Now we set  2
n nV Z a a     b , and we have 

from (3.1) 

  

 

2
1 1

0 2
0

      .

n n

n

n n j j
j

V Z a a b

ab
V V

a b 0

n

j

 

 



    

      










 

Consequently, 2
nZ    converges to  a a b  if 

and only if Vn converges to , which happens whenever  0

 2
0

j
j

ab

a b









 . This is the desired result because a ran-  

dom variable  0,1   satisfies the condition  

  2       if and only if   is concentrated on the  

set .  0,1
This theorem applies, for example, when nM n  

and  almost surely. In fact from (3.1), we re- 
mark that when 

2n
nN 

 nM G n
 :G

 and n  almost 
surely (  and  be any function) 
we have 

N F


n
*:F  * 

      
 

2 2
1

2

2
1

2 2

1 1
            

1

             ,

n n n

n

n n

n n

Z Z

G n F n G n

a
Z Z

a b





 





       
   




           

 

 

1
 

and we deduce 

  
      

 

      
 

 
      

 

2
1 1

2

2
1

2

0 2
0 1

2

2 2
0 1

1 1 1
1

1

1 1 1
1

1

1 1
1

1

1

n n

n
n

n n

n
j

j j j

n
j

j j j

V Z a a b

G n F n G n
V

G j F j G j
V

G j F j G jab

a b



 



 



 

 



 

 

    

    
  

  

    
 
  

    
 
  







.







 

Consequently, 2
nZ    converges to  a a b  if 

and only if  converges to 0 , which happens when-  n

ever the product values  
V

      
 

2

2
1

1 1
1

1
n

n n

G n F n G n

 

    
   

1
 converges to  

0 . This happens whenever 

      
 

2

2
0 1

1 1

1

j

j j j

G j F j G j

 



 

1  





 diverges. 

Moreover, if  G n n  and  then   2nF n 

 2 1

1

2 2 1 2j n n
n

j

a b j a b n n  



n

2,          

the general term of the series being proportional to 1n . 
From Theorem 3.1 we deduce that, 

Corollary 3.3. Assume that the sequence  
satisfies the following conditions 

 : 0nM n 

 
   

 

1 .

2 1

3 0

n n

n
n

n

.,

,

. .,

M M a s

M

M
a s

B









  



  

then 

,n n
R R  

and 

    , Bin ,R M Z M Z     .  

Proof. For every fixed  and for suffi- 
ciently large , 

0,1, ,k  
n

 1 , . .

nn

n n
n

BW

M kk
R a

M








  
      
 
 
 

 s  

Then, using the well know convergence of the hyper- 
geometric probabilities to the binomial, we have  

 1

nn

M kk

n

BW

M k Mk
Z Z

k

M


  

 



  
             
 
 

 

and the conclusion follows from the bounded conver- 
gence theorem. 

As a consequence of Theorem (3.2), we have the 
following. 

Corollary 3.4. Assume that the sequences  
 : 0nM n   and  : 0nN n   are bounded then 
   0 1 1.ZZ       
Proof. Since the sequences  and   : 0nM n 

 : 0nN n 
1,
 are bounded by some constant  and 

for all  we obtain from (3.1) that  
0K 

0nn Z 

  
 

 

2 2
1

2
1 1 1 2

2
1

3
2 2

2

,

1

1

.
1

n n n

n n n n n n
n

n n

n n

Z Z

N M Z Z M
Z

K a
Z Z

a bn




 



  



       
  

       

           

 

 

 
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Let  be such that 0j
3 2

0K j n  . We obtain that  

  

 
  

   0
0

2
1 1

3
2 2

2

3 3

2 2

1

1 1
1 1

n n

n n

n

n j
j j

V Z a a b

K a

.

Z Z a a b
a bn

K K
V V

n j

 



    

             

   
     
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The final result in this section shows that the law of 

large numbers holds for interacting reinforced urn 
systems.  
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This shows that the sequence  is orthogo- 
nal, with zero mean. 
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Therefore, the sequence  satisfies the conditions 
of Hall’s theorem (see [15], Theorem 2.8, p. 22), and we 
can conclude that the series 
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Finally, Kronecker’s lemma yields 
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This shows that 
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which is the announced result. 

4. Asymptotic Exchangeability 

According to [16] a sequence of random variables 
 , 1nX n 

j  

 is asymptotically exchangeable if the joint 
distribution of the sequence  converges as 

 to the distribution of some exchangeable 
sequence 

 , 1j nX n  
 , 1nT n  . In particular, we have the 

following lemma due to [17].  
Lemma 6. (Aldous) 
Consider  , 1nT n   be an infinite exchangeable se- 

quence directed by  . 
1) Let n  be a regular conditional distribution for 

1nT   given  1, , nT T . 
Then 
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2) Let  , 1nY n   be an infinite sequence. Let n  be 
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Theorem 3.1 together with Lemma yield that the se- 
quence of random variables   is asympto- 
tically exchangeable. The main result of this section is 
the following. 
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Hence, as in Corollary 3.3, we obtain that 
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The conclusion comes from Lemma 4.1, part (b).  
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5. Conclusions 

Urn model have been widely studied and applied in both 
scientific and social science disciplines. In this paper, we 
have proposed a general class of discrete stochastic 
processes generated by a two-color generalized Pólya urn. 
This model generalizes a model previously studied by 
[10]. This paper also shows that the proportion of white 
balls form a bounded martingale sequence which con- 
verge almost surely. Asymptotic properties and asymp- 
totic exchangeability are given. However, the complete 
characterization of the limit still remains to be resolved 
in the future and it would be interesting to explore the 
possibility extensions to more than two colors. 

Another important application of this urn models is to 
randomize treatments to patients in a clinical trial (see 
[18]). Consider an urn containing balls of two type, rep- 
resenting two treatements. Patients normally arrive se- 
quentially, and treatment assigned on the urn composi- 
tion and previous treatment outcomes. For more details 
analysis on this application, we refer to [13]. 
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