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ABSTRACT 

We give a proof in semi-group theory based on the Malliavin Calculus of Bismut type in semi-group theory and 
Wentzel-Freidlin estimates in semi-group of our result giving an expansion of an hypoelliptic heat-kernel outside the 
cut-locus where Bismut’s non-degeneray condition plays a preominent role. 
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1. Introduction 

Let us consider some vector fields ,i 1, ,X i m d  
h bounded derivatives at each order. We consider the 

generator  

   on
wit

 

21 2 iL  X                (1) 

It generates a Markov semi-group Pt acting on bounded 
continuous f functions on . The natural question is to 
know if the semi-group has an heat-kernel: 

d

      
d

,t tP f x p x y f y y 


d



    (2) 

Let us suppose that the strong Hoermander hypothesis 
is checked: in such a case Hoermander ([1]) proved the 
existence of a smooth heat kernel. Malliavin [2] proved 
again this theorem by using a probabilistic representation 
of it. A lot of tools of stochastic analysis were translated 
recently by Léandre in semi-group theory. We refer to 
the review papers [3]. In particular [4] proved again the 
existence of the heat kernel by using the Malliavin Cal- 
culus of Bismut type in semi-group theory. 

Let us recall what is strong Hoermander hypothesis. 
Let 

1 1, , mE X X              (3) 

 1 , 1, ,
,

l
l Y E i m

E Y  
  iX       (4) 

Strong Hoermander hypothesis in x  is the following: 
there exits an l such that 

  2

1
,inf

lE

Y x C





  0



       (5) 

Under Hoermander hypothesis in x,  exists 
and is smooth in y. 

 ,tp x y

Let h be a path from [0,1] into  with finite energy  m

 
21

2

10

d
m

i
s

i

h h s


           (6) 

The Hilbert space of  such that (6) is satisfied is 
denoted by . 

h


We consider the horizontal curve  sx h  starting 
from x : 

    d d i
s i s sx h X x h  h        (7) 

We consider the control distance  d ,x y   

 
   0 1

22

,
d , inf

x x x x h y
x y h

 
        (8) 

By standard result of semi-riemannian geometry ([5], 
[6]), if the Hoermander hypothesis is checked in all 
x ,    , d ,x y x y  is finite continuous. 

Bismut in his seminal book [7] has introduced the 
notion of cut-locus associated to the sub-riemannian dis- 
tance  d ,  . We will recall in the first part what is the 
cut-locus in sub-riemannian geometry. 

Bismut in his seminal book [3] pointed out the rela- 
tionship between the Malliavin Calculus, Wentzel-Freidlin 
estimates and short time asymptotics of heat-kernels. 
This relationship was fully performed by Léandre in [8,9]. 
In particular, by using probabilistic technics we proved: 

Theorem 1. (Léandre [9]). If x  and  are not in 
the cut-locus of the sub-riemannian distance, we have 
when  

y

0t 

     d 2 2, , exp d ,tp x y C x y t x y t    2     (9) 

where  , 0C x y  . 
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In the proof we used a mixture between large deviation 
estimates, the Malliavin Calculus and the Bismutian 
procedure. Several authors laters ([10,11]) have pre- 
sented other probabilistic proofs of (9). See [12] in a 
special case. We refer to [13] for an analytic proof of this 
result. 

Remark. The complement of the cut-locus is an open- 
subset of : estimate (9) is uniform on any com- 
pact set of the complement of the cut-locus. 

d  d

For readers interested by short time asymptotics of 
heat-kernels by using probabilistic methods, we refer to 
the review papers [14-16] and to the book of Baudoin 
[17]. We refer to the books of Davies [18] and of Varo- 
poulos-Coulhon-Saloff-Coste [19] for analytical methods 
and to the review of Jerison-Sanchez [20] and Kupka [6]. 

The object of this paper is to translate in semi-group 
theory the proof of Theorem 1 of Takanobu-Watanabe 
[11], by using the tools of stochastic analysis for estimate 
of heat kernels we have translated in semi-group theory 
in [21,22] and [23] for Varadhan type estimates. 

2. The Cut Locus Associated to a 
Sub-Riemannian Distance 

The material of this part is taken on [7]. But we refer to 
[11] for a nice introduction to it. 

We consider the map  1h x h  starting from x . 
This map is a Frechet smooth function from   into 

. We consider d  t x tx hU D . It satisfied the linear 
equation starting from 


I :  

  d d i
t x i t t

i

U D X x h U  th         (10) 

We get 

    
1

1
1 1

0

d i
s i s s

i

Dx h k U U X x h k       (11) 

The Gram matrix associate to the map  1h x h  is  

  

   

1
21

1
0

1 1

, d

,

s i sU U X x h s

Dx h Dx h

 




        (12) 

Bismut introduced the question to know if  1h x h  
is a submersion. It is fullfilled if and only if the Gram 
matrix    1 1,Dx h Dx h  is invertible. 

By standard result on Carnot-Caratheodory distance  

  22d ,x y h  for some  such that  h
   0 1,x h x x h  y . 
Let be ,x yK  the set of h such that 

   0 1,x h x x h y . The main remark of Bismut [7] is  

the following: if ,x yh K  and    1 1,Dx h Dx h  is  

invertible, then ,x yK  is in a neighborhood of h a sub- 

manifold of  by using the implicit function theorem. 

We recall the following definition: 
Definition 2. (Bismut [7]) We say that  , x y  are not 

in the cut-locus of the cut-locus of the sub-riemannian 
distance  d ,   if the following 3 conditions are check- 
ed: 

1)   22
,d , , x yx y h  for only one element of ,x yK . 

2) The Gram matrix    1 , 1 ,,x y x yDx h Dx h  is inver-  

tible. 
3)  2 ,d x y  is a non-degenerated minimum of the 

energy function 
2

h h  on ,x yK . 
Condition 3) has a meaning because ,x yK  is a 

manifold on a neighborhood of ,x y

As traditional in sub-riemannian geometry, we con- 
sider the Hamiltonian 

h . 

 ,H x p . It is the function from 
d d   into   

    2
, 1 2 ,ix p X x  p

d

     (13) 

When there is an Hamiltonian, people introduced 
classically the Hamilton-Jacobi equation associated. In 
sub-riemannian geometry, this was introduced by Gaveau 
[24]. A bicharacteristic is the solution of the ordinary 
differential equation on  starting from d    ,x p : 

     
      

,

,

t p t t

t x t t

x p D H x p p p

p p D H x p p p

 

  


   (14) 

We put 

      ,i
t i t th p X x p p p          (15) 

We recall some classical result on sub-riemannian 
geometry (See [11], p. 204):  

      

  2

, ,

1 2

t tH x p p p H x p

h p




    (16) 

      1t
t tp p U h p p


         (17) 

      1 1h p Dx h p p p


        (18) 

Let us recall one of the main result of [7]. If  
does not belong to the cut locus of , then  

),( yx
 ,d  

   ,t x y t x yx h x p ,  for a convenient bicharectiristic. 

By using result of [11] pp. 206-207, we can compute 
the Hessian of the energy in ,x yh  in ,x yK . It is equal to 

 

   2
1 , 1 ,

, ,

, ,x y x y

I k l k l

p p D x h k l

 




  (19) 

We can compute   2
1 ,D x h k l . It is given by 
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  

         

   

    

      
   

2
1

1
1 2

1
0

1
1

0

1 2

,

d

d d

, ,

s x i s s
i

i
s s

s x i s
I

i i
s s s

D x j k l

U h U h D X x h Dx h k

Dx h l h

U h D X x h

Dx h k l Dx h l k

A k l A k l








 







  


 





s

 (20) 

3. Scheme of the Proof of Theorem 1 

We translate in semi-group the proof of [9] in the way 
presented in [12]. 

See [22] for similar considerations for logarithmic 
estimates of the heat-kernel. 

We consider  classically and introduce the 
operator 

2t  

21 2 iL    2X            (21) 

Classically 

   exp expL  tL             (22) 

We consider the unique curve of minimum enegy ,x yh  
sucht  1 ,x yx h  y  and we introduce the operator  

 , ,d d i
,x y xL h L sh X   y s i    (23) 

This generates a time inhomogeneous semi-group. 
According the Girsanov formula in semi-group theory of 
Léandre [4], we introduce the vector field on d   : 

   , ,, 1 d d i
i i x y sX X sh     u     (24) 

and the generator written in Itô form  

 

   

, , ,

2

0

2

d d ,

1 2 ,

1 2 , ,

i
x y x y s i

i

i i
i

i
i

L h f sh X Df

DX X Df

X D f X















 



  





 





   (25) 

According [21], p. 207, we have:  

       ,exp exp ,1x yL f x L h uf x 
   
    (26) 

We consider the generator  

   2
, , ,d d 1 2i

x y x y s i iL h sh X X        (27) 

It differs from  , x yL h
  by 

2

, ,1 2 i
x y s uh uD  . This 

last vector field commute with  , x yL h
 . We deduce  

that 

    

      
,

2
,

exp ,1

exp d , 2 exp ,1

x y

x y

L h uf x

x y t L h uf x

   
      






  (28) 

We consider the vector fields  

   , d d i
i iY X s   th            (29) 

and the generator 

   2
, , ,d d 1 2i

x y x y s i iQ h sh X Y      (30) 

We have clearly that  

    

     
,

,

exp ,1

exp exp ,0

x y

x y

L h uf x

Q h u f x

   
      



 
     (31) 

Let us consider the flow s  associated to the ordinary  

differential Equation (7)  , s x yx h . Let us introduce the  

vector fields  

   1
, ,, d d i

i s i xY X sh    y s      (32) 

and the time-dependent generator 

   2
, 1 2x y iQ h Y              (33) 

We have the main formula 

     

     
,

, 1

exp exp ,0

exp exp ,0

x y

x y

Q h u f x

Q h u f x

      
      








   (34) 

where 1f  is the map which to z associate   1f z . 
Since  1 x y  , we have only to estimate the density 
in x  of the measure which to f  associates  

    ,exp exp ,0x yQ h u f x             (35) 

We can suppose without any restriction that 0x  . 
We perform the dilation y y  . 
This means that we have to consider the vector fields 

    1
, ,, d d i

i s i xZ X sh     y s    (36) 

and the generator 

   2
, 1 2x y iR h Z             (37) 

We consider the density  ot the measure which 
to the test function f associates 

 r 

    ,exp exp 0,0x yR h u f           (38) 

The main result of [21] is the following: for some 
 , 0C x y   

        2 d 2, exp d , 2 0 ,tC x y x y t t r p x y      (39) 

The main difference with [21] is in treatment of the 
term  exp u  . We refer to [9,10,12] for the treatment 
of that expression by using stochastic analysis. 
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In Part 2,  sDx h k  and  2
sD x h k ,x y ,x y k  satisfy  

a ochastic dif l equations in system of st ferentia cascade 
with associated vector fields    1 , 2i iY Y . We denote 
 1 2, ,x u u  the generic elemen d d  . We 

e vector fields  
t of d 

consider th

  i sZ        1 , 1 , 2i i iX Y Y    (40) 

and the generator 

   2
, 1 2x y iR h Z          (41) 

From (14), (15), (18), the density
th

  0r  is equal to 
e density  0r  in 0 of the measure which to f 

associates 

 

 
 

   

,

2
1 1 2

12

2 1

exp R

1

2exp , ,

1
exp , , 0,0,0

2

x yh

x y u u
p x y

u p x y f

 
       
   
  
   

 
  

  

  


 (42) 

where is associated to by the proce-  ,sp x y  
the Part 2

 ,sh x y  
dure of . Theorem 1 will follow from Theorem 6. 

We consider  1 2, , ,x u u v  the generic element of 
d d d      and 

Z     22
0 0,0,0, x        (43) 

and the generator 

     2
, 0

0

1 2x y i
i

R h Z Z


 
      (44) 

The following lemma is proved in the appendix and 
was originally proved by stochastic analysis in [12]. 

Lemma 3. For any positive p , there exists a   
such that 

 

 
 

 

,

2
1 1 2

12

exp R h 

1

2exp , , 1

1 1 0,0,0,0,0 0 45)

x y

p

x v

x y u u
p x y

   

 
             

  

  


 

when 
 next lemma is due to Bismut [7] and is proved 

w







0  
The

ithout using stochastic analysis in the appendix:  
Lemma 4. Let 0   be very small. There exists a 

1  such that 

 
p

   
,

2 1

exp

exp , , 2 1 1 0,0,0,0

x y

x v

R h 

p u p x y    

 
      


 (46) 

The remaining part of the scheme of the proof is to 
apply the Malliavin Calculus of Bismut type depe
of a parameter of [21], Part 3 to the the semi-group  



nding 

 ,p x yR hex   

 . We will apply an improvement of Theo-  

rem 1 of [21]. We consider 

  d d d
1 2, , , , ,x u u v U V              dd d

the set on invertible matrices on d  and 

  

where is 
atrices on called 

in matrix). We consider i r 

d

d  the set of symmetric m
  

e Malliav
 

d
f i 

 (V
0

 is 
 the veth cto

fields on d  

      U  1,0, ,0i i s iV Z X         (47) 

and 

   
21 1

0
0

0,0,0, ,s i
i

V U X 



    
 

 

Let be the generator  

   (48) 

       2
, , 0 0

0

1 2tot x y i
i

L h V Z V


     

homogeneous semi-group. We 
have 

Lemma 5. For all positive  the uniform Mallia
condition is c

 (49) 

It generates a time in

p , vin 
hecked:  

   exp 0,0,0, ,0sup pL h V I   , ,
1

tot x y


     (50) 

sequence of the next theorem, 
(which is an extension of Theorem 1 of [21]) and of

Theorem 6. When  wher




Theorem 1 is a con
 (39):  
e  0 ,    00 0r r

 0r   is the density of the measure which to f associates  

     1 2exp exp , , 0,0,0,0R h p x y u f  
0 ,x y 

rst of all, we recall the Wentzel-Freidlin estimates 

 

Fi
translated in semi-group theory by Léandre [22,23,25

Theorem 7. (Wentzel-Freidlin) Let  some
depe

  
  (51) 

]: 
 time iY

ndent vector fields with bounded derivatives at each 
order on 1d , 0, ,i m  . We consider the control dis- 
tance  d ,Y

1 1x y  as in (8) and the diffusion semi-group  

2 2 2
0

0

exp 1 2 iY Y
i

    
 

s contin

 . We suppose that the control 

distance i uous. Then for any open subset O  

   
 

1

2
1 1d ,inf Y

y O
x y


 

2
0lim 2 Log exp 1  

 (52) 

Proof of Theorem 6. Let 

2 2
0 12 1i OY Y x 

  be a smooth funct
from  into 

ion 
  0,1  equals t nd 0 and equals to 1 a o 0 if 

v  . By ntzel-Freidlin estimates, we can find an We
0   such that if 1 . p

Copyright © 2012 SciRes.                                                                                  AM 
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      2 2
, 1 1exp exp , , 1 0x yR p p x y x y x             
 

he integration by part of the Malliavin Calculus and th

  ,0,0,0 expu v             (53) 

By t e Technical Lemma 5, we have if α is a multi-index 

1

           2 2
, 1 1 1exp exp , , 1 0,0,0,0 expx yR p x y x y u x v D f f  


                

        (54) 

Therefore we have only to estimate the density in 0 of the measure which to f associate  

            2 2
, 1 1 1 2 1 2exp exp , , 2 exp , , 2 0,0,0,0x yR h p x y x y u u p x y u x v f                


     

 
By using Lemma 3, Lemma 4, Lemma 5 the density of 

this measure tends to  by using the Malliavin 
alculus of Bismut ty h depends of a parameter of 

[2

f Lemma 3. Let us first show that  

   (55) 

We introduce the new coordinate  
  0 0r

pe whic     ,1s s s xx x h       C
1]. □ 

4. Proof of the Technical Lemmas 

Proof o

   
22

, 1 1 2exp 2x yR h x y u u       

    4 0 

  

(56) 

(We will omitt to write later the obvious initial con - 
tion which appear in various semi-group later). We in
duce a polynomial F of degre less or equal to 

y   (61) 

eo
 to troduce extra coordinates in the vector 

fie

1) 

We use the Itô formula in semi-group th ry of [25]. 
This leads  in

lds: 

  i sX x  . 

  , ,d d i
i s x yX s sh   2) s

    
1

, , , ,
0

d d d i
s x y s s x y s x y sD x h u x x h u sh      

 

di
tro- 

2 in 
 1 x  and in 1 2,u u . Let us compute the Taylor ex- 

pansion of    ,exp x yR h F  

 . We use Lemma 1 of [21]. 

gree of 

  

 

If the de F  in  1 x   is 2, the two first terms 
of the Taylo nd the term of order 2 is  r e onxpansi  are 0 a

  2
0 1 2 1 1ex 0, ,R h u u u u,p x y D F    
  (57) 

where we take partial derivatives in the first component.

 

 
If the polynomial F  is of degree 1 in  1 x  , the 
term of order 1 is  

    

er two is 

he translation in semi-group 
theory of Lemma 3.4 of [12]. 

For all  there exists a 

   , 1 2exp 0, ,x yR h DF u u u   
  (58) 

and the term of ord

0 1  

   0 , 1 2 2exp 0, ,x yR h DF u u u     
      (59) 

Lemma 3 will arise from t

p   such that  

 

   

,
1

expsup x yR h


  



2exp , ,p x u p x y   



  1 1 2 12 ;1vu      

 

(6  

The proof follows slightly the line of Lemma 3.4 of 
[12]. We don’t write the convenient enlarged sem
groups when we enlarge the space. We follow the 
tio



0)

i- 
nota- 

n of [12],   being replaced by   and V  being re- 
placed by iX . 

We e introduce th new variable s
  

fiel
which is asso- 

ciated to the extra c ponent vector ds om

  , ,d d i
i s x3) y sX s sh   . 

We use another time the Itô formula in semi-g up 
theory of [25] (11). This leads to introduce the v tor 
fie

ro
ec

1,
sld associated to another variable  .  

4)     1

s i sX x


    
3,
s
  We ria introduce an extra va ble associated to an-  

other component in the drift which is  2

s
 . 

We get for another enlarged semi-g   roup

 1
,

ˆex x yR h p    

wi

an extens n of formula 3.44 of [12], but io

th 
21

0
ds s   instead of 

2
. sup s



Lemma 8. For all  , there exists 0  such that 0p 

 1 3,ˆexp exp 1sup R h p    , 0 1x y v 
1

    

We  later the pro is 
analo uasi-continuit a o

 
  (62) 

 postpone of of th lemma which is an 
g of the q y lemm f [25]. 

no i-gr  
the couple 



Next we consider a ther enlarged sem oup to look

s
  and s  

y of
together. We use the Itô form

in semi-gr heor  [25] (11), [22,23]. We intr
ula 

oduce oup t

 21) iX s

     
1

22 d
u

u D X x h v x x h     

  



 
duce a variable 

, ,
0 0

i s x y s s x y

By introducing a cascade of vector fields, we can 
translate in semi-group theory (3.45) of [12]. We intro-

dv . 

4,
s
  associate to the new component in  
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th ift e dr
2

s s   and we can state an analog of Lemma  

8 for a convenient enlarged semi-group  2ˆexp xR h   . , y

For every p , there exists a small   such that 

 2 4,
, 1

1

ˆexp exp 1sup x y vR h p  


        

og 

 





  (63) 

which is the anal of (3.46) in [12] where we have re- 

placed 
2

1sup s ss    by 
1

2

0

ds s s  .  

Let be s s s      and    associated to the e
ponent v

xtra- 
com  

1) 

ector fields:

  ,i s x y sV x h   for the diffusion part. 

2)   , , ,i s x y s s x yd d iX x h sh   

 2
,1 2 i s x y s sX x h     for the drift part. 

other tim
onvenient enlarged semi-group 

est ished to study t

We use an e the Itô formula in semi-group 
theory of [25] (11) for a c

abl ogether s
  and s . This allow to 

study s   and we conclu t  as in pages 29, 

30 of [12] with a small improvement of Lemma 8 to 
study (3.46), (3.47) of [12]. □

de exac ly

 
Proof of Lemma 4. We assemble the semi-group  

 ,exp x yR h  

  and the semi-group  0 ,exp x yR h  

  to- 

gether in a total semi-group  ,
tot

x yR h  

 . We have  

some variables 1 2, ,

exp

x u u  and v . We have  

 0D x u               (64) 0 1

Let 1  be small and   be very small. We use the 
expon tial ine eory of Lemm
For a small 

en quality in semi-group th a 8. 
  and a small 1 , we t to 

write the obvious initial values in ered semi- 
have (we omit

 the consid
groups) 

 

   
 

2exp totR h , 2 1

1 2

, ,x y u p x y

A

,

2
2 1 1 1

2
, 2 1 1 1

exp

, , ; 0 ;

exp , , ;

tot
x y

tot
x y

R h

u p x y C D x u v

R h u p x y u

A

; ;x v  

   

  





 
      

       
 











 

      


 

(65) 
We choose a small 

  

1  and a very small  . The 
exponential inequalities of t e proof of Lemma 8 ow h  sh

2
1 expA C               (6 ) 

It remains to estimate 

6

2A . We scale the vector fields 
 1 1Y

nerato

 by  and  by . We get a ge-  

r 

  1iY  2iY   2iY
 ,x y and a ar -group R h   new M kov semi

 ,p x yuR h   . By a scaling argument, we recognize in  

1

ex

A   

     0,0,0  , 2 1 1 1x y  exp , , 1,R h u p x y u    

simple im n esti- 
mates of Theorem 7, we get  

(67) 

By a provement of the large deviatio

 
 

     2
1 , 1 1 1 ,

0 ,

2 1 1 1

2

, ; , , 1

lim Log exp

, ( , ) 1, 0,0,0

inf
x y x y

x y

Dx h k p x y D x h k k

R h

u p x y u

k

 







  

  
     

 

 



  ( 8) 6

We chose a small 1  and we use (20) and the fact 
 ,x y  don’t belong to the cut-locus in part 2. We 

 that if deduce   is v all, that there exists a 
such that 

ery sm 1C   

    2
, 2 1

2

exp , , 2 , ;

exp

x yR h u p x y x v

C

 







       
   




 

he
hol

 Lemma 5. We assemble together the semi-  

group 

  (69) 
□ 

Remark. This result is traditionnally hold by using t  
theory of Fred m determinant. 

Proof of

 , ,tot x yL h  and  in a global gene

rator 

 ,0 ,tot x yL h - 

 , ,tot x yL h  We get therefore a total semi-group 

 , ,tot x yhexp uL  V. We g in matrix et the Malliav    an  d 

0 . But 0V  is nothing else that  V

   1 1,U Dx h U Dx h   w1 1 , 1 1 ,x y x y hich is invertible be-  

cause  ,x y don g to th 
ian ge

’t belon cut-locus of the sub- 
riemann try. 

Mo  omitting to write the obvious starting 

e 
ome

reover, by
conditions, we get for a small  : 

  1
, , 0exp p

tot x yL h V V    C         (70) 

for all p. Therefore for a smal

 

l  : 

 

  1
0

, ,exp ;1p
tot x y V V

L h V






 

    1
0

, , 0 0exp ;1
p

tot x y V V

L

L h V V V 






, , 1 2exp p

tot x yh V A A      



      
 


    (71) 

 

       
 

ble, Since 0V  is constant inverti 2A  is bounded inde- 
penden  if t of p   is small enou . By the results of 
[22,23], th ist 

gh
ere ex  n p  such that:  

   
, ,exp n pp

tot x yL h V C             (72) 

By Hoelder inequality, we deduce that 1A  is bounded 

Copyright © 2012 SciRes.                                                                                  AM 
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independent of □ 
Proo This follows clearly the line of the 

quasi-continu mma for Wentzel-Freidlin estim
semi-group the of [25]. We sketch the proof. 

We recall th mentary Kolmogorov lemma of the 
theory of stoch  processes ([26,27]). 

Let 

p . 
f of Lemma 8. 

ity le
ory 
e ele
astic

ates in 

ss X
y

 be a family of random variables para- 
metrized b   0,1s  with values i d  equals to 0 or 
1 in 0s   s ch th  

n 
u at

 p   p

s s s sE X X C p


        (73) 

for 

 

s s  . Th xists a continuous version of ere e ss X  
and the pL  norm of  1 1sup ssX X


 can be esti- 

mated only in te s of
 

 the data (73). rm
Let us recall that  1

,x yR h  is a time dependent gene- 
rator. For s s   there is a time inhomogeneous semi- 

gr 1 s 
 

oup    
of [16] (19), we 

ha

,exp x ys
R h   . By the Burkholder-Davies-  

Gundy inequality in semi-group theory 
ve 

    1 1 1, 1,

0
exp exp

s s p p
s ss

R R C p t  
         (74)

There we ca ne a continuous stochastic
 prob

  
  

   

n defi  process 
with ability measure dP  associated to 1,

s


We use t e Paul Levy e exponential in semi- 
group theory of [25] (33), (46). We ge

. 
 h ngal

t 
 marti

   

1, 1,exp , exp ,

2
exp

p

P

C p s s




 

 
s sE A A  

              (75) 
p

C A 
 

By the Kolmogorov lemma, we get 

  21,
1exp , expPE A C C A

      
      

By standard computations, we deduce that 



(76) 

 1, 2
1 expP C K KC

     
    

 

But  
 (77) 

s
  is bounded, and by the same type of 

ment ce that 

C   

But 

argu- 
 we dedu

  2
1 expP C K K

      
     (78) 

213,
1 0

ds s              (79)

such that 
2 

□

5. Conclusion 

We have translated in semi-group theory some classical 

nalysis for subelliptic heat-kernels 
where Bismutian non degeneracy condition [7
preominent role. 
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