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ABSTRACT 

Recently, Kyriakoussis and Vamvakari [1] have established a q-analogue of the Stirling type for q-constant which have 
lead them to the proof of the pointwise convergence of the q-binomial distribution to a Stieltjes-Wigert continuous dis-
tribution. In the present article, assuming  a sequence of n with  q n   1q n   as n , the study of the affect of 

this assumption to the -analogue of the Stirling type and to the asymptotic behaviour of the -Binomial dis-

tribution is presented. Specifically, a  analogue of the Stirling type is provided which leads to the proof of de-

formed Gaussian limiting behaviour for the 



 q n  q n

 q n

 q n -Binomial distribution. Further, figures using the program MAPLE 

are presented, indicating the accuracy of the established distribution convergence even for moderate values of n. 
 
Keywords: Stirling Formula; -Factorial Number of Order n; Saddle Point Method; -Binomial 

Distribution; Pointwise Convergence; Gauss Distribution 

 q n  q n

1. Introduction and Preliminaries 

In last years, many authors have studied -analogues of 
the binomial distribution (see among others [2-4]). Spe- 
cifically, Kemp and Kemp [3] defined a -analogue of 
the binomial distribution with probability function in the 
form  
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where 0,0 1,q     by replacing the loglinear re- 
lationship for the Bernoulli probabilities in Poissonian 
random sampling with loglinear odds relationship. Also, 
Kemp [4] defined (1) as a steady state distribution of 
birth-abort-death process. 

Futhermore, Charalambides [2] considering a sequen- 
ce of independent Bernoulli trials and assuming that the 
odds of success at the ith trial given by 

1π , 1, 2, ,0 1,0i
i q i q       ,   

is a geometrically decreasing sequence with rate q, de- 

rived that the probability function of the number X of 
successes up to n-trail is the q-analogue of the binomial 
distribution with p.f. given by Equation (1). 

For q constant, the q-binomial distribution has finite 
mean and variance when .Thus, the asymptotic 
normality in the sense of the DeMoivre-Laplace classical 
limit theorem did not conclude, as in the case of ordinary 
hypergeometric series discrete distributions. Also, asym- 
ptotic methods—central or/and local limit theorems—are 
not applied as in Bender [5], Canfield [6], Flajolet and 
Soria [7], Odlyzko [8] et al. 

n 

Recently, Kyriakoussis and Vamvakari [1], for q con- 
stant, established a limit theorem for the q-binomial dis- 
tribution by a pointwise convergence in a q-analogue 
sense of the DeMoivre-Laplace classical limit theorem. 
Specifically, the pointwise convergence of the q-bino- 
mial distribution to a Stieltjes-Wigert continuous distri- 
bution was proved. In detail, transferred from the random 
variable X  of the q-binomial distribution (1) to the 
equal-distributed deformed random variable  1 q

, 
then, for  the q-binomial distribution was app- 
roximated by a deformed standardized continuous 
Stieltjes-Wigert distribution as follows  

Y X
,n
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where , 0,1, 2,n n     such that n
n q    with 

 constant and q0 a 1   and 2
q  the mean value 

and variance of the random variable  respectively. To 
obtain the above pointwise convergence (2), a q- 
analogue of the well known Stirling formula for the  
factorial  has been provided.  

,Y

n
 !n

In statistical mechanics and in computer science such 
as in probabilistic and approximation algorithms, appli- 
cations of the -binomial distribution involve sequences 
of independent Bernoulli trials where in the geo- 
metrically decreasing odds of success at the th trial, the 
rate  is considered to be a sequence of  with 

 as .n  In this work, under this con- 
sideration, a question arises. How this assumption affects 
the continuous limiting behaviour of this q-binomial 
distribution?  

q
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i
q


n

  1q q n 

The answer to this question is given in this manuscript 
by establishing a deformed Gaussian limiting behaviour 
for the -Binomial distribution is proved. The 
proofs are concentrated on the study of the sequence 

 q n

 q n  and the parameters of the considered distribution 
as sequences of . Further, figures using the program 
MAPLE are presented, indicating the accuracy of the 
established distribution convergence even for moderate 
values of .  

n

n

2. Main Results 

2.1. An Asymptotic Expansion of the 
q(n)-Factorial Number of Order n with 

 as    1q n  n

To initiate our study we need to derive an asymptotic 
expansion for  of the q-factorial number of order 
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where  with  as  and  q q n   1q n  n 
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, the q-number t. 

The derived estimate for the -factorial numbers of 
order , is based on the analysis of the -Exponential 
function  
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which is the ordinary generating function (g.f.) of the  

numbers 
 

2

, 0,1,2,
!
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Rewriting   1qE q x  as follows 

  exp ,qE x g x            (5) 

where 
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because of the large dominant singularities of the gene- 
rating function  qE x , a well suited method for analyz- 
ing this is the saddle point method. 

Using an approach of the saddle point method inspired 
from [9-12] and [1], the following theorem gives an 
asymptotic for the  q n -factorial number of order n. 

Theorem 1. The q-factorial numbers of order 
,n   !

q
n , where 
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(7) 

where  is a positive integer,  is the real solution of 
the equation  

N r

 rg r n   
and 
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with , 1, ,k j kB   
, j

1

  the partial Bell polynomials, 
 the Stirling numbers of the second kind and 

. 
S k 

2i  
Proof. We shall study the asymptotic behaviour of the 
-factorial numbers of order , q n   !n

q
, by expressing 

them via Cauchy’s integral formula that gives the 
coefficients of a power series:  
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where the contour of integration is taken to be a circle of 
radius . This integral will be estimated with the saddle 
point method. The saddle point is defined by the equation 

r

  1xg x n  . It turns out that it is convenient to switch 
to polar coordinates, setting eix r  . Then the original 
integral becomes  

 
  

   

2

π

π

exp

! 2π

exp e d .

n

n
q

i

g rq

n r

g r g r in  

 
 
 





    

  (10) 

In accordance with the saddle point method principles, 
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The absence of a linear term in   indicates a saddle 
point. The function  eG   is unimodal with its peak at 

0  . 
An estimation of the -factorial numbers of order q
 ,n n !
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 with  defined by conditions (A) or (B) 

should naturally proceed by isolating separately small 
portions of the contour (corresponding to 

q
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real axis) as follows. 
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and choose   such that the following conditions are 
true (see [12]): 

C1) , that is 2n   1 2n   
C2) , that is 3 0n  1 3n  , 
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Thus, by C1),   has been taken large enough so that 
the central integral 1I  “captures” most of the contri- 
bution, while the remainder integral 2I  is exponentially 
small by (19). 

We now turn to the precise evaluation of the central 
integral 1I . We have  
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








 

we have 

   

   

3 1 22

2 2

1

1

π

exp d .
!

n

k

k
k

r
I

rg r r g r

r
k


   









   

 
   

  


   (26) 

We now unifiable proceed our proof for both condi- 
tions A) and B) and working analogously as in Ky- 
riakoussis and Vamvakari [1] we get our final estimation 
(7).    

In the previous theorem due to saddle point method 
principles, we have chosen the radius r of the derived 
asymptotic expansion (7) to be the solution of  

 rg r n  . By solving this saddle point equation we get 
that 

 1

1 q
r q n  

and 

     2 1
1 1

1
.

log
n

q

q
g r r g r n q

q




    

So, by substituting these to our estimation (7) the 
following corollary is proved.  

Corollary 1. The q-factorial numbers of order 
 , !

q
n n ,  where 

A)    with 1 asq q n q n n  

   n

   

and 1q n    

or 
B)        with 1

n
q q n q n o 

have the following asymptotic expansion for  n 

    
 

 

  
   

1 2

1 21

1 22 2

1

1

1

2π 1
!

log

1 1
1 1

q

n
nn

q n

n j

j

q
n

q q

q q n
O q q

q q



 
   


 






  
 

.

   (27) 
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2.2. Deformed Gaussian Limiting Behaviour for 
the q(n)-Binomial Distributions with 

 as    1q n  n

Transferred from the random variable X of the q- 
binomial distribution (1) to the equal-distributed de-  
formed random variable  1 q

, the mean value and 
variance of the random variable Y , say 

Y X
q  and 2

q  
respectively, are given by the next relations  

  11q nq
n

q


 


          (28) 

and 

   
  

 
 

 

 

2

2

1 2

22

21 1

1

1 1

1 1

q q
q n n

q q

n n

n n

q q q

n n

q q




 

 

 

 

 




 

 
 

    (29) 

(see Kyriakoussis and Vamvakari [1]).  
Using the standardized r.v. 

 1 qq

q

X
Z






  

with q  and q  given in (28) and (29), the -analo- 
gue Stirling asymptotic formula (27) and inspired by [1], 
the following theorem explores the continuous limiting 
behaviour of the -binomial distribution with  

 as n . 

q

 q n
 q n 1

Theorem 2. Let the p.f. of the q-binomial distribution 
be of the form  

    12 1

1

1 , 0,1,

x
n

x j
X

jq

n
, ,f x q q x

x
 

 
   



 
   
 

  n  

where , 0,1, 2,n n      such that ,n    as 
. Then, for  n 

A)        with 1
n

q q n q n  


or 

B)         with 1 as and 1
n

q q n q n n q n o  
with 0 1 constantnq a   and n  

the  q n
,

-binomial distribution is approximated, for 
 by a deformed standardized Gauss distribution 

as follows  
n

 
 
 

 
 

1 21

1 2

2

1

1 21

log

2π

1
exp , 0.

2 log

X

qqq

qq

q
f x

x
x

q










       

Proof. Using the -analogue of Stirling type (27), for  q

 q q n  with   1q n   and  or     1
n

q n  

   1q n on
, the q -binomial distribution (1), is app- 

roximated by 

 
 

    

 
 


 

1 21

1 2

1

1

1 21 2

1
1

log

12π 1

1 1

.
1

x
n

X x

x j

j

xj x
n q

j

q q
f x

qq

q q

q q x








 











 








     (31) 

Let the random variable  1
1

1

1

X

q

q
X

q









 and the q- 

standardized r.v. 
 1 qq

q

X
Z






  with q  and q   

given by (28) and (29) respectively, then all the fo- 
llowing listed estimations are easily derived 

 1 1 ,q
qq

q

x z





 
 

 
          (32) 

 1 1 1qx
q

q

q q z





 
 

1,    
 

     (33) 

 1
1

1
log 1 1 1 ,

log
q

q
q

x q z
q









  
        

    (34) 

  

 

1

1
1

1
exp log 1 1 1

log

log 1

x

q

qx
q q

q

q
q

q

x

q z
q

z


 











   
           

 
    

   (35) 

Also, the estimation of the next product 

 
  

  (30) 

  

 

 

1

1

1 1

1

1

1

1 1

1 1 1

exp log 1 1 1 ,

x j

j

q j
q

j q

q j
q

j q

q q q

q q z q

q z q












 




 








  

  
         
   
            







  (36) 

is derived by applying the Euler-Maclaurin summation 
formula (see Odlyzko [8], p. 1090) in the sum of the 
above Equation (36) as follows 
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 

 

 

 

 

 

1

1

2

1

2

2

log 1 1 1

1
1 1log

2log

1 1

1 1 1

1
log 1 1 1

2

1
log

2

q j
q

j q

q
q

q

q
q

q

q
q

q

q
q

q

q
q

q

q z q

q z
q

q z

Li

q z

q z

q z
q






































  
         

  
      

  
                

  
  
         







 





 
1

log ,

1 1 1q
q

q

O q

q z





 
  

  
 

    
 

 (37) 

where 2  the dilogarithmic function and Li 2  the Ber- 
noulli number of order 2. 

Moreover, working similarly for the sum appearing in 
the product  

  1 1

11

1 exp log 1j j
n n

jj

q q 
 

 



 
   

 
     (38) 

the next estimation is obtained 

   

 

 

21
1

1

2

12

1
log 1 log

2log

1
log 1

1 2

log
.

2 1

j
n n

j

n
n

n

n
n

n

q
q

Li

q
O

 


















 

 
   

 




    (39) 

Applying all the previous the estimations (32)-(39) to 
the approximation (31), carrying out all the necessary 
manipulations and for n  , by both conditions A) 
and B), we derive our final asymptotic (30).   

Remark 2. A realization of the sequence 
 considered in the above theorem 1A) 

is  
  , 0,1, 2,q n n  

  1 ,0q n
n

    1 

with 

   exp .
n

q n    

Remark 3. Possible realizations of the sequence 
 considered in the above theorem 2B) 

are among others the next two ones 
  , 0,1, 2,q n n  

     1 1
1 or 1 ,0

ln c
q n q n c

n n
1.       

Corollary 2 Let the random variable X  with p.f. that 
of the  q n

n
-binomial distribution as in Theorem 2. 

Then for  the following approximation holds  

     1

1 1
,

2 2
0 ,

b aP a X b Erf u Erf u

a b

   

 
 (40) 

where 

  
 

1

1 21

1 2

2log

qq

a

q

a
u

q

q 

 

 
        (41) 

with    2

0

2
exp d

t
Erf t x x 

   the Gauss error func-  

tion.  
Proof. Using the approximation (2) and the classical 

continuity correction we have that  

 
 

 

 
 

 
 

,

1 211

2
1 1 2
2

2

1

1 21

log

2π

1
exp d .

2 log

x a b

b

a

qqq

qq

P a X b P X x

q

x
x

q













   



           



   (42) 

Setting 
 1 qq

q

x
z






  

the approximation (42) becomes  

 
 

 

   

 

 

 

1

1

,

1

1 2 1 21

21 2

1 2 1 21

log 2π

1
exp d .

2 log

qq

q

qq

q

x a b

q q

b

q

a

q

P a X b P X x

q

z
z

q








 











 

  

   



  
         





     (43) 

Carrying out all the necessary manipulations, we get 
the final approximation (40).  

3. Figures Using Maple 

In this section, we present a computer realization of app- 
roximation (30), by providing figures using the computer 
program MAPLE and the -series package developed 
by F. Garvan [13] which indicate good convergence even 

q
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for moderate values of n. Analytically, for the random 
variable X, we give the Figures 1 and 2 realizing 
Theorem 2(A), by demonstrating with diamond blue 
points the exact probability  

    1 1
Prob ,

2 2

0,1,2, , ,

Xf x P X x x X x

x n

        
 

 
 (44) 

and with diamond green points the continuous pro- 
bability approximation  

 

   1

1 1
Prob

2 2

1 1
,

2 2
0

q
n

x x

b x x X x

Erf u Erf u

x n



      
 

 

 

     (45) 

with xu  and 1xu   given by Equation (41), for  

 

      

1


1 ,

exp 1 1 exp 1 2exp 1 n n
n

q q n
n

q q 

  

    
 

and  50,100.n 
Note that similar good convergence even for moderate 

values of  have been implemented for Theorem 2B).  n
The procedure in MAPLE which realizes the exact 

probability (44) and its approximation (45) for given 
 and theta for both Theorem 2A) and 2B), is avai- 

lable under request.  
,n q

4. Concluding Remarks 

In this article, a deformed Gaussian limiting behaviour 
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Figure 1. Sketch of exact probability (44) by blue diamond 
points and probability approximation (45) by green dia- 
mond points, for n = 50. 
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Figure 2. Sketch of exact probability (44) by blue diamond 
points and probability approximation (45) by green dia- 
mond points, for n = 100. 
 
for the  q n -Binomial distribution has been established. 
The proofs have been concentrated on the study of the 
sequence  q n  and the parameters of the considered 
distributions as sequences of  Further, figures using 
the program MAPLE have been presented, indicating the 
accuracy of the established distribution convergence 
even for moderate values of n. 

.n
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