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ABSTRACT 

The gravitational-lens effect is interpreted in the framework of the Newtonian mechanics. Regarding the photon of 

energy h  as a corpuscle with a tiny mass of 
2

h
m

c


 . We calculate it’s path bended by the gravitational force near 

the surface of the sun. Effects of dark matter have also been evaluated. 
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1. Introduction 

The Gravitational-Lens Effect (GLE) provides one of the 
powerful methods to investigate physical properties of 
stellar objects. This effect is actually the result derived 
by the General Theory of Relativity (GTR) and, therefore, 
dynamical understanding is almost impossible without 
basic knowledge of the GTR, which is usually taught in 
the graduate course of university. Nevertheless, it might 
be instructive to derive the GLE on the basis of the 
Newtonian mechanics which is founded rather upon our 
experiential events. Indeed, the bending of the light path 
is originated in the space-time structure induced by the 
gravitational field, and, therefore, it may not be under-
standable in the framework of the classical mechanics. 
Since the light (photon) does not carry any mass, the 
bending of its path cannot be taken place by the gravita-
tional force in the classical Newtonian mechanics. 
However, if the photon is interpreted as a corpuscle with  

a mass, 2
“ ”

E
m

c


  E, where   is the photon energy  

and the corpuscle is assumed to move always at the 
speed of light, , without any variation of c m , the path 
of the photon can be bended by the gravitation of the 
reference stellar object even in the classical Newtonian 
dynamics. Along this line, the bending angle of the light 
passing through near the solar surface shall be calculated 
and our method of calculation will be extended to the 
system enveloped in dark matter halo. 

2. Derivation of the Gravitational-Lens 
Effect 

Let us consider the gravitational-lens effect caused by the 

sun. When the photon is regarded as a corpuscle with a 
mass m , the gravitational force of the sun acting on it 
yields 

2
,

GM m
f

r
  

G

               (1) 

where  is the gravitational constant, M  is the solar 
mass and  is the distance between the sun and the 
corpuscle. The motion of the corpuscle can be obtained 
by solving the Newtonian equation of motion [1]. Its 
orbit is actually hyperbolic. 

r

Instead of taking such a treatment, let us try to derive 
the hyperbolic orbit of the corpuscle on the basis of the 
geometric property of the conic section. The eccentricity 
of the hyperbola is generally defined as 

,IP F
e

I IP H


IP F

                 (2) 

where  and I I  are distances of an arbitrary 
point 

P H

IP  on the hyperbola from the focus and from the 
directrix, IQ , respectively, as is shown in Figure 1. One 
of two focuses in the hyperbola is assighned by F  at 
which the sun is located. In other words, the trace of the 
point IP

e P F
 which satisfies the relation (2) draws a 

hyperbola with the eccentricity . Let I  be  r   
where the angle   runs clockwise around the focus F , 
then I IP H

 cos ,I IP H s R r

 is given as 

           (3)    

R A F swhere o  is the radius of the sun and I oB A . 
Accordingly, Equation (2) yields 

 
 

.
cos

r
e

s R r


 


 

           (4) 
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Figure 1. Hyperbolic orbit of a corpuscle. F: focus, : the 

origin, : directrix, : tangent line. The sun is at F. 
IO

oQ

r R  0

IQ

 
Since  at  0    , we have 

.
R

s
e

                     (5) 

Thus, by solving Equation (4) with respect to  r  , 
the equation of the hyperbola can be obtained in the form 

   1
,

1 cos

R e

e
r 








m

                (6) 

which is exactly identical to the result obtained by 
solving directly the Newtonian equation of motion [1]. 
For the particle with its mass,   moving with the 
velocity , the angular momentum, v

,L m rv

E

                  (7) 

is always conserved and the total energy of the system, 
, is 

2

2

m v
E  

2

2
,

2

k L k

r rm r
 

k GM m

          (8) 

where   . The solution of Equation (8) with  

respect to positive 
1

r
 is 

1 2
2

2

2
.

EL

L m k

  
      

v c

2

1
1 1

m k

r
 

  
 

         (9) 

For  , the angular momentum and the total en- 
ergy of the system at  0

r R

e

 can be obtained by 
replacing  by   in Equations (7) and (8). Then, 
reciprocal of the first parenthesis in Equation (9) is equal 
to the numerator of Equation (6), and, therefore, we find 
the value of the eccentricity  as 

2

1.
R c

e
GM





              (10) 

This result can also be obtained from the second 
parenthesis in Equation (9). It is easily proved to be  

2R c

GM




0

. And it corresponds to the denominator of Equa-  

tion (6) at   , which is . Then, we obtain the 
same result as that in Equation (10). 

 1 e

On the other hand, the equation of a hyperbola in 
rectangular coordinates whose origin is located at the 
center of two focuses can be expressed as 

2 2

2 2
1.

x y

a b
 

2a

OA
a

               (11) 

A difference between distances of an arbitrary point on 
the hyperbola from each focus is always equal to . 
This is a basic substance of the hyperbola. From Equa- 
tion (11), we know immediately that the distance o  
in Figure 1 is . And, thus, the distance between two 
focuses is  2 a R , . Let  1 1x y  be the coordinates 
of a crossing point between the hyperbola and the 
straight line perpendicular to the X-axis at the focus 
 ,0x1 . Then, making use of the substance of the 
hyperbola as well as the Pythagoras theorem, we can 
easily find 

2

1 2
R

y R
a

  
 .               (12) 

In addition, from Equation (6), it is obvious that  

 1

π
1

2
y r R e     

 


ae

. 

Making this result equal to Equation (12) gives   
a R  , which is actually value of 1x  and, conse- 
quently, 

.
1

R
a

e



                  (13) 

Substituting values of 1x ae  and 1 1y R e   
in Equation (11), one can find 

1

1

e
b R

e




 .               (14) 

Since the equation of the asymptote of the hyperbola is 
2 2

2 2
0,

x y

a b
             (15)  
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the angle of the asymptote,  , is found as 

2arctan 1.e arctan
b

a
    

 
        (16) 

Thus, the bending of the light path, i.e. the gravi- 
tational-lens effect, is 

2rctan 1.e 
302 10 kg, 

kg,

54.7 10 ,e  

2 0.878 ,

2 π 2 π 2a           (17) 

With values,    
 and  we ob- 

tain 

57 10 km,  M
20 3 26.7 10 km /s 

R
53 10  km/s c G

               (18) 
and 

                 (19) 

which is in agreement with the result obtained by J. G. 
von Soldner using a completely different formalization in 
1801 [2,3]. However, this result is unfortunately just a 
half of that obtained in the GTR [4]. The missing factor 2 
may be referred to as “relativistic factor”. 

3. Newtonian Derivation of the Relativistic 
Factor 2 

In context of the concept that the structure of the space is 
associated with the gravitational field, it is convinced that 
the space around the sun must be curved by its gravita- 
tion. Moreover, it should be remarked that the light has 
nature to travel always along the edge of the space 
whatever it is straight or curved. The curve I in Figure 2 
has been the path of the corpuscle moving under opera- 
tion of the gravitation. However, if it is interpreted as the 
edge of the curved space induced by the gravitational 
field, the photon will travel along this curve I without 
any influence of the force. 

Let us now calculate the path of the corpuscle moving 
in this curved space when the gravitational force acts 
directly on it. 

As is shown in Figure 2, the directrix IQ  in the 
regular space is now bended into NQ  by the same 
amount of curvature as the edge of the surface of the 
curved space I. Namely, NQ  is the translated hyperbola 
of the curve I. Then, the arbitrary point IP  on the hy-
perbola I is shifted to NP . Thus, the curve N should be 
the orbit of the corpuscle when the gravitational force 
directly acts on it in the curved space. All points, NP , 

IP , oH , AH  and IH  are on the horizontal line. As 
the straight line of directrix, IQ  is bended into the curve 

NQ  the distance I I  is shifted to P H N A , i.e. P H

I I . When the distance N AHP H P I o  is expressed by 
, i.e. I o  , we have, of course, A I

P H
u P H  u H H u , and, 
therefore, N I  ought to be . Furthermore, the 
distance o I

P P u
A B  is expressed by s , the distance I A  

should also be , i.e. 
P H

s I AP H s . In accordance with  
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Figure 2. Paths of the corpuscle. Q : tangent line, : 

directrix in the curved space, : original directrix. 

 
Equation (2), the eccentricity should be 

.N

N A

P F
e

P H


NP F  

                 (20) 

When  is expressed as N Nr N AP H  and   

I A N IP H P P  is considered, we have 

   

 

 
= ,

1
cos

2

N N N N

I A N I

N N

N N N

r r
e

P H P P s u

r

R
R r

e

 



 

 
 

     (21) 

   




where 
R

s
e

   can be obtained from the second line of  

Equation (21) because N oP A 0 for N  , and, then, 
 0r A F R    0u 

0N

N N o   and . To lead the final 
expression in Equation (21), we have also used that for 

  

 2 cos .N o N I I o N N NP H P P P H u R r         (22) 

 Solving Equation (21) with respect to N Nr  , we 
obtain 

 
1

2
.

1 cos
2

N N

e
R

r
e


N

  
 





            (23) 
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Replacing 
2

e
 by Ne , i.e. 

,
2N

e
e 

 

                  (24) 

we obtain the standard expression of the hyerbola 

 
1

.
1 cos

N
N N

N N

R e

e
r 





             (25) 

This equation can also directly be derived in the re- 
gular space where the eccentricity, Ne  is given by the 
definition equivalent to those written in Equations (2) 
and (20) as 

,N
N

N N

P F
e

P H
                 (26) 

in which the point NH  is shown in Figure 3. When 
distances o IA B  and I NB B  are expressed by s  and 
x , i.e. o IA B  s  and I NB B x  , distances N IP H  and 

N N

 cos ,N N   

 cos .N N N   

0N

P H  are described as 

N I NP H s R r         (27) 

and 

N N I N N IP H B B P H

x s R r

 

   
    (28) 

At   , Equation (26) yields 

,N

R
e

x s







 0N Nr R   

                (29) 

because of  and, thus, 

1 1
,

Ne e

 
  

 
x R               (30) 

where 
R

s
e

   is used. Therefore, 

 

 

 

 

1 1

.
cos

N N
N

N

N N

N N N
N

r
e

R s R
e e

r

R
R r

e

cosN N Nr



   



 


 

    
 


 

 




   (31) 

Solving Equation (31) with respect to  N Nr  , we 
find the result exactly identical to Equation (25).  

Our result in Equation (24) explicates that the eccen- 
tricity, Ne

e

52.35 10 . 

 

, of the hyperbolic orbit of the corpuscle in the 
curved space yields just a half of the eccentricity, , 
obtained in the regular space, when the gravitational 
force is directly acting on it, i.e. 

QI 

Ne                 (32) 
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Figure 3. Paths of the corpuscle. W  and W : asymp- 

totes of the hyperbolae I and N.  and : directrices 

of the hyperbolae I and N, respectively. 
 

Thus, the Gravitational-lens effect in this case can be 
derived from the formula, Equation (17), provided  is 
replaced by Ne , 

22 π 2arctan 1.N Ne   

2 1.755N

          (33) 

The numerical value is, now, found as 

.                     (34) 

This value is twice of 2  value obtained in Equation 
(19) and agrees with the result obtained by Einstein [4] in 
the GTR. 

The GTR holds the concept that the photon travels 
along the surface of the curved space even without inter-
acting with the source of gravitation yielding the curva-
ture in the space, while the physical world described here 
is that the path of the corpuscle moving along the surface 
of the curved space originated from the gravitation is 
forced to bend by the gravitational force acting directly 
on it. Although the space curvature in our case is just a 
half of the result obtained by the GTR, the corpuscle 
eventually keeps moving along the same path as that 
predicted by the GTR. 

4. The Gravitational-Lens Effect by the 
Dark Matter Halo 

If the dark matter exists in surrounding of the galaxy as a 
halo, the gravitational-lens effect will be induced by it. In 
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order to simplify the calculation, let us consider a 
spherical galaxy with the mass G

115 10M M 
10R 

100R

  and 
the radius G  ly completely covered by the dark 
matter (DM) with a thickness DM G

4

R R   

1.01

 ly, 
i.e. the radius of the sphere including the DM is 

DM G . The density of the dark matter is assumed 
to be as large as 10 times that of the galaxy. (i) Without 
any dark matter, the GLE of the corpuscle passing by the 
galaxy surface is found as 2 6.11

R  R

   by qua-
tions (9), (24) and (33), provided 

 using E
M  and   are 

aced by G

R
repl M  and G . (ii hen the corpuscle 
passes beside the surface of the dark matter, the GLE is 
obtained as 2 7.8

 R ) W

9  , which  is calculated by replac-
ing M  a R  by G DMnd  M M  and DMR  in ua-
tion (9). (iii) The light can penetrate into the DM without 
scattered and sneak by the surface of the galaxy. The 
path of the corpuscle in the region outside the DM can be 
calculated with Equations (9), (24) and (33) by assuming 
that the total mass, G DMM M  the sphere of 
the radius GR . The orbit s definitely a hyperbola. On 
the other hand, the path of the corpuscle inside the DM is 
able to obtain by a numerical method explained below. 

Let us consider a 

 Eq

de

corpuscle which starts from the 
ga

, is in
 i

si

laxy surface, namely 0   and GR , and dashes in 
the dark matter until runn ay fro the DM region. 

Let the corpuscle be located at  r
ing aw m 

  in a certain 
m axy oment after it started from the gal surface, i.e. a 
distance, r , from and an angle,  , around the galaxy 
center. According to the Gaussian heorem, the gravita- 
tional potential outside a sphere can be determined by the 
total mass inside the sphere. Thus, the total mass inside a 
sphere with the radius r  participates in formation of a 
hyperbolic orbit of the corpuscle at that moment. Remark 
that the location of the corpuscle,  r

T

 , is situated actu- 
ally at the common point on the sphere surface and the 
hyperbolic orbit. Since the corpuscle migrates in the DM, 
it forms every moment a different sphere with a different 
radius and, accordingly, the total mass inside the sphere 
will change simultaneously. Namely, the hyperbola to 
which the corpuscle on the surface of the sphere formed 
in each moment belongs is not the same one anymore as 
formed in the previous moment. The trace of all these 
points which the corpuscle occupied every moment 
yields a curved line. It may not be a simple hyperbola but 
a slightly deviated one. Such a physical process might be 
explicitly described with following equations. The total 
mass of the system is 1

GM M    with 

  3

1 DM

G G

r

R







  
  
  

1 ,DM

G

 


 
 
 

      (35) 

  MR r    where  rfor G DR   is the distance of 
uscle of ththe e center e galaxy when it is 

located at the angle 
corp from th

  around the focus. The eccentricity 

at this position is 
2 2R c

1 1 1,
2 2

G G

G

R c
e e

GM GM  
 

      
 

    (36) 

and, then, for  G DMR r R  , 

 
 

1
.

1 cos 1 1 cosG

e e

R e e




r 
  


 

  
     (37) 

Notice that   is also a function of 
 

G

r

R


. Generally,  

it is possible to solve Equation (37) analytically with  

respect to 
 

GR

r 
. However, it is not easy and, thus, we  

solve Equation (37) numerically with respect to the value 
of  r   one-by-one for each angle   during the cor-
puscle passes through the DM region The orbit of the 
corpuscle found in this manner shows slightly deviated 
from a simple hyperbola, particularly in the region of the 
dark matter. Actually, the region of the DM in which the 
light is moving holds only within 16 degrees around the 
galaxy center, i.e. 8 8

. 

    . 
Finally, our result found for the GLE is 2 7.97  , 

w hi

5. Conclusions 

that the GLE could be derived in the 

hich is slightly larger than that of the case (ii). T s 
result is obviously understandable because of that the 
closer the orbit of the corpuscle is to the gravitational 
center, the larger the GLE becomes. 

It has been shown 
framework of Newtonian mechanics if the photon were 
regarded as a corpuscle with the tiny effective mass,  

2c
h

m


 , which was based on the quantum theory and  

the Special T

optically 
vi

 informations of the dark 
m

6. Acknowledgements 
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heory of Relativity. The factor 2 arising 
from the GTR has been derived by introducing the 
concept of the curved space due to the gravitational field 
and its normal reaction. Of course, all these procedures 
would be expediential. However, it would help senior 
high school and undergraduate university students to 
comprehend the physical structure of the GLE. 

Since existence of the dark matter is not 
sible because it does not interact with the light, the 

GLE is known as a powerful method to observe it. The 
present work investigates the GLE by a spherical galaxy 
completely covered by the dark matter. The results are 
definitely in detectable range. 

It is true that one can obtain
atter by investigating the GLE. 

This work has been carried o
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