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ABSTRACT

We establish, through solving semi-infinite programming problems, bounds on the probability of safely reaching a de-
sired level of wealth on a finite horizon, when an investor starts with an optimal mean-variance financial investment

strategy under a non-negative wealth restriction.
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1. Introduction

In probability theory, the first passage-time problem is
the study of the first moment when a stochastic process
reaches a certain threshold. This problem often arises in
financial mathematics and particularly in portfolio man-
agement. For example, consider a risky strategy on an
horizon [0,7], the investor may encounter a specific in-
stant # when the amount of wealth x(¢) be sufficient
enough so that he may, at this point, safely reinvest all of
his money in a simple bank account with (deterministic)
interest rate r(7) and the resulting terminal wealth
x(T) will attain his financial goal z. So we consider the
following stopping time random variable :

. Jr(s)as
7, =inf{0<r<T:x(t)e’ =z (1)

and we naturally want to compute the probability
P(7,<T) of such an event. If x> 0 is his initial wealth

then we will assume z > x, exp{jorr(s)ds} so that the

investor cannot achieve his financial goal by simply
placing his initial investment in a bank account.

2. Market Model

In order to investigate this goal-achieving problem, we
must first define a mathematical setting for the dynamics
of the financial market. We will consider here the cele-
brated Black-Scholes model that we next describe. The
first asset is a bank account whose price at time #, F, (¢),
is the solution to the following ordinary differential equ-
ation (ODE):
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dR, (t)=r(1) R, (¢)dr. )

The next assets consist of m stocks whose prices
{E (t),-.P, (t)} at time ¢ are the solutions to the fol-
lowing SDEs (stochastic differential equations):

a8 ()= B () (Do + 370, ()W, (1] )

where {W (t) > 0} is a standard m-dimensional Brow-
nian motion.

We will assume that the interest rate r(¢), stock appre-
ciation rates b(f) and stock volatilities o;(¢) are determi-
nistic functions and that

Oy (t) Oim (t)
o(t)=| + . “4)
O, (t) Cm (t)

is invertible.
Let u(t):(ul(t),--- u (t))T,OStST be a finan-

>%'m
cial strategy (or portfolio) where ui(t) is the amount
placed in the /™ stock. If we assume that all strategies
u(r) are self-financed (no outside injection of funds to
the investors) and with no transaction costs then the
wealth dynamic at time ¢ is given by the following sto-
chastic differential equation (SDE):

dx(t)={r(t)x(¢)+B(t)u(t)}de
+u(t) o(1)dw (1)

where B(t)=(b,(t)=r(t),.b, (1)~ (1)) -

Finally, among all the possible strategies, we will fo-

(6))
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cus on the one generated by a family of stochastic control
problems defined by

minVAR(x(T))st. E(x(T))=z.  (6)

These are known as mean-variance problems and are
considered the cornerstone of modern portfolio manage-
ment theory which originated with the work of Nobel
Prize laureate H. Markowitz.

3. Goal Achieving Probabilities

3.1. Case 1: Unconstrained and No Short-Selling
Restriction

In this context, the optimal wealth process has the fol-
lowing form

(o Sla Jofpafoms) o
x(t)zyoeo( o +pe )

with yo <0, 8>z and «(r)>0 having specific values
for the unconstrained and no-short selling (no borrowing
stocks) case respectively. The computation of the prob-
ability P(z, <T), following a stochastic time change,
can be reduced to the calculation of the probability of the
first passage time of a Brownian motion with drift
through a fixed level, more precisely the probability is
given by:

(e <)=0( [ le(o)f )
a3 [afa)

®

where

D (x)= j ¢ Pdz ©)

V2w 2,
is the cumulative density function of a standardized nor-
mal distribution.

Detailed proofs can be found in Li and Zhou [1] and
Scott and Watier [2].

3.2. Case 2: No Bankruptcy Restriction

In this case, unfortunately, the optimal wealth process
has a more complex expression, according to Bielecki et
al. [3] it is given by

X (1) = ae F O (je s) (10)
where
S(.2)=0(~d (.y(1.2)))
Y(6Z) [ (an
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ln[y(ZZ)j+.[rT[r(s)+;|6(S)|2st (12)
Loty as

d_(ty(t.2))=d,(ty(t.2))-

Tloera

2r(s)-|0(s)|" |ds I} —7‘0 ‘ ds
(02) = OO HOAT R g
and A>z and x>0 are Lagrange multipliers ob-
tained by solving the nonlinear system of equations:

E[(ﬂ—yp(r))*}:z (15)
E[p(T)(z—up(T))ﬂ =x,  (16)

with

T 1 ) ‘
- r(s)+7H9(s)H d.y—j&r(s)dW(s)
p(T)=e fersber ) (17)

Evidently, an explicit form for the corresponding goal-
achieving probability P(r;VB <T ) as in the cases dis-
cussed in Section 3.1 appears unrealistic. However, we
will show that we can obtain precise bounds for this
probability through solving (deterministic) semi-infinite
programming (SIP) problems.

The basic idea is to convert the original passage-time
problem of this complex stochastic process with a fixed
barrier into an equivalent passage-time problem for a
simple Gaussian Markovian process but with a time-
varying boundary.

To this end, the following result will be useful.

Let 4>0, then

g(x)=d(x+ A)—e_Ax_%Azd)(x) (18)

is a strictly increasing function on the real line that takes
on values in ]0,1[ .

The proof is straightforward since clearly
lim_, , g(x)=0 and lim (x)=1, while

%(x)
Ox

X—>00 g

g2

=de 2 ®(x)>0 19)
From this property we have that, for each fixed
tel0,7],
r(ef0(s)am s)):i

= (t,j;&(s)dW K

therefore, if
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invf
z_mv

z

=inf{0 <tr< T:(t,J;@(s)dW

)

P(c) <T)=P(c <T). (22)

then

Due to the intricate nature of the time-varying bound-
ary obtained, there is again little hope to find an explicit
formula. But suppose we can get simpler boundaries 7,
and h, such that &, (t)< f~'(t,z/2)<h,(t) then clearly
by defining

t
o :inf{OStST:Jﬁ(s)dW
0

(s)=1h, (t)} 23)

z'f":inf{OStsT:je(s)dW(s):hu(t)} (24)

we would have
(e <r)zple 1)sr( 7). @9

The next task at hand is to find suitable boundaries, for
this, we need to recall first passage-time results for
Gaussian Markovian processes through a specific family
of time-varying boundaries known as Daniels’ curves
(see Dinardo et al. [4]).

Consider the stochastic process

{je O<t<T}

then the first passage-time probability through a boun-

dary of the form
S(1)=2- LG e o[ &5 A(t)] (26)
2 a 2
where
A(t)=c +4c, exp{— (27
[l as ||
a>0,¢,>0,c,eR and lim,_,A(t)>0, is given in
explicit form by
P(r<T)=0 T_Si +6® f(T#
Il as Jlos) as
0 0 (28)
+CZCD i'(T)——2a .
flots @
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Therefore the family of Daniels curves appears to be
excellent candidates for obtaining explicit upper and
lower bounds for our original goal-achieving problem.
Finally, in order to generate the tightest bounds possible,
we are naturally led to solve the following SIP problems:

sup @{_—S(T)J+Cl®[—S(T)—a]
a>0,;0,cy€R h (T) h(T)

+czq>[—s z H“J 29)

h(T)

st(1)2 /- [z —]for all 1[0,7]

and

. -S(T) S(T)-«a
Y CDL Jh(T) o [ h(T) J

stS(1)<. /s ( j for all 1€[0,7]

For inquiries on efficient techniques for solving these
SIP problems we refer the reader to Lopez and Still [5]
and Reemtsen and Riickmann [6].

4. Numerical Examples

In order to illustrate that the solutions to the 3-parameter
SIP problems can produce tight bounds, let us reprise the
one stock market model example in Bielecki et al. that is
r(1)=0.06, b(1)=0.12, o(1)=0.15, x, =1, T=1 but
with different wealth objective z. Table 1 sums up the
results.

Finally, we can easily show that the 80% rule (i.e.
P(z,<T)>0.80, for all possible values of the market
parameters) obtained by Li and Zhou and, Scott and
Watier unfortunately does not hold in general for a no-
bankruptcy optimal mean-variance strategy. For example,
if we set z=2.0, by solving (29), we have
P(z.<T)<0.65.
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