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ABSTRACT 

This study considers a theoretical analysis of natural convection flow of heat generating/absorbing fluid near an infinite 
vertical plate with ramped temperature. It is assumed that the bounding plate has a ramped temperature profile. Exact 
solutions of energy and momentum equations are obtained using the Laplace transform techniques. Solutions are ob- 
tained for different values of the Prandtl number (Pr) and the heat sink parameter (S). Results of the ramped and iso- 
thermal temperature and velocity as well as Nusselt number and skin friction have been compared and presented with 
the help of graphs. 
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1. Introduction 

Several aspects of unsteady laminar free or natural con- 
vection flow have been studied extensively over the past 
40 years. The interest in such problems stems from their 
important applications, such as the early stages of melt- 
ing and in transient heating of insulating air gap by heat 
input at the start-up of furnaces. Also, time dependent 
laminar natural convection is likely to find wider use as it 
could provide the flow mechanism in some types of solar 
heating and ventilating passive systems. In modern elec- 
tronic equipment, the vertical circuit boards include heat 
generating elements, and this situation can be modelled 
by parallel heated plates with upward flow in the inter- 
vening space [1]. 

Heat generation/absorption plays significant role in 
various physical phenomena such as convection in earth’s 
mantle [2], application in the field of nuclear energy and 
fire combustion modeling [3].  

Natural convection flow of heat generating/absorbing 
fluid was studied by [4-6], and [7]. Vajravelu [8] con- 
cluded that the heat source/ sink play an important role in 
delaying the velocity and the temperature to reach the 
steady state condition. Several interests have been built 
in the study of flow of heat generating/absorbing fluid 
because as the temperature differences are increased ap- 
preciably, the volumetric heat generation/absorbing term 
may exert strong influence on the heat transfer and tran- 
sitively on the flow [9]. Jha [9] discusses and analyze the 
flow behaviour of transient free convective flow of vis- 

cous incompressible fluid in a vertical channel due to 
asymmetric heating of the channel walls in the presence 
of temperature dependent heat sink. He concluded that an 
increase in heat sink parameter (S) decreases both skin 
friction (τ) and Nusselt number (Nu). 

Unsteady flow formation in vertical channel due to 
symmetric and asymmetric heating has been studied by 
Jha et al. [10], and Singh et al. [11]. Paul et al. [12] pre- 
sented analytical solutions for transient natural convec- 
tion flow in a vertical channel by considering isoflux- 
isothermal and isoflux-adiabetic boundary conditions 
respectively. 

Chandran et al. [13] studied natural convection near a 
vertical plate with ramped temperature and obtained two 
different solutions, one valid for the fluid of Prandtl 
numbers different from unity and the other for which the 
Prandtl number is unity. They obtained analytical solu- 
tions under the assumption that the velocity and tem- 
perature conditions on the wall are continuous and well- 
defined. They concluded that the solutions for the non- 
dimensional velocity and temperature variables depend 
upon the Prandtl number of the fluid, and the expression 
of the fluid velocity is not uniformly valid for all values 
of Pr. In their work, heat source or sink is absent. How- 
ever, when the temperature differences are appreciably 
large, the volumetric heat generation (absorption) term 
may exert strong influence on the heat transfer and as a 
consequence, on the fluid flow as well. 

The present work considers natural convection flow of 
heat generation/absorption fluid near a vertical plate with 
ramped temperature. The organization of the paper is as *Corresponding author. 
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follows: The problem is formulated in Section 2. Two 
cases are considered under this section. First case dis- 
cusses plate with continuous ramped temperature and 
second case considers plate with isothermal temperature. 
Results and discussion is presented in Section 3. Section 
4 contains the concluding remarks 

2. Mathematical Formulations 

The flow considers unsteady natural convective flow of a 
viscous incompressible fluid of arbitrary Prandtl number 
near a vertical plate. Figure 1 shows the physical con- 
figuration. An arbitrary Origin O on the wall is chosen, 
the axis Ox' is taken along the wall in the upward direc- 
tion and Oy' axis is taken perpendicular to it into the fluid. 
For time t' ≤ 0 both the fluid and the plate are at rest and 
at the constant temperature T . When the time is greater 
than zero i.e. t' > 0 the temperature of the plate is in- 
creased or decreased to 0( )w ,T t t    T T   when t' ≤ 
t0 and thereafter, for t' > t0 is maintained at the constant 
temperature .w . The objective here is to analyze the 
unsteady natural convective flow of heat generating/abs- 
orbing fluid with ramped temperature. The flow is as- 
sumed to be laminar and therefore, the effects of the con- 
vective and pressure gradient terms in the momentum 
and energy equations are neglected. Here the physical 
variables become functions of the time variable t' and the 
space variable y' only as a result of the boundary layer 
approximations 

T 

By the use of Boussinesq’s approximation, the govern- 
ing equations for the flow problem in dimensional form 
are: 
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In the present analysis we have considered the heat 
generation (absorption) of the type Vajravelu and Sastri, 
[7]; Foraboschi and Federico, [3] 
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The initial and boundary conditions to be satisfied are: 
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Solutions of (1) and (2) can be obtained subject to the 
condition (4) in non-dimensional form and as such the 

non-dimensional quantities are introduced as follows 
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Using Equation (5) in (1) and (2), the momentum and 
energy equations are presented in dimensionless form as 
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According to the above non-dimensional process, the 
characteristic time  can be defined as 0t
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The initial and boundary conditions given by equations 
(4) now become 
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The solutions of Equations (6) and (7) under condition 
(9) were obtained using Laplace transform techniques 
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Figure 1. Physical configuration.   
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2.1. Case 1. Plate with Continuous Ramped Temperature 

Using partial fraction with detailed simplifications and shifting on the t-axis, the solution can be written as 
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where are respectively measures of the heat transfer rate and 
shear stress at the boundary are expressed as follows  1, 1, and
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The Nusselt number (Nu) and Skin friction (τ) which  
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2.2. Case 2. Plate with Isothermal Temperature compare such a flow with the one near a plate with iso-
thermal temperature. Under the same assumptions con-
sidered in this article, the temperature and velocity field 
for the fluid flow with heat generating/absorbing near an 
isothermal, plate can be written as follows 

Analytical expressions for the temperature and velocity 
variables are given in Equations (10) and (11) for fluid 
flows with heat generating/absorbing near a vertical plate 
with ramped temperature. 

To show the effect of the ramped temperature distribu-
tion of the boundary on the flow, it may be interesting to  
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The rate of heat transfer on the wall and the skin fric-
tion are given as follows 0 4
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where 1 2 5, , ,F F F  are defined in the appendix. 

3. Results and Discussion 

For the numerical validation of our results, we have cho-
sen physically meaningful values of the parameters en-

tering the problem. In Figures 2-12, the variations of the 
physical variables of interest have been plotted. Tempe- 
rature profile for ramped and isothermal boundary condi-
tions for different values of time is presented in Figure 2 
while keeping the heat sink parameter S and the Prandtl 
number constant. It shows that as time t increases the  
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temperature increases. In Figure 3 the temperature pre- 
sents an inversely proportional relationship with Pr. Also 
the temperature decays with distance. For fluid with large 
Pr, the temperature decays faster with distance which 
makes thermal boundary layer to decrease. This is ex-
pected since fluid with large Pr has low thermal diffusiv-
ity and hence heat penetration is less when Pr is large. 
For fluid with low Pr the temperature increases and 
thereby increasing the thermal boundary layer. Figure 4 
shows temperature profile for ramped and isothermal 
temperature boundary conditions. As the heat sink pa-
rameter (S) increases the temperature decreases for both 
ramped and isothermal case. It is seen from Figure 4 that 
the fluid temperature is greater in the case of isothermal 
plate than in the case of ramped temperature at the plate. 
This should be expected since in the latter case, the heat-
ing of the fluid takes place gradually than in the isother-
mal case. 

Figure 5 shows variation of velocity due to ramped  
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Figure 2. Temperature Profile for ramped temperature and 
isothermal boundary conditions for different values of t (S = 
0.2 and Pr = 0.71). 
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Figure 3. Temperature Profile for ramped temperature and 
isothermal boundary conditions for different values of Pr (S 
= 0.2 and t = 0.5). 
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Figure 4. Temperature profile for ramped temperature and 
isothermal boundary conditions for different values of S (Pr 
= 0.71 and t = 0.5). 
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Figure 5. Ramped velocity profile for different values of t (S 
= 0.2 and Pr = 0.71). 
 
plate temperature for different values of time (t). As time 
increases the velocity increases. Figure 6 shows velocity 
profile for different values of the heat sink (S). From 
Figure 6, it is clear that velocity decreases with increase 
of heat sink parameter (S) for thermal boundary condi-
tions (i.e. ramped as well as isothermal). Figures 7 and 8 
show two profiles corresponding to ramped velocity and 
isothermal boundary conditions. In Figure 7 for 0 < t < 1, 
the velocity increases after which it starts descending. It 
was observed that the presence of heat sink S reduces the 
velocity profile for both ramped and isothermal cases. In 
Figure 8, it is observed that for very small values of time, 
the velocity profiles are nearly flat, but assume parabolic 
shapes near the plate as t increases. Moreover, the points 
of maxima on the curves get shifted to the right, as time 
increase. It is also seen that the velocity increases mono-
tonically with the temporal variable t. The same observa-
tion is made, that the velocity on the ramped temperature 
plate is always less than that of the flow induced by a plate 
of isothermal temperature and this agrees with earlier ob-
servation made with regards to the temperature variation. 

Copyright © 2012 SciRes.                                                                                 JEAS 



B. K. JHA  ET  AL. 

Copyright © 2012 SciRes.                                                                                 JEAS 

65

 

 

Figure 6. Ramped velocity profile for different values of S (t = 0.5 and Pr = 0.71). 
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Figure 7. Variation of velocity ( ). Two profiles corre-
sponding to ramped and isothermal boundary conditions 
for different values of S (t = 0.5 and Pr = 0.71). 
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 Figure 9. Variation of the Nusselt number ( ) for differ-
ent Pr corresponding to ramped and isothermal boundary 
conditions and 
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Figure 9 shows variation of the Nusselt number (Nu) 

corresponding to ramped and isothermal boundary con- 
ditions. For t < 1, the Nusselt number increase with time. 
There is a sharp decrease for isothermal case between 1 < 
t < 1.5 and 0 < t ≤ 0.5 for the ramped case. The Nusselt 
number increases as Pr increases because temperature 
reduces with increasing Pr thereby increasing the tem- 
perature gradient between the wall and the fluid and 
hence an increase in the rate of heat transfer is achieved. 
In Figure 10, as the Prandtl number increases the Nusselt 
number increases for both ramped and isothermal cases. 
It is observed that for 0 < S < 0.5 the Nusselt number is 
increasing and for 0.5 < S < 1 it is decreasing while it 
assumed constant value for S > 1 It is also seen that for  

Figure 8. Variation of velocity profile ( ) corresponding to 
ramped and isothermal boundary conditions for different t 
(S= 0.2 and Pr = 0.71). 
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Figure 10. Variation of the Nusselt number ( ) corresponding to ramped and isothermal boundary condition for different 
Pr and (t = 0.5). 
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Figure 11. Variation of skin friction (τ) corresponding to 
ramped and isothermal boundary condition (S = 0.2). 
 
Pr > 1 the Nusselt number for isothermal case coincide 
with that of the ramped case when S ≤ 0.5. For small Pr 
i.e. 0 < Pr < 1 the Nusselt number increases with the heat 
sink parameter S. Also for large values of the heat sink 
parameter S and large Pr the Nusselt number in the iso-
thermal case converges to that of ramped, while for small 
Pr, the isothermal case diverges away from the ramped 
case when S is large. In Figure 11 as the value of the 
Prandtl number Pr increases, the skin friction increases 
with respect to time. It is observed that as , both 
the ramped and isothermal skin friction coincide. Figure  
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Figure 12. Variation of the skin friction for ramped and 
isothermal boundary conditions for different values of Pr (t 
= 0.5). 
 
12 shows variation of the skin friction for ramped and 
isothermal boundary conditions for different values of Pr. 
There is an increase of the skin friction for ramped and 
isothermal cases between 0 < S < 1.5, after which both 
ramped and isothermal skin friction decrease. 

4. Conclusion 

This work investigates the Natural convection flow of 
heat generating/absorbing fluid near a vertical plate with 
ramped temperature. Results for temperature and velocity 
profiles as well as Nusselt number and skin friction are 
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presented graphically. The result shows that isothermal 
case is always high than the ramped case. It is concluded 
that the presence of the heat sink parameter (S), reduces 
temperature and velocity profile as well as the skin fric-
tion for both ramped and isothermal cases. 
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Nomenclature 

pC   specific heat of the fluid at constant pressure; 
g   acceleration due to gravity; 
Nu   Nusselt number; 
Pr   Prandtl number; 
S   dimensionless heat sink parameter; 
t    dimensional time; 
t   dimensionless time; 
T 
T
  dimensional temperature of the fluid; 


T 

  initial temperature; 

w   wall temperature; 
T   dimensionless temperature; 
u   dimensional velocity of the fluid;  
u   dimensionless velocity of the fluid; 

x   vertical axis;  
y   horizontal axis ; 
y   dimensionless co-ordinate perpendicular to the 

plate; 
Q
Q

  dimensional heat generation term; 

0   coefficient of heat generation. 

Greek letters 

   volumetric coefficient of thermal expansion; 
   thermal conductivity of the fluid; 
   density of the fluid;         
   dimensionless skin friction of the wall; 
   kinematic viscosity. 
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