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ABSTRACT

We give a proof in semi-group theory based on the Malliavin Calculus of Bismut type in semi-group theory and
Wentzel-Freidlin estimates in semi-group of our result giving an expansion of an hypoelliptic heat-kernel outside the
cut-locus where Bismut’s non-degeneray condition plays a preominent role.
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1. Introduction

Let us consider some vector fields X,,i =1,---,m on R¢
with bounded derivatives at each order. We consider the
generator

L=1/23 X} (1)

It generates a Markov semi-group P, acting on bounded
continuous f functions on R®. The natural question is to
know if the semi-group has an heat-kernel:

R[f](x)= J () f () @

Let us suppose that the strong Hoermander hypothesis
is checked: in such a case Hoermander ([1]) proved the
existence of a smooth heat kernel. Malliavin [2] proved
again this theorem by using a probabilistic representation
of it. A lot of tools of stochastic analysis were translated
recently by Léandre in semi-group theory. We refer to
the review papers [3]. In particular [4] proved again the
existence of the heat kernel by using the Malliavin Cal-
culus of Bismut type in semi-group theory.

Let us recall what is strong Hoermander hypothesis.

Let

Elz{Xla"'»Xm} 3)

El+1 = UYeE,,i:l,---,m[Y’Xf] (4)

Strong Hoermander hypothesis in x is the following:
there exits an / such that

inf (Y (x),£) 2C>0 )

lE=1"E,

Under Hoermander hypothesis in x, p,(x,y) exists
and is smooth in y.
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Let & be a path from [0,1] into R"™ with finite energy

W = ()

0 i=1
The Hilbert space of % such that (6) is satisfied is
denoted by H .
We consider the horizontal curve x,(h) starting
from x:

2

ds < oo ()

dv, (h) =2 X, (x, (h))dh, @)

We consider the control distance d(x, y)
& (xy)= i h|f 8
(x.») i (h):y" I ®)

By standard result of semi-riemannian geometry ([5],
[6]), if the Hoermander hypothesis is checked in all
x,(x,y)—>d(x,y) is finite continuous.

Bismut in his seminal book [7] has introduced the
notion of cut-locus associated to the sub-riemannian dis-
tance d(-,-) . We will recall in the first part what is the
cut-locus in sub-riemannian geometry.

Bismut in his seminal book [3] pointed out the rela-
tionship between the Malliavin Calculus, Wentzel-Freidlin
estimates and short time asymptotics of heat-kernels.
This relationship was fully performed by Léandre in [8,9].
In particular, by using probabilistic technics we proved:

Theorem 1. (Léandre [9]). If x and y are not in
the cut-locus of the sub-riemannian distance, we have
when t—0

D, (x,y) ~ C(x,y)t’d/2 exp [—d2 (x,y)/ZtJ )
where C(x,y)>0.
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In the proof we used a mixture between large deviation
estimates, the Malliavin Calculus and the Bismutian
procedure. Several authors laters ([10,11]) have pre-
sented other probabilistic proofs of (9). See [12] in a
special case. We refer to [13] for an analytic proof of this
result.

Remark. The complement of the cut-locus is an open-
subset of R’ xR : estimate (9) is uniform on any com-
pact set of the complement of the cut-locus.

For readers interested by short time asymptotics of
heat-kernels by using probabilistic methods, we refer to
the review papers [14-16] and to the book of Baudoin
[17]. We refer to the books of Davies [18] and of Varo-
poulos-Coulhon-Saloff-Coste [19] for analytical methods
and to the review of Jerison-Sanchez [20] and Kupka [6].

The object of this paper is to translate in semi-group
theory the proof of Theorem 1 of Takanobu-Watanabe
[11], by using the tools of stochastic analysis for estimate
of heat kernels we have translated in semi-group theory
in [21,22] and [23] for Varadhan type estimates.

2. The Cut Locus Associated to a
Sub-Riemannian Distance

The material of this part is taken on [7]. But we refer to
[11] for a nice introduction to it.

We consider the map /4 —> x,(h) starting from x.
This map is a Frechet smooth function from H into
R®. We consider U, =D x,(h). It satisfied the linear
equation starting from [ :

dU, =YD, X, (x, (h))U,dA} (10)

We get
Dx, (h)-k = ZU,jU;IX, (x,(n))dk;  (11)
i 0

The Gram matrix associate to the map h — x, (h) is
1
2

! (0] X, (x,(h))-) ds

= (Dx1 (h),Dx, (h)>

Bismut introduced the question to know if A — x, (%)
is a submersion. It is fullfilled if and only if the Gram
matrix <Dx1 (h),Dx, (h)> is invertible.

By standard result on Carnot-Caratheodory distance
d*(x,y) = ||h||2 for some heH such that
Xy (h)=x,x(h)=y.

Let be Kx,y the set of /4 such that
Xy (h)=x,x,(h)=y. The main remark of Bismut [7] is
the following: if s e K,, and (Dx,(h), Dx, (h)) is

invertible, then K is in a neighborhood of / a sub-

(12)

manifold of H by using the implicit function theorem.
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We recall the following definition:

Definition 2. (Bismut [7]) We say that (x,y) are not
in the cut-locus of the cut-locus of the sub-riemannian
distance d(-,-) if the following 3 conditions are check-
ed:

h

D & (xy).=|h,
2) The Gram matrix <Dx1 (hw),Dx1 (hw )> is inver-

tible.

3) d*(x,y) is a non-degenerated minimum of the
energy function h—>||h||2 on K _ .

Condition 3) has a meaning because K 6 is a
manifold on a neighborhood of 7, . “

As traditional in sub-riemannian geometry, we con-
sider the Hamiltonian H (x, p). It is the function from
R'xR? into R*

(x.p) >1/23(X, (x).p) (13)

When there is an Hamiltonian, people introduced
classically the Hamilton-Jacobi equation associated. In
sub-riemannian geometry, this was introduced by Gaveau
[24]. A bicharacteristic is the solution of the ordinary
differential equation on R xR? starting from (x, p):

x/(p)=D,H(x (p).p.(r))
p/(p)=-D.H(x,(p),p.(P))

2
| for only one element of K .

(14)

We put

i (p)=(X.(x(p)).p(p)) (15)

We recall some classical result on sub-riemannian
geometry (See [11], p. 204):

H(x,(p).p.(p))=H(xp)

5 (16)

=1/2[n(p)
p.(p)=("U.(h(p))) » (17)
h(p)=Dx (h(p)) p(p) (18)

Let us recall one of the main result of [7]. If (x, )
does not belong to the cut locus of d(-,-), then

X, (hx’ y) =X, ( P y) for a convenient bicharectiristic.

By using result of [11] pp. 206-207, we can compute
the Hessian of the energy in 4, in K _ .Itis equal to

]”(k’l) :<k’l>H

~(pi(pey)- D% (A, )Red)

We can compute  D’x, (4)(k,1). Itis given by

(19)
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D’x, (j)(k.1)
0,07 22 o, 1) s ()0
® Dx, (h)(1)dh,
FE [0, 00" D (5, (1)
(Dx, (h)(k)dz +Dx, (h)(1)dk! )}

= 4, (k,1)+ 4, (k1)

(20)

3. Scheme of the Proof of Theorem 1

We translate in semi-group the proof of [9] in the way
presented in [12].

See [22] for similar considerations for logarithmic
estimates of the heat-kernel.

We consider 7=¢" classically and introduce the
operator

=1/2e> X 1)
Classically
exp[L, | =exp[tL] (22)

We consider the unique curve of minimum enegy #, ,
sucht x, (hx’ y) =y and we introduce the operator

L (h,)=L +> d/dshl, X, — (23)

This generates a time inhomogeneous semi-group.
According the Girsanov formula in semi-group theory of
Léandre [4], we introduce the vector fieldon R¢xR:

X, (e)=(eX,.~1/ed/dsh] , u)  (24)

and the generator written in Ito form

L(h.,)f=Xdfash, (x.DF)

+1/26220<DX [f) (25)

25 (X(0).5°7.5,(0)
According [21], p. 207, we have:
exp[L,)[/1(x) = exp[ L. (1,

We consider the generator

L(h,, )= d/dshi, X, +1/23 X ()  27)
L) by —1/23 |k

last vector field commute with I, (hw). We deduce

Dl @6

It differs fromL (

uDu . This

X, p,8

that
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eXp |: (

=exp [—d

D 1(0)
(x,») /ZtJ exp [Le (hw )] [/ ](x,1)

We consider the vector fields

Y, () =(eX,,—d/dsh] ) (29)

(28)

and the generator
0.(h,,)=Y.dfdshl, X, +1/23 7 (¢) (30)
We have clearly that
exp| L (h,,, ) [ ](x1)
_exp[ 0. (n W)][exp ufe] £](x,0)

Let us consider the flow @

differential Equation (7) x, (hw). Let us introduce the

31)
associated to the ordinary

vector fields
Y, (€)= (e X,,~d/dsh] , ) (32)
and the time-dependent generator
0 (h.,)=1/22¥(¢) (33)
We have the main formula
exp[ Q. (1, ) |[exp[u/e] /] (x.0)
=exp| O, (k) [exp[u/e] £](x,0)

where f, is the map which to z associate f(®,(z)).
Since @, (x)=y, we have only to estimate the density
in x of the measure whichto f associates

exp| 0. (k) |[exp[u/e] £ ](x,0) (35)

We can suppose without any restriction that x=0.
We perform the dilation y — y/e.
This means that we have to consider the vector fields

Z,(e)= (@ X, (e-),—~d/dshl, ) (36)
and the generator
R (h,,)=1/2>.7} (e) (37)

We consider the density ,(-) ot the measure which
to the test function f'associates

exp| R () |[exp[u/e] £](0,0)  (38)

The main result of [21] is the following: for some
C (x, y) >0

{C(x,y)exp[—d2 (x,y)/2t]/td/2}rf (0) =p, (x,y) 39)

The main difference with [21] is in treatment of the
term exp[u/e]. We refer to [9,10,12] for the treatment
of that expression by using stochastic analysis.
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In Part 2, Dx,(h,,)-k and D’x,(h,,)k-k satisfy

a system of stochastic differential equations in cascade
with associated vector fields X.(l),Y,g2). We denote
(x',u,,u,) the generic element of RYxR‘xR‘. We
consider the vector fields

Z()=(@:X,() X ().1(2) (o)

and the generator
R(h,,)=12Y 7} (e) (41)
From (14), (15), (18), the density 7. (0) is equal to

the density 7(0) in O of the measure which to f
associates

exp[ R(1,, )]

O, (ex)—y—eu, —¢€ lu2

.| exp 2 > D (x,y) (42)

-epr%uz,Pl (x,y)ﬂ f}(O, 0,0)

where p, (x,y) is associated to A (x,y) by the proce-
dure of the Part 2. Theorem 1 will follow from Theorem 6.

We consider (x',u;,u,,v) the generic element of
RUxRYxR*xR and

Z,(e)=(0.0,0, (') (43)

and the generator
R (h,)=V23 Z () +Z,(c)  (44)
i>0
The following lemma is proved in the appendix and
was originally proved by stochastic analysis in [12].
Lemma 3. For any positive p, there exists a p
such that

exp [1? (hx’y )]

P
O, (ex')—y—eu —¢€ lu2

€xp 62 ’pl(xay) -1
.10_,<plv<p}(o, 0,0,0,0) >0 (45)
when ¢ —>0

The next lemma is due to Bismut [7] and is proved
without using stochastic analysis in the appendix:

Lemma 4. Let p>0 be very small. There exists a
p>1 such that

exp[ &, (i, )]

(46)
[[exp P <u2 .o, )’)>/2] Logolpges } (0,0,0,0) <00

Copyright © 2012 SciRes.

The remaining part of the scheme of the proof is to
apply the Malliavin Calculus of Bismut type depending
of a parameter of [21], Part 3 to the the semi-group

exp[ﬁ( (hw)] . We will apply an improvement of Theo-

rem 1 of [21]. We consider

(x',ul,uz,v,U,V) eR, =R!xR!xR!xRxG, xM,
where G, is the set on invertible matrices on R* and
M, the set of symmetric matrices on R* (V' is called
the Malliavin matrix). We consider if />0 the vector
fieldson E,

Vi(€)=(Z.(€),0,e. X, (e)U,0) (47)

i

and

Vo(e){o»(’»osZ(U1®§‘X,~(e-),->2] (48)

i>0
Let be the generator

Ly (b, ) =122 V7 () +Z,(e)+V, (€) (49)
i>0
It generates a time inhomogeneous semi-group. We
have
Lemma 5. For all positive p, the uniform Malliavin
condition is checked.

sup exp [ Lo (e, ) [V ](0,0,0,2,0) <0 (50)
Theorem 1 is a consequence of the next theorem,

(which is an extension of Theorem 1 of [21]) and of (39):
Theorem 6. When ¢ —0, r.(0)—r,(0) where

T () is the density of the measure which to f associates

exp[ﬁo (hx,y ):H:eXp[(pl (xvy)’”2>]f:|(0’0’0’0) (51)

First of all, we recall the Wentzel-Freidlin estimates
translated in semi-group theory by Léandre [22,23,25]:

Theorem 7. (Wentzel-Freidlin) Let Y, some time
dependent vector fields with bounded derivatives at each
orderon RY, i=0,---,m. We consider the control dis-
tance d” (xl, J’1) as in (8) and the diffusion semi-group

exp [1/2 ey ri+e YO} We suppose that the control

i>0
distance is continuous. Then for any open subset O
lime02¢’Log (exp |:1/262 dYi+ey, ] [16](x ))

< inf (5.1) >
¥ieo
Proof of Theorem 6. Let y be a smooth function
from R into [0,1] equals to 1 and 0 and equals to 0 if
|v| > p . By Wentzel-Freidlin estimates, we can find an
17>0 suchthatif p>1.

AM
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exp[ .., |[exp p< 1y (x,2), @, (') = y—et, >/€ | (') (1= 2)(¥) ] (0,0,0,0) < exp[ —ne * | (53)
By the integration by part of the Malliavin Calculus and the Technical Lemma 5, we have if a is a multi-index
‘exp[ém,][exp (P (x.2),@, ()= y—ew ) /e | 2 (x') (1= 2) (v) D £ ] (0.0, 0,0)‘ <|7], exp[-n/e]  (54)
Therefore we have only to estimate the density in 0 of the measure which to f'associate

exp[li (hx,y )] [exp Rp] ()c,y),(l)1 (ex')—y—eu1 _62/2u2 >/62Jexp Rpl (x,y),u2 >/2];((x');((v)f][0, 0, 0,0] (55)

By using Lemma 3, Lemma 4, Lemma 5 the density of
this measure tends to 7,(0) by using the Malliavin
Calculus of Bismut type which depends of a parameter of
[21]. O

4. Proof of the Technical Lemmas

Proof of Lemma 3. Let us first show that
exp [1?e (hx,y )] UCI)1 (ex")—y—eu — é/2u, |2/€4J -0

(56)

(We will omitt to write later the obvious initial condi-
tion which appear in various semi-group later). We intro-
duce a polynomial F' of degre less or equal to 2 in
@, (ex') and in w,u,. Let us compute the Taylor ex-

(hw )J[F] . We use Lemma 1 of [21].

If the degree of F in @, (ex') is 2, the two first terms
of the Taylor expansion are 0 and the term of order 2 is

P [RO (hw )J [DZF (02,10, ) '”1] (57)

€

pansion of exp[R

where we take partial derivatives in the first component.
If the polynomial F is of degree 1 in @, (ex') , the
term of order 1 is

exp| &, (h,, ) | DF (0u,, ), | (58)
and the term of order two is
exp [f?o (hw. )] [DF(O,ul,u2 )uzJ (59)

Lemma 3 will arise from the translation in semi-group
theory of Lemma 3.4 of [12].

Forall p thereexistsa p such that
sup exp [1?e (hx’y )]

e<l

[exp[p<(bl (ex")—eu, —62/2142 , D (x,y)ﬂ;l‘v‘ng <

(60)

The proof follows slightly the line of Lemma 3.4 of
[12]. We don’t write the convenient enlarged semi-
groups when we enlarge the space. We follow the nota-
tion of [12], 7 being replaced by ¢ and ¥V, being re-
placed by X, .

i

Copyright © 2012 SciRes.

We introduce the new coordinate
ni =1fe(®, (') =x,(h,,)) (61

We use the [t formula in semi-group theory of [25].
This leads to introduce extra coordinates in the vector
fields:

) X, (@, (ex')) )
2) X, (s)nt d/dsh;',yﬂ_y

= _I[D(xs (h +u(®, (ex')=x, (h,, ))dunid/dsh, ,
0

We introduce the new variable =° which is asso-
ciated to the extra component vector fields

3) Yox,(s)E; d/dsh.

xX,p,8 "

We use another time the It6 formula in semi-group
theory of [25] (11). This leads to introduce the vector
field associated to another variable 7.

-1
4 (2) X, (o, (ex))
We introduce an extra variable 7 associated to an-
2
other component in the drift which is (775r ) .

We get for another enlarged semi-group
exp[f?(l (hx’ ) )J an extension of formula 3.44 of [12], but

. 1 2 . 2
with J'O n;| ds instead of sup|77j| .

Lemma 8. For all p, thereexists p, >0 such that

sup exp [1%: (hw )] [exp [ponf" J Lye ] <o (62)

We postpone later the proof of this lemma which is an
analog of the quasi-continuity lemma of [25].

Next we consider another enlarged semi-group to look
the couple 7; and 7, together. We use the It6 formula
in semi-group theory of [25] (11), [22,23]. We introduce

1) X (s)
= 2_(‘1; duIDZXi (x‘Y (hw ) + v((I)AY (ex")—x, (hw )))dv .

By introducing a cascade of vector fields, we can
translate in semi-group theory (3.45) of [12]. We intro-
duce a variable 7 associate to the new component in
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-1, |2 and we can state an analog of Lemma
8 for a convenient enlarged semi-group exp [1%3 (hw )J .
For every p, there exists a small p such that

sup exp [[?f (h,, )] [exp [pnf‘" J Lisy ] <o (63)

which is tlle analog of (3.46) in [12] where we have re-
1

2 by J.
0

Let be 6 =7 —ne and 6 associated to the extra-
component vector fields:

1) oV, (xx<hx ,))7]Y for the diffusion part.
2) YoX, (x, (h,, )md/dsh.

+1/2> 0% X, (xlY ( h, 1, ) ®n, for the drift part.

We use another time the Itd6 formula in semi-group
theory of [25] (11) for a convenient enlarged semi-group

established to study together & and 6, . This allow to

2
ds.

placed sup |77 —7, 7, =1,

study 6° -6 and we conclude exactly as in pages 29,

30 of [12] with a small improvement of Lemma 8 to
study (3.46), (3.47) of [12]. O
Proof of Lemma 4. We assemble the semi-group

exp[}z’6 (hw_ )] and the semi-group exp[]éo (hw. )] to-

gether in a total semi-group exp[Rj”’ (hw )] We have

some variables x/,u,u, and v.We have
Dq)(O)-x(') =u, (64)

Let p, be small and p be very small. We use the
exponential inequality in semi-group theory of Lemma 8.
For a small p and a small p,, we have (we omitt to
write the obvious initial values in the considered semi-

groups)

exp [f?:‘"hx’y]Ruz,pl (x,y)> >n7lx |v| < p}
< exp[f?i”’hx,y]
Ruz,pl (x,y)> > 77’2;C77|Dd)(0)x —u,| > pih] < p}

+exp| Rh, , |[ (9, (3. 9)) > n7sm || < py |
=4 +A4,
(65)
We choose a small p, and a very small p. The
exponential inequalities of the proof of Lemma 8 show

4 <exp[—Cn” | (66)
It remains to estimate 4,. We scale the vector fields
Y, (1) by nY,(1) and Y,(2) by nY,(2). We get a ge-
nerator R (hx ) ) and a new Markov semi-group

exp[ )] . By a scaling argument, we recognize in

Copyright © 2012 SciRes.

4,

exp| &, (h, ) |[ (w221 (x.9))

](0.0.0)
(67)

By a simple improvement of the large deviation esti-
mates of Theorem 7, we get

E,H()Log exp [17,7 (hw )]
(w5 21 (6 2)) > LJu| < £, ](0,0,0)  (68)

== inf I

‘<Dx1(hxﬁy),k>‘3p] <p (x.»), D? xl k k >1

We chose a small p, and we use (20) and the fact
(x,y) don’t belong to the cut-locus in part 2. We
deduce that if p is very small, that there existsa C >1
such that

exp[lé( (hw )][(uz,pl (x,y)>/2 >n77, v < p}
< exp[—C?]‘zJ
(69)

Remark. This result is traditionnally hold by using the
theory of Fredholm determinant.
Proof of Lemma 5. We assemble together the semi-

group L, (hw) and L, , (hw) in a global gene-
rator Lm”(hx y) We get therefore a total semi-group

exp[uLwt . (h )] . We get the Malliavin matrix ¥, and

V,.But ¥, isnothing else that
(U;'Dx, (h,).U;' D (k) which is invertible be-

cause (x,y) don’t belong to the cut-locus of the sub-
riemannian geometry.

Moreover, by omitting to write the obvious starting
conditions, we get for a small 7:

exp| L. (k) |[[775 [>n]<cer 0)
for all p. Therefore for a small 7:
exp[ o1 ¢ (hx,y )JI:Vr_p] <4+ 4,

= exp| mt((hx’),)][V_ sy J 1)

V(Vol>77:|

Since ¥, is constant invertible, A4, is bounded inde-
pendent of p if 7 is small enough. By the results of
[22,23], there exist n(p) such that:

e[ L, (n,)][r]cce® @

By Hoelder inequality, we deduce that 4, is bounded

+wﬂgmwwﬂﬂﬁ—%+%yﬂl
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independent of p. 0O

Proof of Lemma 8. This follows clearly the line of the
quasi-continuity lemma for Wentzel-Freidlin estimates in
semi-group theory of [25]. We sketch the proof.

We recall the elementary Kolmogorov lemma of the
theory of stochastic processes ([26,27]).

Let s —> X  be a family of random variables para-
metrized by s e [0,1] with values in R® equals to 0 or
lin s=0 such that

EDXS, X,

) -5 @3)

for s'>s. There exists a continuous version of s — X
and the L norm of (X,) =sup_|X,| can be esti-
mated only in terms of the data (73).

Let us recall that R) (hw_) is a time dependent gene-
rator. For s'>s there is a time inhomogeneous semi-

group exp[(R(1 )Z(h“ )} By the Burkholder-Davies-

Gundy inequality in semi-group theory of [16] (19), we
have

oo (), o[ (R]

There we can define a continuous stochastic process
with probability measure dP associated to 7).

We use the Paul Levy martingale exponential in semi-
group theory of [25] (33), (46). We get

£ |[exs[ ()] exo[ ()] |
<C(p)(s'~s)" exp| C|[" |
By the Kolmogorov lemma, we get

E, [(exp<A,7yf">)*} < Cexp[C|A|2} (76)

|<c(p)er a9)

(75)

By standard computations, we deduce that
P[(nl'" ) > C} <K'exp[-KC']  (77)

But (Ef) is bounded, and by the same type of argu-
ment we deduce that

P[(nf ) > c} <K'ep[-kC?]  (78)

But
e = [|e[ ds (79)
such that
supexp [1&! (hw )J [7713“ > CJ < K’exp[—KCZJ (80)
o

5. Conclusion

We have translated in semi-group theory some classical

Copyright © 2012 SciRes.

result of stochastic analysis for subelliptic heat-kernels
where Bismutian non degeneracy condition [7] plays a
preominent role.

REFERENCES

[1] L. Hoermander, “Hypoelliptic Second Order Differential
Equations,” Acta Mathematica, Vol. 119, No. 1, 1967, pp.
147-171. doi:10.1007/BF02392081

[2] P. Malliavin, “Stochastic Calculus of Variations and Hy-
poelliptic Operators,” In: K. 1t6, Ed., Stochastic Analysis,
Kinokuniya, Tokyo, 1978, pp. 195-263.

[31 R. Léandre, “Malliavin Calculus of Bismut Type in Semi-
Group Theory,” Far East Journal of Mathematical Sci-
ences, Vol. 30, 2008, pp. 1-26.

[4] R. Léandre, “Malliavin Calculus of Bismut Type without
Probability,” In: V. S. Sunder and A. M. Boutet de Mon-
vel, Eds., Festchrift in Honour of K. Sinha, Proceedings
of Indian Academy Sciences—Mathematical Sciences,
Vol. 116, 2006, pp. 507-518.

[S1] M. Gromov, “Carnot-Caratheodory Spaces Seen from
within,” In: A. Bellaiche, Ed., Sub-Riemannian Geometry,
Birkhauser, Boston, 1996, pp. 79-323.
d0i:10.1007/978-3-0348-9210-0_2

[6] I. Kupka, “Géométrie Sous-Riemannienne,” In Séminaire
Bourbaki, Astérisque, Vol. 241, 1997, pp. 351-380.

[7] J. M. Bismut, “Large Deviations and the Malliavin Cal-
culus,” Birkhauser, Boston, 1984.

[8] R. Léandre, “Estimation en Temps Petit de la Densité
d’Une Diffusion Hypoelliptique,” C. R. 4. S. Série I, Vol.
301, 1985, pp. 801-804.

[91] R. Léandre, “Intégration dans la Fibre Associée a une
Diffusion Dégénérée,” Probability Theory and Related
Fields, Vol. 76, No. 3, 1987, pp. 341-358.
doi:10.1007/BF01297490

[10] G. Ben Arous, “Méthode de Laplace et de la Phase Sta-
tionnaire sur 1’Espace de Wiener,” Stochastic, Vol. 25,
No. 3, 1988, pp. 125-153.
doi:10.1080/17442508808833536

[11] S. Takanobu and S. Watanabe, “Asymptotic Expansion
Formulas of Schilder Type for a Class of Conditional
Wiener Functional Integration,” In: K. D. Elworthy and N.
Ikeda, Eds., Asymptotic Problems in Probability Theory:
Wiener Functionals and Asymptotics, Longman, New
York, 1992, pp. 194-241.

[12] S. Watanabe, “Analysis of Wiener Functionals (Malliavin
Calculus) and Its Applications to Heat Kernels,” Annals
of Probability, Vol. 15, No. 1, 1987, pp. 1-39.
doi:10.1214/a0p/1176992255

[13] T.J. S. Taylor, “Off Diagonal Asymptotics of Hypoellip-
tic Diffusion Equations and Singular Riemannian Ge-
ometry,” Pacific Journal of Mathematics, Vol. 136, No. 2,
1989, pp. 379-394. doi:10.2140/pjm.1989.136.379

[14] S. Kusuoka, “More Recent Theory of Malliavin Calcu-
lus,” Sugaku Expositions, Vol. 5, 1992, pp. 155-173.

[15] R. Léandre, “Appliquations Quantitatives et Qualitatives
du Calcul de Malliavin,” In: M. Métivier and S. Watanabe,

AM


http://dx.doi.org/10.1007/BF02392081
http://dx.doi.org/10.1007/978-3-0348-9210-0_2
http://dx.doi.org/10.1007/BF01297490
http://dx.doi.org/10.1007/BF01297490
http://dx.doi.org/10.1080/17442508808833536
http://dx.doi.org/10.1080/17442508808833536

2070

(21]

(22]

R. LEANDRE

Eds., Stochastic Analysis, L. N. M., Vol. 1322, Springer,
Berlin, 1988, pp. 109-134.

S. Watanabe, “Stochastic Analysis and Its Applications,’
Sugaku, Vol. 5, 1992, pp. 51-72.

F. Baudoin, “An Introduction to the Geometry of Sto-
chastic Flows,” Imperial College Press, London, 2000.

i

E. B. Davies, “Heat Kernels and Spectral Theory,” Cam-
bridge University Press, Cambridge, 1992.

N. Varopoulos, L. Saloff-Coste and T. Coulhon, “Analy-
sis and Geometry on Groups,” Cambridge University
Press, Cambridge, 1992.

D. Jerison and A. Sanchez-Calle, “Subelliptic Differential
Operators,” In: C. Berenstein, Ed., Complex Analysis 111,
L. N. M., Vol. 1277, Springer, Berlin, 1987, pp. 46-77.
doi:10.1007/BFb0078245

R. Léandre, “Varadhan Estimates without Probability:
Lower Bounds,” In: D. Baleanu, et al., Eds., Mathemati-
cal Methods in Engineerings,” Springer, Berlin, 2007, pp.
205-217.

R. Léandre, “Varadhan Estimates in Semi-Group Theory:

Copyright © 2012 SciRes.

(23]

(24]

(23]

[26]

(27]

Upper Bound,” In: M. Garcia-Planas, et al., Eds., Applied
Computing Conference, WSEAS Press, Athens, 2008, pp.
77-81.

R. Léandre, “Large Deviations Estimates in Semi-Group
Theory,” In: T. E. Simos, et al., Eds., Numerical Analysis
and Applied Mathematics, A. I. P. Proceedings, American
Institute Physics, Melville, 2008, pp. 351-355.

B. Gaveau, “Principe de Moindre Action, Propagation de
la Chaleur et Estimées Sous-Elliptique sur Certains
Groupes Nilpotents,” Acta Mathematica, Vol. 107, 1977,
pp- 43-101.

R. Léandre, “Wentzel-Freidlin Estimates in Semi-Group
Theory,” In: Y. C. Soh, Ed., Control, Automation Robot-
ics and Vision, 2008, pp. 2233-2235.

P. A. Meyer, “Flot d’Une Equation Différentielle Sto-
chastique,” In: P. A. Meyer, et al., Eds., Séminaire de
Probabilités XV, L. N. M., Vol. 850, Springer, Berlin,
1981, pp.100-117.

P. Protter, “Stochastic Integration and Differential Equa-
tions,” Springer, Berlin, 1995.

AM



