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ABSTRACT 

In presented paper we try to consider problems of the gravitational optics and dark matter developing from the crystal 
model for the vacuum. How it is follows from consideration it enables to describe both electromagnetic waves and 
spectrum of elementary particles from the unified point of view. Two order parameters – a polar vector and an axial 
vector - had to be introduced as electrical and magnetic polarization, correspondingly, in order to describe dynamic 
properties of vacuum. Vacuum susceptibility has been determined to be equal to the fine structure constant  . Unified 
interaction constant g for all particles equal to the double charge of Dirac monopole has been found (g = e/, where e 
charge electron). The fundamental vacuum constants are: g, , parameters of  length ,e n   and parameters of time 

,e n   for electron and nucleon oscillations, correspondingly. Energy of elementary particles has been expressed in 

terms of the fundamental vacuum parameters, light velocity being equal to e e n nc      . The term mass of parti-

cle has been shown to have no independent meaning. Particle energy does have physical sense as wave packet energy 
related to vacuum excitation. Exact equation for particle movement in the gravitational field has been derived, the 
equation being applied to any relatively compact object: planet, satellite, electron, proton, photon and neutrino. The 
situation has been examined according to the cosmological principle when galaxies are distributed around an infinite 
space. In this case the recession of galaxies is impossible, so the red shift of far galaxies’ radiation has to be interpreted 
as the blue time shift of atomic spectra; it follows that zero-energy, and consequently electron mass are being increased 
at the time. Since physical vacuum has been existed eternally, vacuum parameters can be either constant, or oscillating 
with time. It is the time oscillation of the parameters that leads to the growth of electron mass within the last 15 billion 
years and that is displayed in the red shift; the proton mass being decreased that is displayed in planet radiation. 
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1. Introduction 

The science about cosmology has been in rather difficult 
situation in recent years. On one hand, observations of 
star dynamics in galaxies and of galaxies in clasters show 
substantial deviation of rotation velocities from Kepler’s 
law; this proves the existence of additional matter (dark 
matter) which participates in gravitational interaction [1- 
3]. On the other hand, more careful examination of the 
red shift in the nearer space at the distances of 105-107 
light years as well as observation of supernova outburst 
[4,5] show that velocity of the Universe expansion incr- 
eases with time, and this in turn requires introduction of 
additional dark energy with anti-gravitational properties. 

Thus, a contradiction arises. Practically, in one and the 
same point it is necessary to introduce both dark matter 
creating additional gravitational field and dark energy 
having anti-gravitation. Since there is no doubt about the 
facts above, their interpretation must be revised. 

At the present time there are two mutually exclusive 
points of view. First, despite very distinctive spatial non- 
homogeneity of matter, observations show that at the 
distances of about 109 light years (cell of homogeneity) 
matter is distributed in the space quite homogeneously. 
Besides, the cosmological principle suggests that these 
homogeneous cells should cover the entire infinite space. 
Second, the red shift discovered by Hubble, which he 
interpreted as Doppler's principle related to the galaxies 
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expansion, made Friedman’s model of expanding Unive- 
rse quite necessary. From Hubble’s empirical law that 
determines dependence of velocity of galaxies on the 
distance v = Hr, we can suppose existence of a singular-
ity at a certain time. Since velocity of expansion of the 
galaxies cannot exceed the light velocity c, it follows 
from the relation c = HR = HcT0, that there is quite a 
definite size of the Universe growing with time R = cT0, 
here –T0 is the singularity offset counted from the present 
moment; Hubble’s constant equal to H = 1/T0 decreases 
with time; however, observations show, that the value H, 
on the contrary, increases with time. 

If we interpret the existence of a singularity as a Big 
Bang, we have to bear in mind that the explosion is a ph- 
ase transition from a metastable state into another more 
stable state accompanied with release of energy. Before 
the phase transition, this energy is homogeneously distri- 
buted around the space. They sometimes say: explosion 
power is equivalent to e.g. one kilogram of trotyl; it is ob- 
vious that two kilograms of trotyl give off right twice as 
much energy as one kilogram does. Besides, the phase tr- 
ansition does not begin with the singularity but with the 
nucleation of a new phase whose size exceeds the critical 
radius. In this case energy is released in accordance with 
broadening the new phase at the expense of the phase ed- 
ge motion. Since the average energy density of the entire 
matter in vacuum is approximately 0.008 erg/m3, this 
very energy should be released at the phase transition of 
each cubic meter of vacuum. It is difficult to imagine, 
however, that electrons and protons could be created out 
of this homogeneously distributed in space energy, and, 
besides, in exactly equal quantities. An explosion of a 
hydrogen bomb in vacuum can serve as a model of a hot 
Universe. The hydrogen bomb is a local object in a meta- 
stable state. There is a mixture of light and heavy nuclei 
under the temperature of several million degrees at the 
moment of detonation. According to D’Alambert equa-
tion, the electromagnetic pulse and the neutrino pulse 
will start to disperse with the light velocity. Following 
electromagnetic pulse relativistic electrons will fly and 
then light, and heavy nuclei. In a second, the electro-
magnetic pulse will reach the Moon area and nothing will 
stay at the point of explosion. Thus, the examined case is 
also far from the Friedman’s model of expanding Uni-
verse. 

In order to somehow reconcile the model of the infi-
nite matter distribution in space with that of the expand- 
ing Universe, Milne offered the following reasoning [6]. 
If we mentally specify a sphere of a definite size in a 
matter homogeneously distributed around an infinite spa- 
ce, then external layers of the sphere due to their spheri-
cal symmetry have no influence on the sphere dynamics. 
Therefore, we can ignore the external layers and consider 
the Universe as a sphere of a definite size that precisely 
coincides with the Friedman’s model. However, this 

statement is a mistake. The thing is that with matter be-
ing homogeneously distributed about the entire infinite 
space, the gravitational potential follows the condition of 
the translational invariance:  U r const


. We may 

consider this constant to be equal to zero, therefore, a 
gravitational potential only arises at deviation of a matter 
distribution from an average value. For that reason the 
equation for the potential can be written as follows: 

    04U r r    
 

.           (1) 

Here 0  is an average density of matter. From equ- 

ation (1) we can see that it is not necessary to search for 
dark energy as the density is both the gravitating and the 
anti-gravitating matter in the form of  r 

 and 0 . 

On the other hand, if we mentally specify a sphere of 
radius R with the density of matter 0  and ignore the 

external matter, we come to another equation for the po-
tential: 
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4
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This equation has the following solutions: 
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 
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  (2) 

Similar expressions can be used for determining gra- 
vitational potentials of planets, stars and galaxies in a 
form of the sum of the potentials of stars with their spec- 
ific location. However, for the scales comparable with 
the size of homogeneity cell and bigger, we come to an 
obviously non-physical result: the potential in any arbitr- 
ary point depends on the radius of a sphere which we 
mentally specify out of the entire infinite space. Thus, 
any result depending on the mentally specified radius of 
the sphere, including the radius of the visible part of the 
Universe, is physically incorrect. 

For instance, we can determine the circular orbital vel- 
ocity v1 for the Universe of radius R on the sphere surfa- 
ce from the equality of centripetal and centrifugal forces: 

 2 0 0
1

4 4
;

3 3r R

U r R
R  v R R

r

 



   


  

If v1 is equal to the light velocity с, we obtain the fol-
lowing expression for the critical matter density in the 
Universe: 

2 2

2

3 3
.

44c

c H

R



   

This corresponds to the condition R = rg when rg is a 
gravitational radius. Therefore, with the definite choice 
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for R we may come to the conclusion that the Universe is 
a black hole, while, as it follows from the cosmological 
principle at the scales comparable with the radius of the 
visible part of the Universe, the gravitational potential 
has no specific features and its average value is zero. 

The same situation takes place when we consider the 
influence of a pressure on the dynamics of the expanding 
Universe. For instance, if we take a big vessel with a gas, 
mentally specify a sphere of radius R in it, and ignore the 
gas surrounding the sphere, we can state that the gas will 
broaden and get cool at the expense of the internal pres-
sure. This may remind the model of the expanding Uni-
verse. Remember, however, that the specified sphere is 
surrounded with the same gas at the same pressure; that 
is why there will be neither broadening nor cooling. Thus, 
for the infinite Universe both an average gravitational 
potential and an average pressure are constant; besides, 
since the expanding dynamics is influenced by the equal 
to zero gradients of these variables, there cannot be neit- 
her expanding nor compression. An infinite system can 
only stratify according to the energy density and we rea- 
lly observe this stratification on giant scales from the va- 
lue less than 10-9erg/cm3 for an inter-galaxy space to the 
value over 1039 erg/cm3 for nuclear energy. 

Nevertheless, within the frames of the cosmological 
principle there is a problem, the so called photometric 
paradox. The thing is that at present time when stars and 
galaxies radiate light in the entire infinite space, we can 
introduce an average luminosity L of a unit volume, pro-
vided that the densities of a luminous flux intensity at the 
distance r from a single volume is equal to j = L/4πr2. 
The integral over the sphere of radius R gives the total 
flux intensity equal to J = RL; it follows that with R ap-
proaching infinity the flux intensity must approach infin-
ity as well. Practically, however, we see rather a low sky 
luminosity. This is the photometric paradox. 

In fact, by calculating the intensity, we must take into 
consideration the retardation effects. The flux that comes 
to a certain point (r = 0) at a certain time (t = 0) radiates 
at different moments depending on the distance:  

 
0r

J j t d r c L t dt
c 

     
  


        (3) 

Expression (3) shows that the flux coming from the 
deep Universe will be finite if L(t) at longer t decreases 
faster than 1/t. 

Besides, we can divide the entire flux observed at any 
point of the infinite space into two parts: the flux Jvis of a 
visible part of space R = cT0, Т0 ~ 15·109 years and the 
relict flux Jrel radiating from the spots with r > R: 

 
0

1

' '.
TN

vis rel n
n

J J J J L t dt


 

      

Here summing was carried out over a countable num-

ber of galaxies in the visible part of the Universe. Thus, 
from the expressions given above it follows that the Un- 
iverse must be non-stationary, not due to an expansion of 
galaxies’, but at the expense of a variation of physical 
vacuum parameters. Since the relict radiation correspo- 
nds to the temperature 30K, the Universe had such a 
temperature long ago. The one but not the only feature of 
a non-stationarity is the red shift of atomic spectra that 
we can interpret as the blue temporal shift of both char-
acteristic Bohr energy and all atomic energy levels cor-
respondingly, at the expense of variation of physical vac- 
uum parameters. Observations show that the characteris-
tic Bohr frequency depends on time and increases with 
time. By introducing a frequency of an arbitrary atomic 
level, we obtain the following expression for the Hub-
ble’s constant:  

 
   

0

td
H t

dt t



 

   
           (4) 

Both ω(t) and H(t) are monotonously increasing func-
tions. The latest observations of the flashes of far super-
nova [4-5] show temporal growth of H. It is senseless to 
explain this situation using space-time properties. 

Speaking about space-time properties is quite the same 
as judging about wine quality by the curvature of a bottle 
surface. Dilettantes are often attracted by the appearance 
of the vessel, while connoisseurs pay attention to its con- 
tents, conservation conditions, and temporal changes. We 
should regard space like a vessel with the only feature: 
its volume is infinite. Its internal properties are to be dis- 
cussed. 

2. Hidden Parameters of Vacuum 

We should proceed from the experimental fact that the 
energy and the pulse of any elementary particle are: 

;k kћ p ћk  


               (5) 

Here ωk-frequency for electron, proton, photon and 
neutrino, correspondingly, we expressed as follows:  

2 2 2 2 2 2
0 0 , ;; ;ek e pk p r v kc k c k ck           (6) 

The unified formula for the energy of any elementary 
particle points to the existence of the universal interac-
tion for fields related to each particle. Besides, the two 
oscillation branches with the energy gap observed in the 
excitation spectrum prove an existence of a certain set of 
discrete oscillators whose interaction causes normal os-
cillations with frequencies ωk. In fact, we can represent 
vacuum as a crystal object of a cubic or hexagonal sym-
metry with a very small lattice period, much less than 
10-26 cm. We can estimate the upper limit of a lattice pe-
riod by the maximum particle energy in cosmic rays 
equal to 1021 eV that corresponds to the wave vector of 
1026 cm-1. The vacuum ground state is the equilibrium 
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position of all oscillators; these are the points of equilib-
rium forming crystal lattice related to the absolute coor-
dinate system. Under the deviation of an oscillator from 
the equilibrium position, a dipole moment arises. For the 
scales exceeding the lattice period we can introduce a 
macroscopic order parameter as an electric polarization 
of vacuum: 

  4
i

i

P r d
V




 
 

. 

Suppose, there are two branches of normal oscillations 

of field P


 that we can call electron and nucleon modes. 
The Hamiltonian for electron and nucleon modes written 
in the unified form, is: 

  22 2 2 2
, ,

1

8 e n e nH P P P d r  


   
   

   (7) 

For electronic and nucleonic parts, we introduced the 
parameters of time τe, τn and length ξe, ξn that characterize 
the kinetic and gradient energy of the fields. Besides, we 
introduced a dimensionless parameter of an elastic coef-
ficient  corresponding to the reciprocal susceptibility 
common to both modes. These are the latent parameters 
of vacuum and the available experimental data are suffi-
cient to determine them. 

By using the minimal action principle for the Lagrange 
function equal to the difference of the kinetic energy - 
the first member of expression (7), and the potential en-
ergy—the second and the third members of (7), we ob-
tain the equation of motion for six independent normal 
oscillations Pex, Pey, Pez, Pnx, Pny, Pnz: 

2 2 2 2
2 2
, , , , ,2 2 2 2

0e n e n e n x zP
x y z t

  
     

            
  (8) 

By setting up the following solutions:  

  , , , , expx y z x y zP a i kr t 


,          (9) 

we obtain the spectrum for normal oscillations:  

2 2 2
, ; , ;0 ,0

,0

; ;

;

e n k e n e
e

e n
n

n e n

c k  

 c
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

 
  

   
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    (10) 

Therefore, we can represent physical vacuum as some 
coherent state with the natural frequency standards in the 
form of homogeneous polarization oscillations about an 
absolute coordinate system 

   , ; , , , ; , , , ;0, expe n x y z e n x y z e nP r t a i t


 

with the absolute time, homogeneous around the entire 
space   abst r t


. 

The situation, however, becomes more complicated, 
since the electrical vacuum polarization generates the fol- 
lowing electric charge: 

4 edivP  


.               (11) 

Here e  is the electric charge density, while the po-

larization is determined by both electron and nucleon 

modes e nP P P 
  

. This results in an additional long- 

range Coulomb interaction between the normal oscilla-
tions Pex, Pey, Pez, Pnx, Pny, Pnz  

   '1
'

2 '
e er r

U d rd r
r r

 



 

 
         (12) 

For simplicity, we consider normal oscillations inside 
the electronic modes. We dimensionlize coordinates and 
time. We express new variables like this: ;et t   

er r  ; velocity being in terms of c = ξe/τe. It makes 

sense to specify a dimensional value for the electric po-
larization in the terms of the electron charge: 

2
e

e
P P



 

, 

after that the electron field action reduces to form: 

   
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e
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
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
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   
  

 






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(13) 

Here i and j run over x, y, z and we carried out summa-
tion over repeated indices. By varying action S over the 
values , ,i i i jP P P x  , we come to the following system 

of the integral-differential equations:  

     2

2 3

''1
, ' 0

4 ''

ji i
i

j

P rx x
P r t d r

xt r r



 

        



 

   

(14) 

Consider the solutions in the form of plane waves: 

    , expi iP r t P i kr t 
 

          (15) 

For plane waves, Equation (14) reduce to the form:  

 2 2
2

0i j
i j

k k
k P P

k
              (16) 

By making the determinant of the Equation (16) equal 
to zero, we obtain the oscillation spectrum: 
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Equation (17) transforms to 

   22 2 2 21 0k k                (18) 

Thus, from (18) we obtain the normal spectrum of the 
oscillations; from Equation (16), we obtain the form of 
the oscillations: 
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  
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   (19) 

Expressions (19) allow the definition of the general pr- 
operties of the normal oscillations for vacuum fields link- 
ed by the long-range Coulomb interaction. The Lap-la-
cian operator in Equation (14) requires that the polariza-
tion components be eigenfunctions of this operator: 

2
i iP P                  (20) 

The result of the Coulomb interaction is that the oscil-
lations of the polarization are divided into two classes: 

longitudinal 1P


 with 1 0rotP 


 and lateral 2P


 with 

2 0divP 


, according to the Helmholz theorem 1P  


; 

2P rotA


, here   and A


 are scalar and vector po-

tentials. Longitudinal oscillations provide a depolarizing 

electric field 1E P 
 

, which meets the following condi-

tion: 

4 .edivE 


 

For lateral (transverse!) oscillations, the depolarizing 
field equals to zero. As a result, the frequencies for lon-
gitudinal and lateral oscillations are different. 

The problem, however, is that for linear homogeneous 
differential equations we may take into consideration bo- 
th eigenfunctions and eigenvalues, while the amplitude 
of the eigenfunctions remains arbitrary. Suppose, an eig- 
enfunction specifies the configuration of the excitation; 
though the excitation energy and pulse are the integrals 
of motion, and yet they can have arbitrary meanings. Ne- 

vertheless, in practice we can see that energy of any exci- 
tation has quite a definite meaning both for light quantum 
and for any elementary particle. Therefore, within the fr- 
amework of homogeneous equations it is impossible to 
realize the origin and the physical meaning of the Planck 
constant. 

For linear systems, the amplitude of oscillations turns 
out to be quite definite under the external force; then we 
can express the solution by means of the Green function, 
which meets the homogeneous equation and has quite 
definite amplitude. Non-homogeneous equations are 
necessary for the following reasons. We know from the 
theory of many-body systems that, if a system consists of 
discrete particles, the correlation effects substantially 
decrease the ground state, and local states such as pola-
rons can occur. Therefore, we pass to consideration of 
the ground state taking into account correlation effects. 

From an endless number of particles forming a crystal-
line vacuum state we examine one particle as a point unit 
source  eQ r 

, which generates longitudinal electric 

field defined by equations: 

 0 0 0 3
4 ; 0; .

r
divE r  rotE  E

r
  

  
 

Thereafter, we can write the interaction energy of the 
point source with vacuum fields as follows:  

0 0 .
4

g
U E P


 

 
                    (21)  

Here g is the constant of interaction between the point 
unit field and vacuum fields; it is convenient to express 
this constant in a normalized form: g = g1e. By varying 
the Lagrange function over P


, we obtain a non-homo- 

geneous equation for polarization: 

 
2

1 02
, ;P g E r t

t

 

    
 

  
          (22) 

Divergence of the left and the right parts of the Equa-
tion (22) results in the expression for the induced charge 
density, related to the electrical polarization for the case 
when a source is moving with velocity v


: 
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   
2

12
, .e r t g r vt

t
  
 

       

  
   (23) 

It is obvious from (23) that the induced charge density 
is the Green function for a point source that fulfills the 
homogeneous equation over the entire space except one 
point; but due to this point, the function acquires quite 
definite values over the entire space.  

At first, we consider a particular solution of Equation 
(23). Fourier-transformation over coordinates results in 
the Fourier-harmonics for the induced charge density in 
vacuum:  
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Here the corresponding coordinate dependence of the 
induced charge density for the case, when velocity lies in 
z-axis, is: 
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Here, it is convenient to proceed to the new integration 
variables  
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in addition, to a new coordinate system: 
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After that, the induced charge density expressed in di- 
mensional units transforms to the equation:  
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(25) 

From (25) we can see that the characteristic dimension 
of the polarization charge is a definite value equal to the 
correlation radius or the Compton length of electron: 

0ee cr e   . The polarization charge moving 

relative to the absolute coordinate system, in accordance 
with the Lorentz transformation, is deformed in such a 
way that its dimensions decrease along the direction of 
motion 

.1  ; 2
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Total polarization charge as an integral over the entire 
space is proportional to the constant of interaction g and 

the vacuum susceptibility σ -1:  
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The total polarization charge does not depend on the 
particle velocity that we can interpret as the law of con-
servation of charge. 

We can find a scalar potential for the motionless sour- 
ce from the expression: 
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The polarization for the electron is similar to that of 
the proton within an accuracy of a charge sign:  
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They only differ in the characteristic wavelength rc,e 
and rc,n. The main feature of the solution for the polariza-
tion (28) is an absence of divergence at a point r = 0 that 
leads to the finite value of the particle energy. 

Therefore, we can see that the vacuum polarization re- 
sults in decrease of the source energy by U0, both elec-
tronic and nucleonic modes having the same form: 
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Non-homogeneous Equation (23) defines two parame-
ters: the polarization charge q and the radius of a charge 
localization rc;e,n. 

In order to determine vacuum parameters, we require 
that the polarization charge, both for proton and electron, 
be equal to the electron charge, whereas the particle en-
ergy must be equal to the ionization energy of a source 
out of a potential energy well, which the source creates 
for itself: 
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By adding the definition of the fine structure constant 
ce 2  to the latter equations, we obtain the equality 

1371
1  g . It follows that the vacuum polariza-

bility 1  equals to the fine structure constant α, wher- 
eas the constant of the interaction of a point source with 
vacuum fields equals to the Dirac monopole charge 

eg   [7]. 
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We can define the correlation radius and the fundame- 
ntal frequency for electronic and nucleonic normal mode 
as follows: 
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As a result, the rest energy in form (30) reduces to a 
quite transparent form:  
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It follows that the point source with the interaction 
constant g polarizes vacuum and induces charges with 
dimension rc,e for electronic and rc,n nucleonic modes. 
The electric field energy for both proton and electron is 
equal to e2/rc,e and to e2/rc,n, correspondingly, and it turns 
out to be 137 times less than the energy related to the 
electrical polarization. We should notice that the solution 
for the polarization (28) is formed by three modes of 
normal vacuum oscillations Px,Py,Pz, each creating a 
charge equal to e/3: 
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Now we consider the structure of the fields in the ex-
cited state. The excited state corresponds to the genera-
tion of a source at a certain time. Suppose, a point source 
is generated at time t = 0 under the initial conditions for 
polarization: 
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In this case, the general solution of Equation (22) con-
sists of a particular solution (28) and two fundamental 
solutions of the homogeneous wave equation:  
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By taking into account initial conditions, we can redu- 
ce the solution (32), both for electron and nucleon, to the 
form:  

 

 t
r

r

r

r

r

r
etrP

ne

necnec
ne

0;,
2

,;,;
3,

sin                 

exp112,







































  (33) 

The characteristic feature of the solution above is that 
the electrical polarization for both electron and proton, 
covers the entire infinite space and oscillates synchro-
nously with the frequency ωe,n;0. 

The solution (33), however, contains a substantial dis-
advantage: such wave packet cannot move in space, it is 
a typical standing wave. Impossibility of motion is caus- 
ed by the fact that the phase velocity of different harmo- 
nics vf = ωk / k changes from infinity to the light velocity 
c, whereas the group velocity vg = ∂ωk / ∂k changes from 
zero to c. 

In a general case, the solution for the polarization for a 
wave packet moving with velocity v


 should have a so- 

liton form:  
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A similar property is natural for the solution of a one- 
dimensional D’Alambert equation that fulfills the condi-
tion of deviation from a state of equilibrium for a flexible 
infinite string u(x,t) = u(x ± ct). A possibility of motion 
without changing the form is directly connected to a lin-
ear excitation spectrum in k-space ωk = ck. For two- and 
three-dimensional cases, the solution of the D’Alambert 
equation substantially differs from the one-dimensional 
one. An excitation generated in some point starts propa-
gating at velocity c in the form of concentrated circles for 
two-dimensional case, and in the form of concentrated 
spheres for the three-dimensional case. The propagation 
of radio waves strictly follows the three-dimensional 
D’Alambert equation, which proceeds from the Maxwell 
equations. Radio waves, however, are a multiquantum 
process. Nevertheless, a single quantum, while having 
wave properties, yet behaves like a particle. The thing is 
that a light quantum radiated by an excited atom at a dis-
tant star can cover million years without spreading dis-
persion. After colliding with a similar atom on the Earth, 
the light quantum transfers into a similar state of excita-
tion. Therefore, there must be a solution of a soliton type 
for a light quantum in the form (34), which gives the 
origin of ray optics. 

Analysis shows that it is impossible to obtain such a 
spectrum in a three-dimensional isotropic space for one 
order parameter. Following strictly the terminology, we 
should consider electromagnetic oscillations as coupled 
oscillations of a two-component order parameter in the 
form of an electric and magnetic polarization of vacuum. 

Suppose a magnetic polarization with the same Ham-
iltonian, as that for the electric polarization (7) is possi-
ble to appear in vacuum:  
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We define a magnetic order parameter, as well as an 
electric polarization, through the sum of the elementary 
magnetic moments: 
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Practice shows that electric and magnetic dipole mo-
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ments create, correspondingly, electric and magnetic 
fields, similar in configuration:  
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It follows that for a similar distribution of the electric 
and magnetic polarization, electric and magnetic fields 
will be similar as well. We can reduce expressions (36) 
to the form:  
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Here 0  is the potential Coulomb function for a unit 

source '10 rr


 . Under an arbitrary distribution of 

the electric and magnetic polarization, scalar potentials 
(37) acquire the form:  
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It follows that the sources of the electric field are the 

electric charges defined by the relation ePdiv 4


, 

whereas the sources of the magnetic field are the magnetic 

charges defined by the relation 4Mdiv


. As a re-

sult, the electric and magnetic fields meet the conditions: 
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Energy of the electric and magnetic fields turns up to 
be 137 times less than that of the electric and magnetic 
polarization, correspondingly. The configurations of the 
electric and magnetic fields are similar under the similar 
distribution of the electric and magnetic polarization. For 
example, if we create a homogeneous electric polariza-

tion P


 in a full-sphere, then it causes generation of the 

depolarizing electric field inside the sphere 3PE


 ; 

therefore, the depolarization coefficient for a sphere is 
equal to 1/3. The situation is the same with a spherical 

magnet: 3MH


 . Generation of the magnetic field 

also leads to the long-range Coulomb interaction between 
the normal oscillations: Mex,Mey,Mez,Mnx, Mny, Mnz. 

We can define the electric current with the expression: 
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The continuity equation follows from here: 
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Now we show in what way the interaction between the 
electric and magnetic polarization provides the solution 
of the soliton type. We add the interaction energy of cur-
rents to the Hamiltonians (7) and (35) in the form:  
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From there we obtain the combined equations for a 
plane polarized electromagnetic wave:  
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 (40) 

By setting up the solutions in the form:  
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we can obtain the system of equations:  
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The compatibility condition for the Equations (42) 
leads to the equation: 
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This gives the spectrum of normal oscillations: 

,2 222
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After that, the solutions for the electric and magnetic 
polarization transmitting with the light velocity reduce to 
the soliton form: 
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  2 2 2exp 2 .x y zi t k k k     

We proceed from the supposition that the electron ra-
diates a light quantum; then from a wide range of possi-
ble solutions we should choose a solution compatible 
with the own field of the electron. Since the light quan-
tum propagating along z-axis has a wave vector kz, we 
can specify a Fourier-harmonic kz from the scalar poten-
tial (27) which defines the field of the electron. In the 
cylindrical coordinate system, the Fourier-harmonic for 
the scalar potential becomes: 
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Here K0 is the Macdonald function. We express the 
electric polarization along the x-axis as Px = ∂Φ/∂x. Thus, 
for a plane-polarized wave compatible with the field of 
the electron and fulfilling the system of Equation (40), 
we obtain the solution for the electric polarization:  

 

  




 





 






 





 

tktzki

krKkrkKkqP

zz

zzzzx

2

2
1

2
1

2expcos       

22




 (43) 

This solution is a quasi-one-dimensional infinite mon- 
ochromatic wave propagating at the light velocity along 
the z-axis and interacting with the similar magnetic pola- 
rization My. In the transversal direction, the monochro-
matic wave (43) is localized with the dimension equal to 
the wavelength, since the Macdonald function at big 
values of argument approximately equals: 
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This precisely corresponds to the experiment, as it is 
impossible to localize a light ray more than the light 
wavelength. 

Therefore, from the values, which we consider as fun-
damental e,ħ,c,me,mp, we go over to the set of values, 
which characterize properties of physical vacuum ,, g  

pepe  ,,,  under the additional condition: ppee    

= c. In connection with this, we must change the conce- 
pts of mass and matter. 

Wave equations can only be applied to the material me- 
dium having definite dynamic properties, so the idea of 
physical vacuum means that the entire infinite space is 
filled with a definite matter. The particles that we ob-
serve – electrons, protons, photons – these are excitations 
of vacuum in the form of wave packets, which are eigen- 
functions of the united system of twelve equations. From 

the point of view of wave mechanics, we can character-
ize a wave packet with energy, momentum, angular mo-
mentum and oscillation amplitude; specifically for the el- 
ectric polarization, we define the amplitude by the elect- 
ric charge. For a multi-component order parameter, the 
form or symmetry of oscillations is important. In this co- 
nnection, the concept of a particle mass does not have 
independent meaning. Researchers introduced the values 
of mass and charge, as well as Planck constant for partic- 
les, in different periods of time and so far, they have con- 
sidered these values as independent ones. As we showed 
above, charge quantization and existence of Planck con-
stant are the consequences of correlation effects related 
to discreteness of physical vacuum. Now it makes sense 
to study the concept of mass for a wave packet. 

From practice we know that, if we describe the particle 
oscillation spectrum with the expression: 
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then the particle velocity is equal to the group velocity: 
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If we express the wave vector k


 from (44) through 
the group velocity, we obtain the value of frequency in 
the form:  
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Multiplying terms of (45) by ħ, we come to the rela-
tivistic expression for the particle energy:  
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The expression for the particle mass m = E0/c
2 follows 

from the latter Equation (46), the concept of mass being 
not necessary if we specify velocity in terms of light ve-
locity. 

The examples given below illustrate how to express 
some known values in terms of vacuum parameters: 

De Broglie wavelength: 
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1

;
1

,

,

kvm

kkPvm

n
n

e
e














 

Here we have to consider k, the particle wave vector, 
as a quantum number independent of vacuum parame-
ters. 
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Compton wavelength: 
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Classical radius of electron: 

.23
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0,

2

,0  eec
e

e r
cm

e
r   

Bohr radius:  
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2
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c e e
B

e

r
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m e
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            (47) 

Bohr energy:  

2

,

22
,02

4
,0 

ec
e

e
B r

eg
cm

em
E 


      (48) 

By making Bohr energy equal to photon energy, 

BBB ckE ,,     

we obtain   quantum wavelength, which corresponds 
to Bohr energy 

.
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232

,

4
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,
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
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
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We can express Rydberg constant through vacuum 
parameters: 

.
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,03

4
,0

e
e

eem
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
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It follows from the above expressions that fine struc-
ture constant characterizes not only the fine structure of 
the hydrogen atomic spectrum but the entire lengths hi-
erarchy of the quantum mechanics as well. It is easy to 
see that characteristic lengths form a geometrical pro-
gression: 

.,
32

,,0 BBece arr    

All the lengths contain neither Planck constant, nor 
mass, nor charge of electron. In this connection, it makes 
sense to express the Schrödinger equation through the 
natural parameters of physical vacuum. 

The Hamiltonian for the Schrödinger equation for a 
hydrogen atom looks like this: 

.
2

2
2

0,

2

r

e

m
H

e




 

In this expression, we take the fundamental constants 
ħ,me,0,e, which specify the characteristic parameters of a 
hydrogen atom (47-48), as independent; however, as we 

demonstrated above, none of these constants ought to be 
taken as a fundamental one. 

We can write the Hamiltonian of the electron in the 
nuclear field of a hydrogen atom in a different form:  

r

e
kcH e

2
222

,0               (49) 

The Planck constant expressed through the electron 
charge reduces (49) to the form  

2 2 2 2
0, ,2 2

,2
,0,

1 1e c e
c e

c ee

e rc k e eg
H r k

c r r r

 
 

 
      

 
(50) 

Here, it is convenient to use the dimensionless length 

ecrrr , , the dimensionless wave vector ecrkk ,


 

and the dimensionless time tt e,0 . We express the 

energy in terms of the electron rest energy eg/rc,e: 

r
k

r
kH


 22

2

1
11       (51) 

The particle velocity is equal to the group velocity of 

the wave packet kkkkv k


 21  and we 

express it in terms of light velocity. Approximate expres-
sions correspond to the case of a low velocity k ≈ ν << 1. 
We can regard the value k2 in the approximate expression 
(51) as the eigenvalue of the Laplacian operator; then we 
may reduce (51) to the equation for the eigenfunction and 
the eigenvalue:  

r
HH

  2

2

1
   ;         (52) 

From (52) it follows that the Schrödinger equation 
only contains one dimensionless small parameter α of a 
physical vacuum susceptibility. The fundamental func-
tion Ψof a free electron in Cartesian coordinates is equal 

to  rki


exp ; we express the eigenvalue by the equality: 

22k . 

Now we find out the Bohr quantization conditions for 
a hydrogen atom. The circular motion of electron around 
an atomic nucleus is defined by the equality of centrifu-
gal and centripetal forces:  

2
2

r
r

  .                (53) 

Bohr assumed a quantization of adiabatic invariants: 

  nhdqp ii  

For the circular motion, the latter relation reduces to 
the form: 

nhpr   

Externally, it looks as if a quantum of action existed, 
that provides quantization of a pulse moment. However, 
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by taking into consideration the pulse p = ħk, we come to 
the cyclic boundary conditions for a wave vector: 

.nkr   

It follows that Planck constant has nothing to do with 
forming the wave function. Since rvk  , we can 

add to Equation (53): 

nr 2  

From where we can obtain the energy, radius and ve-
locity at the stationary Bohr orbits: 
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That accurately corresponds to the relations (47,48).  
Compton scattering, which we regard as one of the ev- 

idences proving existence of quantum of action, proceeds 
from the laws of conservation of energy and momentum 
for electron and  quantum: 
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      (54) 

It follows from (54), that we can specify the wave 
vector of a scattered light by the relation:  

 
,

cos11

'

0,









cm

k

k
k

e

             (55) 

Here θ is the angle between vectors v


 and 'k


; be-
sides, there is a length parameter cmeeK 0,,    where 

we take the values cme ,, 0,  as the fundamental ones. 

However, by taking into consideration the fact, that rela-
tions (5) and (6) define the spectrum of a particle, we can 
reduce combined Equation (54) to the form: 

,'

;'222
0,0,



 

kkk

ckkcck ee





 

It follows that the scattering characteristic is defined 
neither by the Planck constant nor by the electron mass, 
but by the space and frequency resonance for the wave 
packets; scattering being submitted to the same Formula 
(55) with the Compton length  eeceeK rc  ,0,,  

equal to the correlation radius. 
Once in his days Planck supposed that radiation and 

absorption of light should proceed by quanta. Later this 
brilliant supposition was confirmed. After that, scientists 

had only to examine the properties of electron responsi-
ble for light radiation and absorption in a quantum way. 
Albert Einstein, however, considered something different. 
Since we can observe light quanta, then light is quantized 
due to existence of quantum of action; the question 
“Why?” being quite inappropriate here since physical 
mechanism for quantization of action just does not exist. 
We can only say that these are the properties of space- 
ime. We just substitute one senseless statement by ano- 
her one. Nevertheless, proceeded from the fact that elec-
tron radiates and absorbs light per quanta, a planetary 
model of electron is suggested by itself. The electron rest 
energy equals to: ecee reg ,,0,0    . We can write 

  quantum energy in a similar way:   egk  . 

Since the photon spin equals to  , then, by representing 
it in the form of the orbital moment    rkprs , 

we come to quite transparent cyclic conditions for the ra- 
dius of photon orbit kγ rγ = 1. After that, the photon ene- 
rgy reduces to the form: εγ = eg/rγ

. We can obtain such an 
energy as follows: use the solution for the electron pola- 
rization in the form (28), set it up into Hamiltonian (7) 
and integrate over space from infinity to the radius rγ. 
Therefore, the nature of fields for photon and electron is 
the same. By radiating photon, an electron takes off some 
part of its polarization coat, the intrinsic energy of the 
electron being reduced. 

3. Gravitaitional Optics 

In the previous part we showed that all particles can be 
considered as excitations of physical vacuum; they are 
the solutions of the unified system of equations for cou-
pled oscillations of the multicomponent order parameter 

 MP


, . That is why we can be sure to a certain degree 

that all particles similarly contribute to the gravitational 
interaction, particle energy being the interaction parame-
ter. Now we write down the standardized form of the 
Hamiltonian for a particle in the gravitational field cau- 
sed by a massive body of mass m1  

  1mm
H p

r


 


               (56) 

We express the particle mass through energy m  
  2p c 

; after that the Hamiltonian (56) reduces to the 

form:  

  1
2

1  ;   .g
g

r m
H p r

r c




 
   

 


      (57) 

Here rg is the gravitational radius which scales gravita-
tional potential of a massive body. For an arbitrary po-
tential, the Hamiltonian has the form: 

    1  .H p r  
 

 

In general case, particle energy is defined by the follo- 
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wing expression:  

  2 2 2
0p c p  

 
            (58) 

In addition, particle velocity equals to  

 p
v

p









                   (59) 

From the coordinate system (x,y,z,t) we proceed to a 
new time t ct  and, in Equation (58) – to a new mo-
mentum cp p

 
; then the particle velocity does not 

depend on the chosen scales of length and time, but be-
comes a dimensionless value expressed in terms of light 
velocity:  

 
2 2
0

p p
v

p p






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 

 
           (60) 

The second equation that defines the particle motion in 
the gravitational field looks like this:  

 p H p   
             (61) 

By taking into account Equation (60), we can rewrite 
(61) as follows:  

      d
v p p r

dt
  
 

        (62) 

For low velocities we can substitute value  p  by 

an approximate expression 0 ; after that Equation (62) 

reduces to that of Newton’s mechanics: 

 .r r 
   

Based upon this equation, Albert Einstein affirmed 
that the inertial mass and the gravitating mass are 
equivalent. This statement, however, is incorrect. An 
accurate equation of motion (62) is transformed to: 

    r r v v r   
               (63) 

It follows, that particle inertia depends on the direction 
of motion. It is interesting to note that the intrinsic (in-
ternal) energetic properties of a particle are lost in the 
equation of motion (63). This means that we can apply 
the obtained equation to any relatively compact object. It 
can be a planet, a satellite, an electron, a proton, a photon, 
a neutrino—all the same.  

Bearing in mind (60), we reduce (61) as follows: 

 2 2
0

,
pp

v r
p

 


  
 

From the latter equation we obtain the integral of mo-
tion in two different forms:  

   
   2

exp ;

1 exp 2 .

p const

v const

  

  
          (64) 

Now we examine the motion in the Coulomb potential 
with the Hamiltonian (57). In a centrally symmetrical 
field motion develops in a plane crossing the centre of a 
massive body; therefore, we can re-write Equation (63) 
for the plane (x,y):  

  

  

3

3
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        (65) 

In the polar coordinate system Equation (65) becomes  

 2 2
2

1 ;

2 .

g

g

r
r r r

r
r

r r r
r



  
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 

 

   
           (66) 

The second equation in (66) can be integrated easily; 
after that we obtain the integral of motion corresponding 
to the angular momentum conservation law:  

2 exp .grr const
r


 

 
 

            (67) 

At the beginning, we consider a circular motion: 
0r r   . Then, the first equation of (66) leads to 

1 2
2

2 3 2
; ,g gr r

r
r r

                (68) 

This exactly coincides with the results of Kepler’s 
problem, the first space velocity on the orbit of radius r 
being equal to  

1
grv r
r

                  (69) 

Consequently, the first space velocity attains to the 
light velocity at r = rg. 

Further, we consider an arbitrary motion relative to a 
heavy centre. Let us assume that at time t = 0, a particle 
has coordinates (r = r0, φ = 0), complete velocity v0 and 
azimuth velocity 0 0 0v r   . From the integrals of mo-

tion (64, 67) it follows:  

 2 2 2 2 2
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0
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0 0
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1 1 1 exp 2 ;

exp .

g g

g g

r r
v r r v
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

 
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 
  

 



 
 (70) 

From the system of Equation (70) we obtain the equa-
tion that combines φ and r: 

0

2

2 2
0 0

0 0

exp 2 1g g

v dr
d

r rr
r v v

r r r





 
     

               

  (71) 
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Now proceed to a new variable 0r r   and new 

parameters of the problem: 

 0 0; 1 .gr r v             (72) 

We examine the situation when the radial velocity at 
the starting point is zero. It follows that 0 0v v ; after 

this, Equation (71) acquires the form  

 

   2

1

1
exp 2 1 1 1 1

d
d

  


      





   
        

    

 

(73) 

Here, the parameter δ defines a deviation from the 
circular motion in an orbit. We apply the Equation (73) 
to the Solar system. The gravitational radius of the Sun 
equals to 1.5 km. The radius of the terrestrial orbit is 1.5 
108 km, the radius of Mercury orbit is 0.5 108 km, the 
radius of the solar sphere is 6. 96 105 km. The parameter 

β in (73) is equal to 810E
  for the Earth planet; to 

83 10M
   for the Mercury; and to 62,1 10S

   

for the Sun surface. It follows that the circular orbital 

velocity of the Earth is 410E Ev    . In dimen-

sional terms the circular velocity of the Earth equals to 
10-4c = 30 km/cek The Mercury moves in an elliptic orbit 
according to (73), where the value β << 1. Second order 
expansion in series of the exponent (73) leads to the 
equation  

     2
1

1
,

1 2 2 1 2 1 2

d  
       




       
  

(74) 

It enables to obtain the orbit path  

1 2

1 2
1 2 cos

1

 
   


 


  
     

     (75) 

We can find the complete revolution of the path from 
the condition:  

1 2
2

1

  


 



 

Consequently, the angle gain over one revolution of 
the path is  

2 1
1

 


    
. 

The century displacement of the Mercury perigee 
means that while the Earth makes 100 revolutions around 
the Sun, the Mercury makes the number of revolutions 

equal to  3 2
100 M E  . From here we obtain  

3 2
2

100 21''
1

M M

M E

 


 
 

     
      (76) 

The value 0, 2M   is the eccentricity of the Mer-

cury elliptic orbit. 
From (75) we can obtain the condition when an elliptic 

orbit transforms into a parabolic path:  

1 2 0.     

It follows that the second space velocity is a little less 
than that of Kepler’s problem and is equal to  

     2
2 0 1 11 2 1 2 1v v v v            (77) 

Further, we consider the motion of a photon or a neu-
trino in a gravitational field. In this case, for the equation 
of motion (71), it is necessary to assume v0 = vφ0 = 1. 
Then, Equation (71) leads to 

1 2 1
exp 2 1 1

d 

  



  

   
  

       (78) 

In order to calculate the complete angle of displace-
ment B  for a light beam passing a gravitating mass, 

we move to a new variable 1   and, as a result, we 

obtain:  

  
1

2
0

2

exp 2 1

d



  


 

        (79) 

Integral (79) is divergent at 1  . It proceeds from 

the fact that at the gravitational radius a photon has a 
stationary orbit. For β << 1. 

2arcsinB                  (80) 

it follows that the deviation of a light beam moving, 
for example, along the Sun surface is 0.86 '' . The only 
stationary orbit for a photon is gr r  that corresponds 

to the parameter 1  . The slightest deviation from unit 

makes a photon either leave for infinity, or fall down to 
the centre. Figure 1 illustrates a photon getting off a sta-
tionary orbit. 

Now we study a radial motion which we can determine 
from the integrals of motion (68). Under the given input 
conditions of the coordinate and velocity directed along 
the radius, and by using the integrals of motion (68), we 
obtain the energy of a photon moving away from the 
centre:  

  0

1
exp 1p p p 


  

     
  

       (81) 
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Figure 1. The paths of a photon at different initial conditi- 
ons. Curve 1 exhibits the photon leaving for infinity at the 
input condition β = 0.9999. Curve 2 shows the photon falling 
down to the centre at β = 1.01. Arrow 3 displays the photon 
radially leaving for infinity from under the gravitational 
radius 

 
It follows that the photon crosses freely the gravita-

tional radius and at the infinity the photon energy equals 
to:  

 0 0
0

exp exp grp p p
r


 

    
 

      (82) 

The radial velocity of the photon remains constant; 
2 2

2 2 2
2

; ; 1.y x yx
x y x y

p p pp
v v v v v

p p p


       

The velocity of particles with non-zero mass is defined 
by the equation:  

   2 2
0

0

1 exp 2 1 exp 2g gr r
v v

r r

   
     

   
   (83) 

From (83) we can define the second space velocity:  

 2 2
0 2 1 exp 2 ,v v               (84) 

it follows from (84) that at the initial velocity v0 > v2, any 
particle crosses freely the gravitational radius and leaves 
for infinity. Note that the first space velocity v1 equals to 

 . A circular orbit is steady under the condition that v2 

> v1 from the equation  

 1 exp 2     

we define the boundary of stability for circular orbits 
0.796812c   . Circular orbits are only stable to 

small disturbances under the condition c  . This 

situation is described by the equation of motion (73) 
where we can consider the value of   as a disturbance 

of a circular orbit. It follows from (73) that for c   

any small value 0   makes a particle leave for infin-
ity along the path similar to that shown on Figure 1 
(curve 1). Under the disturbance 0  , a particle falls 
down to the centre and as well leaves for infinity along 
the curve similar to 2, 3 on Figure 1. 

Since all bodies in the Solar system obey the same 
equation of motion (66), we can measure time in terms of 
any periodical process that occurs in the Solar system; 
for example, in terms of revolution of the Earth around 
the Sun. Further, since we can calculate the periods of 
revolution for any bodies beforehand, time in the entire 
Solar system runs similarly. Moreover, we extend the 
time over the entire visible part of the Universe; and we 
are quite right when we measure time in billions of years, 
whereas we measure distance in billions of light years.  

Therefore, following Newton, we can repeat that a 
particle moves uniformly and straight until no force is 
applied. Following Galilee, we can say that under the 
same initial conditions in the gravitational field all parti-
cles move along the same paths. For example, under the 
same initial conditions an ultra relativistic proton moves 
in the same path as a photon does. However, Einstein’s 
statement that time runs differently in each lift does not 
have any physical meaning, since every electron covers 
the entire infinite space (33) and simultaneously interacts 
with all particles in the Universe. 

4. Problems of Dark Matte 

In the previous section we introduced the concept that it 
is the total particle energy  p 

 which plays the key 

part in the gravitational interaction, but not the rest mass, 
as it is usually considered. This fact substantially changes 
the estimations of the matter quantity participating in the 
gravitational interaction. For example, the protons whose 
energy achieves 1021 eV in cosmic rays create a gravita-
tional potential 1012 times higher than that for protons on 
the Earth whose energy is 109 eV. The situation is similar 
for neutrino. The mean energy of neutrino emitted by 
neutron beta decay is about 106 eV; whereas zero energy 
of neutrino, which we usually take into account for 
gravitational interaction, is estimated by value of 10 eV. 
Consequently, neutrino contributes into the gravitational 
interaction 105 times more. Photons having zero mass are 
not considered as carriers of the gravitational interaction 
at all. Deviation from the straight motion for a photon is 
caused by the Einstein deflection effect. This point of 
view contradicts elementary physics. The thing is that, if 
two bodies exist at positions 1r


 and 2r


, and interact 

according to the law  1 2U r r
 

, then their momenta 1p


 

and 2p


 follow the equations  

   
1 21 1 2 2 1 2;r rp U r r    p U r r     

           (85) 
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Since  

   
1 21 2 1 2 ,r rU r r U r r    

   
        (86) 

then, as a consequence of (85,86), follows the law of 
total momentum conservation:  

 1 2 1 20; .
d

p p    p p const
dt

   
   

      (87) 

Thus, the distortion of the trajectory for a photon 
passing e.g. the Sun shows(demonstrates) the variation of 
its momentum; it follows from the law of the total mo-
mentum conservation that the momentum of the Sun 
changes by the same amount. We can make an obvious 
conclusion: if a photon is attracted to a massive body, 
then the massive body is attracted to the photon to the 
same extent. Therefore, photons, like any other particles, 
participate in the gravitational interaction, interaction 
intensity being proportional to the proper intrinsic energy 
of the particle: p   .  

The azimuth velocity of stars in galaxies is about 
100-200 km/sec. That is why, the dark matter elements 
belonging to a certain galaxy at first sight may seem to 
have the same velocities. Hence, all relativistic particles, 
such as photons, neutrino, and cosmic rays, are beyond 
our consideration; as a result, practically none of the ob-
served particles can create an additional gravitational 
field. In this connection an idea arises that there are 
heavy cold particles contributing only to the gravitational 
interaction; they are called dark matter.  

However, a possible alternative point of view exists. 
First, we examine a simple example. A charged ion of a 
hydrogen atom creates a Coulomb potential where local-
ized states for an electron are formed. Filling up one of 
the localized states makes the hydrogen atom electrically 
neutral, as the nuclear field is completely screened by an 
electron. On the other hand, if we insert a proton into a 
metal where there is a sea of free electrons, the localized 
state does not occur, but this time the nuclear field is 
screened by free electrons. The trajectory of each elec-
tron is distorted near the nucleus so much, that, as a re-
sult, electron density increases exactly to the same extent 
and it screens the nuclear field completely. A positive 
charge interacts with all free electrons of metal in a Cou-
lomb way and attracts them.  

Any heavy body attracts all free particles of a cosmic 
space by the gravitational interaction in a Coulomb way 
as well. Nevertheless, there is a significant difference 
between these two processes. Free electrons of metal are 
attracted to a positive charge, begin repulsive from each 
other, as a consequence, the electrical field of the posi-
tive charge is screened by electrons. The situation is 
quite opposite with the gravitational interaction. A mas-
sive body attracts particles from the surrounding space. 
Due to this attraction the total gravitational potential in-
creases, thereby increasing the particle attraction even 

more. A positive feedback or antiscreening arises that 
can lead to the system instability. As an illustration, we 
examine the both situations: screening of an electrical 
field by free electrons in metal and antiscreening of a 
gravitational field by free particles (any) in cosmic space. 

An external charge with harmonics  ext k  placed 
into a metal creates a real charge  i k  defined as a 
sum of external and induced charges: 

     i ext resk k k               (88) 

We can express the induced charge through the po-
larizability of electrons in metal      res ik k k    . 

Here   2 2
TFk k k  ; kTF is a characteristic wave 

vector calculated using a Thomas – Fermi approximation 
[8]. As a result, we obtain  

   
   

2

2 2

2

;
1

4
,

ext
i ext

TF

F
TF

B

k k
k k

k k k

k
k

a


 





 
 



  (89) 

Here kF is a Fermi momentum in metal. It follows 
from (89) that a Coulomb potential of a point charge q, 
for example, is transformed into a screened potential: 

 ; exp .ext i TF

q q
 k r

r r
      

Now we consider a situation rather close to the gravi-
tational interaction. Suppose, the entire space is filled up 
with neutral particles that have some homogeneous den-
sity 0  and interact according to the law of gravitation. 

If any density fluctuation  ext k  occurs in the space, 

then, owing to the gravitational interaction, all other par-
ticles begin to adjust to this density; there-after we can 
re-write the real density in the form:  

           i ext res ext ik k k k k k           (90) 

On the analogy of a free electrons susceptibility, we 
imagine a gravitational susceptibility  k  like this: 

2 2
0k k  . Here 0k  depends on the value of 0  and 

on the distribution function of the particle velocity. Af-
terwards, the real density acquires the form:  

   
2

2 2
0

i ext

k
k k

k k
 


 

This causes gravitational instability of the system rela-
tive to the long-wave density fluctuations. As fluctua-
tions develop, slow particles, which compose a small part 
of an average density, are pulled out of the surrounding 
space and transformed into clusters of matter in form of 
stars and galaxies. Fast relativistic particles remain free 
and continue to participate in creating an additional grav- 
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itational field. We denote clusters of a cool matter in 
form of stars and galaxies having finite motion as 

 cold k . The remainder relativistic particles in form of 

cosmic rays, photons and neutrino create additional non-
homogeneous matter density due to the trajectory distor-
tion      rel rel ik k k   . Here  rel k  is the grav- 

itational polarizability of the relativistic particles. Thus, 
the total density is equal to 

   
 

.
1

cold
i

rel

k
k

k








 

Being on Earth, we have no possibility to scan the dis-
tribution of a total energy over the entire space. However, 
judging from the fact that the azimuth velocity of stars 
moving away from the centre of galaxy remains nearly 
constant, the total gravitational potential must have the 
form: 

  ln ,i
c

r
r

R


 
   

 
 

Here η is a dimensionless parameter, Rc– a gravita-
tional size of a space belonging to a certain galaxy. Pro-
vided that the centrifugal and centripetal forces are equal 

 2 i r
r

r r




 


  

we come to the expression for the circular velocity: 

.v r    

At the star velocity being approximately equal to 200 

km/sec we obtain the value 78 10   . From the ex-

pression for the potential and with the aid of the Poisson 
equation we obtain the space distribution density of mat-
ter: 

 

 

2 2

2

2

4
;

.
4

i

i

r
r c

c
r

r

  




  


 

The space integral of density provides a value of mass 
inside a sphere of radius R: 

2 2

.i

c R v R
M


 

   

For our Galaxy having the size of about R = 5·104 light 
years and velocity of v = 200 km/sec we obtain Mi = 1045 
gr Mass of cool matter is estimated by value coldM   

444.10 gr , therefore, mass of a relativistic matter is com- 
parable with that of the cool one rel coldM M . Thus, as 
a result of the trajectory distortion for relativistic parti-
cles, an additional nonhomogeneous distribution of rela-

tivistic matter occurs and, consequently, an additional 
gravitational potential as well. That is why, there is no 
need to search for a mystical dark matter; relativistic en-
ergy is quite sufficient to create an additional gravita-
tional field. Moreover, emission of radiation by stars and 
galaxies as well as supernova outburst lead to the con-
stant growth of relativistic energy in space. So, observa-
tions of the azimuth stellar motion both in galaxies and 
galaxies in clusters point to the existence of an additional 
gravitational field. Since azimuth and radial motion fol-
lows from the general equation of motion, for example in 
form (63), the radial motion is submitted to the same 
additional gravitational attraction; for this reason, there is 
no dark energy to create antigravitation [9,10]. Thus, if 
red shift is related to recession of galaxies, then a contra-
diction arises, because galaxies have to scatter with ac-
celeration but, judging from the azimuth motion, this is 
impossible. 

It is more natural to consider atomic spectra of far 
stellar radiation to be time dependent as a consequence of 
time dependence of physical vacuum parameters. Since 
atomic levels are proportional to Bohr energy, and Bohr 
energy, in turn, is proportional to the rest energy of elec-

tron ( 2
0B e   ) we can affirm that the electron mass 

increases with time; this means that vacuum parameters 
for the electron oscillation branch  e t  and  e t  

decrease with time. The Hubble constant can be defined 
from the following expression:  

   
 

 
 
 

 

0

0

0

0

0

0

.
0

e

e

e

e

e

e

m td
H t

dt m t

td
       

dt t

td
       

dt t







 
    

 
   

 
 

    

          (91) 

The red shift indicates that the Hubble constant is a 
monotonically growing time function and at the present 

moment it equals to 182.5 10  cek-2. 
Nowadays the Universe is in a metastable state, energy 

emission transitions occurring in two opposite directions. 
On one hand, nucleosynthesis of light nuclei—takes pla- 
ce, which is the source of stellar energy. On the other 
hand, nuclear disintegration of heavy nuclei (natural ra-
dioactivity) – occurs, as well with energy emission. From 
today’s point of view, nuclear fusion looks quite natural 
as there is a binding energy between nuclei; moreover, 
the binding energy on one nucleus increases with the 
growth of atomic number up to iron. Creation of heavier 
elements turns out to be less gainful; in this connection it 
is a surprise that heavy elements, up to uranium, exist on 
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Earth. Nuclei of uranium are in metastable state. If we 
launched a piece of uranium towards the Sun, the ura-
nium nuclei, under neutron bombardment, would de-
compose into lighter fragments. This means that uranium 
cannot occur on Sun. Deposits of uranium on Earth, 
however, prove that the Earth is an earlier formation than 
the Sun. Chemical composition of the Earth principally 
differs from that of the Sun. Sun consists of 75% hydro-
gen, 24% helium and a negligibly small amount of heav-
ier elements, whereas Earth consists of 32% iron, 30% 
oxygen and a noticeable amount of heavier elements up 
to uranium. Heavy elements existing on Earth, as well as 
the red shift, point out to nonstationarity of physical va- 
cuum parameters. Heavy elements could only occur on 
Earth when they were energetically gainful; variations of 
physical vacuum parameters led to the transition of 
heavy nuclei into a metastable state. A further evidence 
of nonstationarity of physical vacuum parameters is that 
not only stars, but also planets emit energy; moreover, 
volcanic activity, similar to that on the Earth, is still be-
ing observed on Jupiter satellites. It is known that the 
Jupiter emits twice as much energy as it receives from 
the Sun. We can express the Jupiter energy emission via 
the Hubble constant. From the law of conservation of 
energy it follows:  

 2 0.J J

d
M c L

dt
             (92) 

Here MJ c2– is Jupiter energy of 511.8 10  erg, and LJ 

is the integral emission flux of 256.5 10  erg/sec. By di- 
viding both parts of (92) into Jupiter energy, and consid-
ering that the Jupiter only consists of hydrogen, we can 
reduce (92) to form  

0 0

0 0

0.e n
J

e n

d dt d dt
l

 
 


 


      (93) 

Here lJ is specific luminosity of the Jupiter equal to 
26 13.6 10 s  . Taking into consideration the definition 

of the Hubble constant (91), we can rewrite Equation (93) 
as follows:  

 0 0

0 0

,n e
J

n n

d dt
H t l

 
 

          (94) 

All values at the right part of (94) are known, there-
fore, 

0 0 .n ed d

dt dt

 
   

So, the red shift shows that the rest energy of the elec-
tron is growing with time, whereas emission of radiation 
by planets indicates that the rest energy of the proton is 
decreasing; the total change of the energy for the electron 
and proton is so great, that it leads to planet heating and 
emission of radiation.  

Since physical vacuum has existed eternally, the val-
ues, which characterize the vacuum, can only be of two 
types: either time independent constants, or oscillating 
functions. The fundamental values are general for both 
electron and nuclear modes , , e e n ng c       seem 

to be thought as constant values; however, we have to 
consider as time dependent the values, which are charac-
teristic either for an electron mode only by ,e e  , or for 

a nuclear one—by ,n n  . At the present moment elec-

tron and nuclear frequencies are moving towards each 
other. 

Finally, we pay attention to one more mechanism of a 
gravitational instability. Not coincidentally, there has 
been some cause for concern so far, that microscopic 
black holes are possible to occur under the experimental 
research with Large Hadron Collider in CERN. The thing 
is that the gravitational attraction between particles 
grows with increasing particle energy, whereas, the elec-
trical repulsion remains constant due to the law of con-
servation of charge. In this connection we examine two 
protons which are speeded up to a certain energy in an 
accelerator. We write down the Hamiltonian for two pro- 
tons, taking into account an electrical and gravitational 
interaction: 

2
1 2

1 2
1 2 1 2

.
m me

H
r r r r


    

 
     

Since masses of the particles are proportional to their 
energy m1 = ε1/c

2, m2 = ε2/c
2, then, under the following 

condition 

21 2
4

e
c

 
  

the gravitational attraction turns out to exceed the elec-
trical repulsion. Consequently, the gravitational collapse 
may occur when the particle energy amounts to 

2
2710c

ec 


    eV. 

Maximum particle energy in cosmic rays reaches 1021 
eV. The value of energy expected at the accelerator in 
CERN is 7 · 1015 eV that is eleven orders less than the 
critical value. That is why the microscopic black holes 
are impossible to appear in the accelerator. From the ex-
pression for the critical energy, we can define the spe-
cific wave vector and the corresponding de Broglie wave 
length: 

2

1 2c c
c

c ec
c k


  




 

It follows: 

32
2 3

1.88 10
e
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c c

 
 
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  
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Planck introduced the specific length by reason of di-
mension: 

3pl

r
r

c



. 

It is easy to see that the specific length c  can be ex- 

pressed via Planck length as follows: 

Pl
c

r


  

Thus, the considerations above allow attaching a ph- 
ysical sense to the Planck length, which defines the most 
probable value for the lattice constant of physical vacu- 
um; here kc specifies the edge of the Brillouin zone in 
k space, and c – the width of the allowed energy re-

gion. 

5. Conclusions 

In presented paper we try to consider problems of the 
gravitational optics and dark matter developing from the 
crystal model for the vacuum. Thus, our model for vac-
uum is represented as a material medium in which dyn- 
amical properties of the crystal specify the spectrum of 
elementary particles . How it is follows from considerat- 
ion it enables to describe both electromagnetic waves and 
spectrum of elementary particles from the unified point 
of view. We have obtained the combined equations for a 
multicomponent order parameter in the form of the elec- 
tric and magnetic vacuum polarization, which defines the 
spectrum and symmetry of normal oscillations in the 
form of elementary particles. We have restored the fun-
damental parameters of physical vacuum, such as: a susc- 
eptibility for the electric and magnetic polarization (equal 
to the constant of fine structure), parameters of length 
and time for the electron and nuclear branches of the 
oscillations, correspondingly. We have shown that the 
charge quantization is directly connected to discreteness 
of vacuum consisting of particles with the interaction 
constant equal to the double charge of a Dirac monopole. 
Elementary particles are excitations of vacuum in a form 
of wave packets of a soliton type. We have obtained an 
exact equation of motion for a particle in a gravitational 
field. Energy defines both gravitational interaction and 
particle inertia, inertia being of an anisotropic value; that 
is why the statement, that the inertial and gravitational 
masses are equivalent, is not correct. We have examined 
the situation when galaxies are distributed over the entire 
infinite space according to the cosmological principle. In 
this case recession of galaxies is impossible; therefore, 

the red shift of radiation emitted by far galaxies must be 
interpreted as the blue time shift of atomic spectra. As a 
consequence, it follows that both rest energy and mass of 
electron are increasing now. Since physical vacuum ex-
ists eternally, vacuum parameters can be either constant 
or oscillating with time. These are time oscillations of 
   tt ne  ,  and    tt ne  ,  wh- ich have caused elec-

tron mass growth within recent 15 milliard years, induc-
ing red shift; on the contrary, proton mass decreases, 
responsible for emission of radiation by planets. 
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