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ABSTRACT 

The constrained total variation minimization has been developed successfully for image reconstruction in computed 
tomography. In this paper, the block component averaging and diagonally-relaxed orthogonal projection methods are 
proposed to incorporate with the total variation minimization in the compressed sensing framework. The convergence 
of the algorithms under a certain condition is derived. Examples are given to illustrate their convergence behavior and 
noise performance. 
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1. Introduction 

The reconstruction of an image from the projection data 
in tomography by algebraic approaches involves solving 
a linear system 

,Ax b                  (1) 

where the coefficient matrix m nA R   is determined by 
the scanning geometry and directions, vector  
the projection data obtained from computed tomograpgy 
(CT) scan and the unknown vector 

mb R

nx R  the image to 
be reconstructed. It is assumed that system (1) is consis- 
tent and underdetermined (m < n). So it has infinitely 
many solutions. We seek for a solution such that it re- 
covers the original image as good as possible. It is an 
illposed problem. In general, the dimension of x is very 
large, thus the conventional direct methods are not ap- 
propriate. One of classic iterative algorithms is the alge- 
braic reconstruction technique (ART) given by [1] 
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where k  is a parameter, ai the ith column of AT, and 
,ia x

k

k  the inner product of ai and xk. The value of i is 
cyclically chosen as 1, ···, m. The sequence {xk} con- 
verges to a solution of system (1) as long as  
0 liminf limsup 2k     [2]. Cimmino method [3], 
given by 
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is an iterative projection algorithm suitable for parallel 
computing. The slow convergence of Cimmino method 
because of the large value of m was improved by the 
component averaging (CAV) method [4] given by 
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where sj is the number of nonzero entries in the jth col- 
umn of A. The CAV method was further generalized as 
the Diagonally-Relaxed Orthogonal Projection (DROP) 
method [5] given by 
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where wi’s are positive weights. The block versions of 
these iterative methods were investigated regarding con- 
vergence and computations [5-7]. The theory of com- 
pressed sensing [8-10] has recently shown that signals 
and images that have sparse representations in some or- 
thonormal basis can be reconstructed at high quality from 
much less data than what the Nyquist sampling theory 
[11] requires. In many cases in tomography, a medical 
image can be approximately modeled to be essentially 
piecewise constant so its gradients are sparse. The image 
can then be reconstructed via the total variation minimi- 
zation [12,13]. In other words, a two dimensional image 
F can be reconstructed by solving the following minimi- 
zation problem, 

min | |TVx  or min | | s.t ,Ax b        (4) 

where | |  is the magnitude of a gradient and the total *Corresponding author. 
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variation | |TVf  of a two dimensional array fi,j is the l1 - 
norm of the magnitude of the discrete gradient, 

   2

1, , , 1 ,,
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i j i j i j i ji j
f f f f f    | |TV 

 

A

. 

Under the condition that the gradients are sparse 
enough, the solution of the l1-norm minimization prob- 
lem (4) is unique and it gives an exact recovery of the 
image based on compressed sensing theory [8,10]. A 
block cyclic projection for compressed sensing based 
tomograph (BCPCS) for solving (4) was proposed [14]. 
To describe the algorithm the following notations are 
needed: Suppose that A and b in are partitioned, respect- 
tively, as 
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 and  ,  for 1 ,

p p

b
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where Aj ∈ Rrj×n and bj ∈ Rrj , 1 ≤ j ≤ p. Assuming that 
the row indices of Aj form a set  1 , ,j j

j rjB t t 
 for i jB B 

, we 
have  where . 
We assume that 

1, ,p 
0k

m j1U j jB  i 
   and  in the fol- 

lowing algorithm: 
kk

  

Algorithm 1. BCPCS 
1.  for  k = 0, 1, 2, ··· 
2.  for   j = 1 to p 
3.1. for  1 , ,j j

rji t t   

3.2.      
2
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3.3. end 

4.      ,  where | |k k
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5.  end 
6.      1k kx x   
7.  end 
The convergence of BCPCS with 1k   was shown 

with an application of the convergence theory of the 
amalgamented projection method [15]. 

Theorem 1. [14] The sequence {xk} generated by Al- 
gorithm 1 with 1k   converges and its limit is a solu- 
tion of Ax = b. 

In this paper, the block component averaging and di- 
agonally-relaxed orthogonal projection methods are pro- 
posed to incorporate with the total variation minimization 
in the compressed sensing framework. The convergence 
of the algorithms, under a certain condition for example 
in the strip-based projection model [16], is derived. Ex- 
amples are given to illustrate their convergence behavior 
and noise performance. 

2. BCAVCS Algorithm and Its Convergence 

The convergence of the CAV and block CAV methods 

was proved [4,5]. Several notations and concepts in [4] 
are adopted in this paper for literature consistency. For 
each  1, ,i  m , denote by 

 | ,n i
i i ,H x R a x b    

a hyperplane in Rn and by i  a 
nonnegative diagonal matrix, where 

 1, ,i iG diag g g  n

1ij jg s  if  
0i

ja  , otherwise gij = 0, j = 1, ···, n. Then 1
m
i iG I  . 

The set 
1i m

iG


 is called sparsity pattern oriented (SPO) 
w.r.t. A. The generalized oblique projection of a vector 

nz R  onto Hi w.r.t. Gi, denoted as  i

i

G
HP z , is defined 

for all j = 1, ···, n, by 
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a seminorm in Rn corresponding to any nonnegative di- 
agonal matrix G is defined by 

1 2
| | ,Gz z Gz , nz R . 

It is known that 

   argmin | | : ,i

ii

G
G iHP z x z x H    

which explains the meaning of the generalized oblique 
projection. For simplicity, we denote  i

i

G
HP z  by 

 iQ z  for any nz R . 
Moreover, with the generalized inverse of Gi,  

 † †
1, , ,i iG diag g g  †

in  

where for a real number  , † 1   for 0  , oth- 
erwise † 0  , we rewrite (6) as 

    †
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With above notations, the CAV iteration (2) can be 
expressed as 
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Algorithm 1 can be modified as a block CAV method 
for compressed sensing based tomography algorithm 
(BCAVCS) for image reconstruction described as fol- 
lows: 

Algorithm 2. BCAVCS 
1. for   k = 0, 1, 2, ··· 
2. for   j = 1 to p 

3.    
j

k k k k
k i ii B
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5. end 
6.  1k kx x   
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7.  end 
In order to derive the convergence of Algorithm 2 un- 

der a certain condition, we introduce an operator Ti: Rn 
→ Rn, for i = 1, ···, m, by 

     ,i k i iT z z G Q I z    

where I is the identity operator. For an index vector t = 
(t1, ···, tr) in {1, ···, m}, we denote T[t] as a composition 
of operators Tt1, ···, Ttr by 

 
1
.

rt
T t T T  t              (8) 

We have the following property for the operator T[t]. 
Lemma 2. Let 

1i
 be SPO w.r.t.  m

iG m nA R   and let 
t = (t1, ···, tr) be an index vector in {1, ···, m} such that 
GkGl = O for any distinct coordinates k, l in t. Then for 

, nz R

        1 , , r ii t t
T t z z T z I z


   

.    (9) 

Proof. Let . It fol- 
lows from GlGh = O that 

    h k h hw T z G Q I z z   

Glw = Glz and , ,l la w a z .  

Consequently, we have 
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We complete the proof of the lemma. 
The convergence of BCAVCS in a certain case will be 

shown below using the concepts of SPO matrices and 
generalized oblique projection. Suppose that Ax = b is 
generated by the strip-based projection model in discrete 
tomography or CT [16,17]. The index vector  

 1 , , ,
j

j j j
rt t t   

is associated with the jth subsystem Ajx = bj of (5) deter- 
mined by one projection direction. In each 0-1 submatrix 
Aj, there is exactly one 1 in each column, i.e., sj = 1, 
Therefore all rows of Aj are orthogonal. So GkGl = 0 for 
distinct coordinates k and l in tj. In this case we will show 
the following. 

Theorem 3. If each column of every block Aj, 1 ≤ j ≤ p, 
in (5) has exact one 1 then the sequence {xk} generated 
by Algorithm 2 with 1k   converges and its limit is a 
solution of (1). 

Proof. Recall that the inner loop of BCPCS for the jth 
block of A can be represented by an operator jP t    
defined by  
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It follows from (9) that the iteration scheme of the in- 
ner loop of BCAVCS for the jth block can be expressed 
as 
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It means that for the jth block of the matrix A the 
BCAVCS method is equivalent to BCPCS algorithm. 
The convergence of BCAVCS as 1k   follows from 
the convergence of BCPCS algorithm as 1k   by 
Theorem 1. 

It is remarked that the rate of convergence of 
BCAVCS in general is close to that of BCPCS in se- 
quential computing. Hence, the convergence of BCA- 
VCS algorithm with parallel computing will be signifi-
cantly faster than BCPCS algorithm. 

3. BDROPCS Algorithm and Its  
Convergence 

The convergence of the DROP and block DROP methods 
was proved [5]. In this section, we propose a block 
DROP algorithm modified for compressed sensing based 
tomography (BDROPCS) and show its convergence in a 
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certain case. We denote by sj the number of nonzero en- 
tries in each column within the jth block and define a 
DROP operator jP t  

  corresponding to the jth block 
as 

2

,
.

j

i
ij ik

i
ii Bj

b a x
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           (10) 

Algorithm 3. BDROPCS 
1. for   k = 0, 1, 2, ··· 
2. for   j = 1 : p 

3.  k j kx P t x   
  with a block DROP 

4.  k k
k

d
x x

d




   with | |d
x



   

5. end 

6.  1k kx x   
7. end 
We first show that in a certain case the DROP is iden- 

tical to the ART in the following 
Theorem 4. Let m nA R   have exactly the same 

number s of nonzero entries in each column and let rows 
of A be orthogonal. Then xk+1 generated by the DROP in 
(3) is the same as a vector generated by Algorithm ART 

with a constant parameter k

s


 and weights wi. 

Proof. Under the assumption, the DROP method can 
be expressed as 
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For convenience, we rewrite Algorithm ART with a  

constant parameter k

s


 and weights wi for one cycle  

which yields xk+1 from xk as follows: 

x[1] = xk, 

for i = 1 to m 
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end 
xk+1 = x[m+1]. 

By the assumption on A, , 0 for i li la a   . It fol- 
lows that 

   11 1, ,i ii ia a a x  .  

It is easy to see by induction 

   1, , , ,  1,ii i i ka x a x a x i m   

Then (12) can be rewritten as 

   1

2

,
,

i k
ii i ik

i
i

b a x
x x w a

s a


      
 

 

from which, the vector xk+1 is given by 
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which is the same as the vector yielded by the DROP 
method in one cycle (11). 

We now have the convergence of Algorithm 3 in the 
case where Ax = b is generated by the strip-based project- 
tion model in DT or CT [16,17], which is a direct result 
of Theorems 1 and 5. 

Theorem 5. If each column of every block Aj, 1 ≤ j ≤ p, 
in (5) has exact one 1 then {xk} generated by Algorithm 3 
with 1k iw    converges and its limit is a solution of 
Ax = b. 

It is remarked that BCAVCS is a special case of 
BDROPCS when wi = 1. Therefore, Theorem 5 can be 
considered as an alternative proof of Theorem 3 without 
using the generalized oblique projection. However, it is 
believed that the concept of generalized oblique project- 
tion and the idea in the proof of Theorem 3 will be im- 
portant for our further investigation of the convergence 
of BCAVCS in a general case. 

4. Numerical Simulations 

In order to test the performance of our algorithms in recon- 
structing images, we implemented algorithms BCAVCS 
and BDROPCS in Matlab. The performance of the algo-
rithms was compared with some other algorithms. Algo-
rithm BCAV is a non-CS iterative method formed by 
deleting line 4 in Algorithm BCAVCS so that no pertur-
bation for total variation minimization is performed. Al-
gorithm CAVCS is a nonblock CAV CS-based iterative 
method obtained by exchanging lines 4 and 5 in Algo-
rithm BCAVCS so that a perturbation for total variation 
minimization is performed only after all the blocks are 
done. Note that in our case BDROPCS is same as 
BCAVCS. We also tested the sensitivity of the algo- 
rithms to additional Gaussian noise. We perform the re- 
construction of the 256 × 256 Shepp-Logan phantom 
from a set of 20 reasonably distributed projection direc- 
tions of rational slopes [16,17]. The system Ax = b gen- 
erated by the strip-based projection model, where A ∈ 
R20918×65536 is highly underdetermined. Moreover, A is a 
sparse 0-1 matrix and there is one and only one 1 in each 
column within each of total 20 blocks [17]. 

The experiment data with the algorithms are summa- 
rized in Table 1. We set maximum 500 iterations in the 

, .  
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test and algorithms will terminate if the relative error 
reaches 0.001. The relative error 
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f G

f
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To evaluate the noise characteristics of two new algo- 
rithms, we added Gaussian noise with mean 0 and stan- 
dard deviation 0.05 to synthetic projection data from the 
Shepp-Logan phantom. The reconstructed images and 
convergence curves after 250 itertaions are given in Fig- 
ure 3. The noise level was evaluated by the mean-square 
difference between reconstruction with and without added 
noise. The noise measures with the algorithms BCAV, 
CAVCS, and BCAVCS/BDROPCS are 0.0012, 0.0029, 
and 0.0023, respectively. The results indicate that the 
four algorithms have simliar sensitivity to data noise. 

for a reconstructed image G are used to measure the error. 
The re-constructed images and relative errors by different 
algorithms are shown in Figure 1. Our experiment re-
sults indicate that algorithms BCAVCS and BDROPCS 
converge. Algorithm BCAVCS is demonstrated to be 
much better than BCAV and CAVCS and to have the 
same converges rate as BDROP. It is remarked that 
BCAVCS/BDROPCS algorithm is appropriate for paral-
lel computing. 

 
Table 1. Experiment data of Shepp-Logan phantom. 

 
Iteration 
Number 

Time (s) Error MSE 

BCAV 

We also tested the algorithms with a real CT image of 
cardiac [18] of size 256 × 256 from projections in 32 
directions. The CT image was preprocessed to have a 
certain gradient sparsity. The reconstructed images and 
corresponding convergence curves are shown in Figure 2. 
The experiment indicates that the BCAVCS and BDR- 
OPCS are superior to non-CS methods too. 

500 55 0.458 0.013 

CAVCS 500 57 0.075 0.073 

BCAVCS 404 75 0.001 0.000 

 

 

Figure 1. Reconstruction of Shepp-Logan phantom with different algorithms; (a) Shepp-Logan phantom; (b) Reconstruction 
by BCAV; (c) Reconstruction by CAVCS; (d) Reconstruction by BCAVCS/BDROPCS. Bottom: Convergence curves of algo- 
rithms. 
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Figure 2. Reconstruction of a cardiac CT image with different algorithms; (a) Cardiac phantom; (b) Reconstruction by 
BCAV; (c) Reconstruction by CAVCS; (d) Reconstruction by BCAVCS/BDROPCS. Bottom: Convergence curves of algo- 
rithms. 
 

 

Figure 3. Reconstruction of Shepp-Logan phantom with noise; (a) Reconstruction by BCAV; (b) Reconstruction by CAVCS; 
(c) Reconstruction by BCAVCS/BDROPCS. Bottom: Convergence curves of algorithms. 
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5. Conclusions 

The total variation minimization is a powerful method to 
reconstruct piecewise constant medical images based on 
the compressed sensing theory. We consider the block 
component averaging and diagonally-relaxed orthogonal 
projection methods, in the case of the parameter 1k  , 
with the total variation in the compressed sensing frame- 
work. Their convergence is derived in the striped-based 
projection model. 

The experiments indicate that the proposed algorithms 
BCAVCS and BDROPCS converge faster than algo-
rithms without using block iterations or CS framework. 
Moreover, algorithms BCAVCS and BDROPCS recover 
more details of images. The convergence of algorithms 
BCAVCS and BDROPCS in the general case of 1k   
will be further studied. 
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