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ABSTRACT 

In this paper we examine the large deviations principle (LDP) for sequences of classic Cramér-Lundberg risk processes 
under suitable time and scale modifications, and also for a wide class of claim distributions including (the non-super- 
exponential) exponential claims. We prove two large deviations principles: first, we obtain the LDP for risk processes 
on  0,1D  with the Skorohod topology. In this case, we provide an explicit form for the rate function, in which the 

safety loading condition appears naturally. The second theorem allows us to obtain the LDP for Aggregate Claims 
processes on  with a different time-scale modification. As an application of the first result we estimate the 

ruin probability, and for the second result we work explicit calculations for the case of exponential claims. 

 0,D 
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1. Introduction 

There is a wide literature on Large Deviation Techniques 
and Applications. Relevant to this paper are results by 
Mogulskii (1993), [1] who proved a Large Deviations 
result for independent, identically distributed (i.i.d.) ran- 
dom variables with generating functions finite on a 
neighborhood of the origin. In [2], Lynch and Sethura- 
man gave large deviations results for stochastic processes 
with independent and stationary increments. The analysis 
was done on the space of functions of bounded variation 
on  0,1  endowed with the weak*-topology. More ge- 
neral results were proved later, as Mogulskii and De 
Acosta did in [1,3,4] proving large deviations results for 
Lévy processes in very general settings. 

For compound Poisson processes, Li and Pechersky 
[5], following results by Dobrushin and Pechersky [6], 
proved the LDP for multi-dimensional compound Pois- 
son processes defined on   with respect to the 
vague topology, and then strengthened it to the weak- 
uniform topology introduced in [6]. 

0,

The LDP for (reserve dependent premium with de-  

layed claims) risk process was studied by Ganesh, Massi 
and Torrisi (2007) [7,8]. They proved the LDP with  
respect to the uniform topology in the case of super- 
exponential claims i.e., claims for which the moment 
generating function is finite for every 0  . Later, in 
[7], they illustrated the connection between risk proce- 
sses and queues. They applied their large deviations 
result (valid only in the case of super-exponential claims) 
to obtain an approximation for the probability of ruin and 
to propose an importance sampling parameter for simula- 
tion. The super-exponential claims are an interesting but 
very particular case, since distributions such as gamma 
(including exponential), Negative Binomial (including 
geometric) claims, are not of this type. 

One way to deal with large deviations for risk pro- 
cesses is by proving the LDP for a sufficiently similar 
zero-mean Lévy process, and then using the Contraction 
Principle. That is the general approach we follow for 
Theorem 1: we examine the LDP for a sequence of risk 
processes with respect to the Skorohod topology under 
suitable time and scale modifications. We follow Mo- 
gulskii’s approach [1], whose results are based on Lynch 
and Sethuraman [2] to obtain an LDP for risk processes 
on  0,1 ,D  and give quite explicit forms for the rate  
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function. 
Another way to prove Large Deviations results is by  

first analyzing the compound Poisson component 
1

tN

i
i

Z

 , 

via working with random walks 
 

1

t

i
i

Z

  or their linea-  

rized counterpart, proving the LDP, and then dealing 
with the random time via exponential equivalence of the 
times. In this direction there is work by Feng and Kurtz, 
[9] and our Theorem 2 for aggregate claims processes. 
The difficulty with this approach is that a Poisson pro- 
cess could hardly be exponentially equivalent to a con- 
tinuous one, and it becomes necessary to use a cumber- 
some change in time-space scale. We prove Large De- 
viation results for a wide class of claim distributions in- 
cluding the non-super-exponential case of exponential 
claims. 

We get the LDP for aggregate claims processes on 
 with a suitable time-scale modification. 

Both results are LDP’s with respect to the Skorohod 
topology induced by the Skorohod distance, but the first 
one is in 

 0, ,D 

 0,1D  and the second is in  0, .D   
Although the vague topology is coarser than Skorohod’s, 

Li and Pechersky’s large deviations results do not imply 
ours (Theorem 1 below) because the space  0,D   is 
not reflexive, and non-trivial exponential tightness should 
be proved first. On the other hand, we do not work with 
super exponential claims: we only need the moment 
generating function to exist on an open neighborhood of 
the origin, and for this reason our result is more general. 

Large Deviations techniques have been used to study 
ruin probabilities for risk process. A standard reference 
here is the book by Asmussen [10], references therein, 
and subsequent work by the author. 

On a generalization of the model, Asmussen, Klüppel- 
berg, and Mikosch, in [11,12], studied asymptotic results 
for the compound Poisson process when the size of the 
jumps has a heavy tail (the moment generating function 
of the claims is  on the positive real numbers). In this 
case, the large deviations theory does not apply, the 
results are quite different, and that is not the subject of 
this paper. 



The organization of the paper is as follows: First, we 
have one Section to state the basic notation, to describe 
previous results, and at the end we have a small dis- 
cussion about the precise shape of the rate function: that 
is Section 2. In Section 3, we state the basic Hypotheses 
that are needed all along the work. 

The main results, LDP Theorems 1 and 2, are stated in 
Sections 4 and 5, respectively. Both are proved in the 
same Section they are stated. Section 6 is devoted to the 
explicit calculations for the case of exponential claims. 
These calculations are combined in Corollary 1, and later 

used in Section 7 to estimate the probability of ruin for 
exponential claims, and also for more general claims. 

2. Notation, Previous Results, and the Rate 
Function 

For a random variable  and Y   , we denote by 
  e Y

YL       the moment generating function for Y, 
whenever it exists; its logarithmic generating function is 

  log eY
 ,Y      and  

    Y supt t Y      shall denote the Fenchel-  

Legendre transform of .Y  

Let       1,T T Int         denote the interior  

of the essential domain for the Laplace transform (and its 
log-generating function) of  where  1 ,Y    is a 
process to be specified. 

Clearly, 0 .T T         
The classical risk process is given by 

 
1

,
tN

k
k

R t u ct Z


              (1) 

and the following will be our assumptions regarding this 
process, 

1)  tN N t  is a Poisson  t  process, 0 
t

, that 
models the number of claims received at time . 

2) 1 2  are non negative i.i.d. random vari- 
ables with mean 

, , ,Z Z Z 
,  independent of the process t . 

We shall always assume the moment generating function 
of 

N

Z ,  ZL   is finite for some 0   (not nece- 
ssarily for all   ). These variables represent the  

size of the claims. The compound Poisson term 
1

tN

tk
Z

   

accounts for the aggregate claims. 
3)  0 0u R 

c
 is the initial capital or reserve. 

4)  is positive. The term  represents the (non 
random and linear) premiums the company charges. 

ct

It is usually required to have a safety loading condition 
0c    to assure ruin does not occur almost surely. 

We do not need that condition for the moment; however, 
it shall appear when we give the explicit form of the 
large deviations rate function.  

For each bounded variation  0,1f BV  with 
 0,1f D   and  0 0f  , let 0 1 2f f f  f  be its 

standard decomposition such that 
     0 0f0 1 20 0f f   , 0f  is absolutely continuous 

with respect to the Lebesgue measure (here denoted as 

0f m ), 1 2f f  is the Hahn-Jordan decomposition for 
the singular part of f with respect to the Lebesgue 
measure. Recall that 1f  and 2f  are hence non-decreas- 
ing, and each one is singular with respect to  (which 
shall be denoted 

m
,f m i 1,2i   ). 

A standard representation for the characteristic fun- 
ction of a stationary process with independent increments 
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 t  is 

   ie et tKE ,      

with 

      2 2 i
1

1
i e 1 i π d .

2
x

x
K a b x x           

A regularity condition on the measure  defined by 
the expression above, which will be needed in the main 
result (Theorem 1), is:  

π

  1
lim log π ,
n

n T
n 

   ,          (2) 

and 

  1
lim log π , .
n

n T
n 

    

We shall apply Theorems 2.5 and 2.7 by Mogulskii [1] 
(see also [2]). We shall write here together all the results 
we apply, specialized to our settings, and use the notation 
defined above: 

Proposition 1. (Mogulskii) Let  t  be a stochastic 
process defined on  with values in  Assume it 
has stationary independent increments, and also suppose  

 0, 

   2
1 0, 1 0         .

,

 

If  then ULDP: 0T T        1
nt

n
  satis-  

fies the upper large deviations principle with respect to 
the completed Skorohod topology, with good rate fun- 
ction I . LLDP: If, additionally, the regularity condition  

(2) is satisfied, then the same sequence  1
nt

n
  satis-  

fies the lower large deviations principle with respect to 
the completed Skorohod topology, with the same rate 
function I . The rate function I  is  

 
        

 

1

0 110
d 1

whenever ; 0 0,

otherwise,

f t t T f T f

I f f BV f




 
   

  


 
2 1

;

  (3) 

where 

   
     

0 1 2 0 1 2

0 1 2

, ,

0 0 0 0,

f f f f f m f f m

f f f

    

  


 

1 2,f f  are non-decreasing, and with the understanding 
that  If  then the ULDP holds also 
with the uniform topology. 

0 0.  ,T  

A Remark on the Rate Function 

Remark 1. The rate function I that appears in Mogulskii 
[1] has two misprints. This can be verified in [2]. It says 

          1

0 2 210
d 1I f f t t T f T f


     1 ,  

whereas it should say 

          
1

0 1 21
0

d 1I f f t t T f T f


      1 .  

Indeed, for this rate function, Mogulskii refers to the 
paper by Lynch and Sethuraman ([2]), and according to 
the latter, the value for  I f  is 

          
1

0 1 1 21
0

d 1I f f t t C f C f
    

2 1  

where 
       1 1

1 2lim , lima a

a a
C C

a a

 
 

 

 
   and 

        1 .sup ta at


   1 t  Without loss of gene-  

rality, suppose that    1 .T     Note that for 

   1t T at t , ,   hence 

        1 1 .sup t Ta at 


   t  

If 0 ,t T  then  0 ,t    and since  

   
        1

0 01 1sup ,
t T

a
t t a t t

a


 



a



   



 

making  tend to a ,  we obtain  

   1

0lim inf .
a

a
t

a







  

Now, if we let 0 ,t T  we conclude 

   1
lim inf .
a

a
T

a







            (4) 

On the other hand, for every  and 0, ,a  
there is at T  such that  

   
       1 1

1 .a a

a a
t t a

a a

 


  
     

taking limits as , we conclude  a 

   1
lim sup .
a

a
T

a







          (5) 

In view of formulas (4) and (5) we conclude 

   1
lim .
a

a
T

a







  

With a similar argument we obtain 

   1
lim .

a

a
T

a







   

Finally, since 2f  is non-decreasing and  2 0 0f ,  
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     
     

       

1 1

1 2

1 2 1 2

1 lim 1 lim

1 1 1

a a

a a
f f

a a

T f T f T f T f

 
 

 

   

 


    1 .

 

In the next Section we shall state the hypotheses we 
need. 

3. Statement of Hypotheses 

Let 1 2  be nonnegative independent and iden- 
tically distributed random variables with mean 

, , ,Z Z Z 
  and 

second moment  (i.e. Z is non-degene- 
rated). 

2 0Z     

Let  be a Poisson process with parameter  N t
0,   defined on the same probability space and 

independent of the 1 2  All our random vari- 
ables Z, and Poisson processes  will be as just 
stated, unless otherwise noted.  

, , ,Z Z Z 
 N t

If Z  is finite in a neighborhood of the origin, we 
say Condition 1 is satisfied:  

Condition 1. There is 10     such that 

  log e Z
Z

        for 1.   

Remark 2. Finiteness of the function  Z   is equi- 
valent to that of the moment generating function  .ZL   
Condition 1 is satisfied if  Z   is finite for some 

0   (the negative part works due to Z being non- 
negative). 

Notice also that this condition implies ,  , and  
every moment of the variables  are finite.   , k k

Z Z


We shall fix 00     to be the maximum possible  

by letting   0 sup e .Z        

To have the LLDP in the topology we want, we 
require to ask an additional regularity condition: 

Condition 2.  

   0

1
lim log 1 .Z
n

F n
n




    

Remark 3. All the conditions on Z are satisfied if Z is, 
for example, exponentially distributed. This important 
case, for which many calculations can be made explicit, 
is discussed in Sections 6 and 7. 

4. Large Deviations for the Risk Process on 
 0,1D  

Now we are ready to state the LDP in the space 
 0,1D  with the Skorohod topology: 

Theorem 1. Let  be a risk pro-   
 

1

N t

k
k

R t u ct Z


   
cess as defined in (1). Under conditions 1 and 2, the 
sequence of processes 

 

1

1
,

N nt

n
k

R u ct Z
n 

    k           (6) 

satisfies the large deviations principle in the space 
 0,1D  with the completed topology induced by the  

Skorohod distance, and rate function Î  defined as  

 

      

 

1

0 21
0

d 1

ˆ whenever ; 0 ,

otherwise,

c g t t T g

I g g BV g u

 



   


  



 

    (7) 

where g  is decomposed as 

       
 
0 1 2 0 1 2

0 1 2

, 0 0 0 0

, ,

g u g g g g g g

g m g g m

,      

 
 

and 1 2,g g  are non-decreasing. 
Remark 4. The form of the rate function is given by 

      ˆ ,I g I u c g          (8) 

with I  as in expression (3). We also notice that, in this 
case, .T     

Proof of Theorem 1. 

Let    
1

N t

kk
t Z t 


   be the compound Poisson  

process. Using the assumptions about  and N  1 2, ,Z Z 
we conclude that  t  has stationary and independent  

increments,   0t     and that 

 2 2 2

1

1 2 i j
i j N

Z Z    
  

   0.       
    

The Laplace transform    1L   of  1 ,  is  
 

 

   

1

1

e

exp exp

exp 1 ,

n

k
k

Z

Z N n

L



 

  



 
 

            

     





   

We notice that the log-Laplace 

      1 1ZL            is finite as long as  

Z  is finite. By Condition 1, we can guarantee that 

   1   is finite for 0 ,   in fact both, Z  and 

 1 ,  have the same support. By similar calculations, 

 

       

      

i

0

e

exp i exp i
!

exp i exp i 1 e

t

n

Z
n

tK
Z

t
t t n

n

t






   

  





 
 

   

       





 

where 
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     ii e 1 dx
Z ,K F x          

which means that the Lévy measure  of this process is π
  times the distribution of the claims Z . We notice 
that if  is a sequence of sets, then  n n

A


    

  

1 1
lim log π lim log

1
lim log .

n n
n n

n
n

A Z A
n n

Z A
n


 



 

 




 

Regarding the Lévy measure  we see that for each π,
   ,π , 0n n         ,nZ    therefore  

 1
lim log π , ,n n T

n       0 and if 1  , by  

the Markov inequality, 

   1 1

1 1
log .ZZ n

n n
       

Taking the limit in the previous inequality as n app-  
roaches to , and using   1Z     gives us 

  1

1
loglimsupn Z n

n
     and since this assertion  

is valid for each 1 0 ,   we obtain 

  0

1
lim sup log .
n

Z n
n




    

We observe that by Condition 2,  

 

  0

1
lim inf log π ,

1
lim inf log ,

n

n

n
n

Z n
n







  

   
 

Since 0 ,T    we conclude that  

 1
lim inf log π , ,
n

n T
n 

      

which is the regularity Condition 2. In summary, the 
process  t  satisfies the hypotheses of Proposition 1, 
therefore the process 

 
 

1

1 1
,

N nt

n k
k

X nt Z t
n n
 



    

satisfies the LDP with respect to the Skorohod topology 
with rate function provided by 3. 

We now consider   0,1 ,D s  the metric space 
 0,1D  endowed with the completed topology induced 

by the Skorohod distance and we also consider the 
functional    : 0F D ,1 0,1D   defined by  

      .F f t u c t f t     

To verify continuity of F on this specific topology, 
 in the Sko- 

 topology. Recall that the Skorohorohod d distance in 
 0,1D  is given by  



take  and 0, nx  with limn nx x 

      


, i , : 0,1 0,1

is non-decreacsing and continuous

g r I r r  
 

here is 

nf max fs f g

Then, t N   so that for each  we ,n N
can find  ,n , r r   where    : 0,1r   an 
non-decrea us functio

 

0,1  is
  sing continuo n for which

 , max ,s x x x x r I r  .n n      

Now, 

      
   
     

        

n

n

n

t F x r t

u c t x t

u c r t x r t

c t r t x t x r t









 

 



   

     
      







 

F x

therefore 

      
 
 

, max ,

max ,

max , ,

n

n

F x c I r I r

x x r I r

c





 

 

   

  

  



  

 

s F x

hence  n  tends to  .F x
e Skor

F x  Therefore F is con- 
tinuous espect to th ohod topology. By the 
Contraction Principle, 

 with r

      
 

1

1

1

n

N nt

k
k

F X t u c t nt
n

u ct Z
n

 



   

   
 

satisfies the LDP with rate function given by  

      ˆ inf :I g I h F h g 

      1 .I F g I u c g      
 

If we consider the Hahn-Jordan decomposition for 

0 1 2 ,g u g g g     and we observe that  c t  is 
s with respect to the Le ea- 

sure m, we conclude that the Hahn-Jordan decomposition 

0 1 2

absolutely continuou besgue m

f f f   for the function    u c t g t    is  

         0 0 1,f t  2c  t g t f t  g t , and  

   .2 1f t g t Î   Evaluating and usin e obtain 

5. Large Deviations for the Aggregate 

Section we prove the LDP for the process of 

g (3), w
formula (7)

In this 

, this concludes the proof of Theorem 1. □ 

Claims Process on  ,0D   

aggregate claims, on a different space, with another 
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time-scale parametrization, and using very different 
results. 

Theorem 2. Assume Condition 1, but now let us de- 
note the Poisson process as N̂ , with parameter ,  
defined on the same probability space and independe  
of the  kZ  

nt

k

Let  
 ˆ

n

N nt
N t

n

 
 






. Then, the sequence of pro-  

cesses 

 

1

1 nN nt

n k
k

X Z
n 

   

satisfies the large deviations principle in the space 

l use results from Feng and Kurtz [9], Lemma 
4.

 For each  let 

 0,D   with the topology induced by the Skorohod 

We wil
distance. 

9 and Theorem 10.1, that we compile in next two 
Propositions: 

Proposition 2. ˆ,n nX  
ive

be a process in 
 0,E  . Let .n  be a n negat , nondecreasing 

0,D  valued, independent of n

D
process 

on
  X . Define 

  ˆ .n n nX X t   

Suppose that for each  and 0t  0,   

 1
lim log sup .n
n s t

P s s
n


 

       
    (9) 

If ˆ
nX  is exponentially tight, then the LDP holds for 

nX  if a d only if it holds for ˆ
nn X . 

roposition 3. Let nP A  be given by 

 

     

   ,
,

1 1
d

1
,

2

d

n

i j i j
i j

A g x

n g x z g x z g x z
n n

a g x b g x
n

        
  

    






 

for dg D . Suppose that nX  is a solution of the mar- 
ting blem for nale pro A  and that the LDP holds for 

 0nX  in d  with a ood rate function 0 g I  and rate 
m . Then the LDP holds fortransfor 0   nX  in 

 0,D   h good rate function:  

   
wit

 
  

1 , , 1 , ,
mc

i x

t t m
t

x t


   sup ,I x I x t    (10) 

where 



And if 

 

   
       

1

1

, , 1

1 1
, ,

0 1 1 2 1

, ,

sup

1 1

m

k d

t t m

k k
f f D

k k k

x x

f x f x

V t f V t t f V t t f





  

     











 

I

   0, 0, ,x D C      then  I x   .  
Proof o

Let 

f Theorem 2. 

 
1

1ˆ .
nt

n kk
X Z

n 
   

  log e Z
Z

     Due to the fact that   for 
some 0,   Proposition 
of de

3 can be applied to sequen
pendent in ts such

ces 
 proces cremen  as ses with in

ˆ
nX —as discussed in Secti 9]. on 10.2 of Feng and Kurtz [

Therefore ˆ
nX  rate 

nctio d as in (1  is 
satisfies the LDP with a good 

0). Since this rate function
n the sequence 

fu
go

n define
od, and our space is Polish, the  ˆ

nX  
is exponentially tight in  0, .D   

Now, let    3 2
3 2

1
.n t N n t

n
   By the Mason,  

Shorack, Wellner inequality [13] (p. 545) we have, 

 

 
 

2
3 2n t

 

3 2 3 2

2

sup

2e ,

s t

t

n s N n s 3 2P n

sup n
s t

P s s 





  






 

    
 



where       22 1 ln 1t t t t t  ,     hence  

 

 
2

1 2

1
lim log sup

lim
2

n
n s t

n

P s s
n

n t
t



 

 



    

    
 

which i  concludes (9). Applying Proposition 2 we  that  

  
 

1

1ˆ
nN nt

n n n
k

kX X t
n 

     Z

satisfies the LDP with a good rate function. □ 

In this Section we give the explicit calculat when the 
law of the claims is exponential, and we also find the 

have the 

lassical risk process as de- 
 distributed claims:  

6. Exponential Claims 

ions 

particular shape for the rate function. We 
following Corollary to Theorem 1:  

Corollary 1. Consider a c
fined in (1) with exponentially

 
 

1

,
N t

k
k

R t u ct Z


     with  exp ,Z   and 0.   

The sequence of processes 

 
 

1

,
N t

k
k

R t u ct Z


             (11) 

satisfies the LDP in the space  0,1D  
e Skoroho

with th -e com  
pleted d distance, and 
ra

 topology induced by th
te function given by 
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 

     1t g

 

1 2

0 2
0

d

; 0

c g t

g

 


 

 

 

with 

non-decreasing, and 

whenever ,

,otherwise,

I g g BV u 



 (12) 

     0 1 2 0 1 2

0 1 2 1 2

, 0 0 0 0

, , ,

g u g g g g g g

g m g g m g g

      

  

,
 

 0g t c . 
nt GeneratingProof. The Mome  function in this case is 

 
if ,

if ,
ZL

  
 

 

   
 

 

hence log e Z    on  if and ly if .   Therefore, 
Condition 1 holds. In this case 

     , , log e ZT T            .

Also,  

 1 1
lim log 1 e n

ZF lim log ,
n n

n
n n

 

so Condition 2 also holds. 
Applying Theorem 1, we conclude that  satisfies 

th ith rate function given by (7). ains to 
sh he rate function has the explicit f  (12). Let 
us calculate, for 

 
   

nR
It rem
orm

e LDP w
ow that t

,x   

   
 

 
 

 

1

2

exp

exp

N

kx Z

x

x




 

     
  1 expL x x 

  
1

1

1

exp exp 1

k

N

k
k

x x Z N







      
           

      
  

    
  



Now 

          
2
0

01 1
0

sup ,
x

x
t tx x tx

x 


 

    


  

with 0 1 ,x
t


 

 
  

 
 if .t




   Therefore, 

   
 2

1

, if

if

t t

t

t


  





      
  


     (13) 

Here, again the Hahn-Jordan decomposition 

0 1 2f f f   for the function    u c t g t    is  

         0 0 1,f t c  t g t  2f t g t , and  

   2 1 .f t g t  Therefore, 

         

    
  

0 01 1

2

0

0

f t c g t

t

c g t

  

2

c g        

  

     

 

  







provided  0 ,c g t 
,T

 (otherwise    
Since 

    01 .f t
  ).

   the value 

        1

0 110
d 1f t t T f T f


    2 1  in the rate fun-  

ction (7) provides us information only when  2 1 0,f   
 is non-decreasing and  0 0,2f   this and since 2f

implies that f2 0,  in our case
T

 2 1f g  0.  Finally, 
,    rate functiohe n nce the I  takes the form (12). 

This prov y 1. □ es 

 the 
 

we giv d for the P
of Ruin

e claims are exponentially 

Corollar

7. Estimating the Ruin Probability of
Process Rn 

In this section e an upper boun robability 
 for the process nR  as studied in Section 6 and 

in Corollary 1; i.e. when th
distributed with parameter .  

Theorem 3. For the process nR  defined in Corol
we have that 

lary 
1, 

 

 
0

inf 0

exp 2

t
P R t

n u c u 


  n

     

   (14) 

fo atr sufficiently large n. The estim e is meaningful when  

  2
.

c
u

   



 
       (15) 

Proof of Theorem 3. 
By Corollary 1, nR  satisfies the LDP with good rate 

function given by (12), therefore 

    ,  
0

1
lim sup log inf 0n
n t

P R t I g
n 

    

for some function g  in the essential domain of ,I  
hence g  satisfies:

0 2

 
g u g g     where    0 0 0 0,g g    

, ,
2

0 2 2g m g m g  non-decreasing, there is a first time 

0 0t   when   0.0g t   
,  weBy definition of t  have  0

    
0 0 20 lim ,t t u g t g t   since 0 g  is continuous 

and 2g  is sing, we c non-decrea onclude that  

   2 0 0 00 .g t u g t    

Therefore 
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 

    

 
   

0 2
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the second inequality is due to Jensen’s inequality. Note  
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(15). This proves Theorem 3. □ 
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Corollary 2. Conside
, 
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bability of ruin. 

r the rate function for the process 
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for sufficiently large n. 
Recall that the LDP proved in Theorem 1 holds for 
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strictive than the super-exponential case. 

Proof of Corollary 2. By Corollary 1,  satisfies the 
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where the function g  is as in the statement above. 
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For the second inequality we used the fact that 
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