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ABSTRACT 

This paper provides a methodology for valuing credit default swaps (CDS). In these financial instruments a sequence of 
payments is promised in return for protection against the credit losses in the event of default. Given the widespread use 
of credit default swaps, one major concern is whether the credit risk has been priced accurately. Credit risk assessment 
of counterparty is an area of renewed interest due to the present financial crises. 

This article proposes a non parametric model for estimating pricing of the CDS, using learning networks, based on 
the structural approach pioneered by Merton [1] as regards the independent variables; he proposed a model for as-
sessing the credit risk of a company by characterizing the company’s equity as a call option on its assets. The model 
that we are introducing turns out peculiar not only for the use of the neural network, but also for the use of the implied 
volatility of one-year options written on the shares of the analyzed companies, instead of historical volatility: this leads to 
a higher capability of getting the signals launched by the market about the future creditworthiness of the firm (historic 
volatility, being a medium value, brings in temporal lags in the evaluation). Besides, our analysis differs from the 
structural approach for the fact that it considers the 30-month mean-reverting historical series for CDS spreads, and this 
turns out to be one of the main advantages of our forward-looking model. 
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1. Introduction 

In recent years, the market for credit derivatives has ex-
panded dramatically. Credit derivatives are flexible and 
efficient instruments that enable users to isolate and trade 
credit risk. Credit derivatives allow users to isolate credit 
risk from other quantitative and qualitative factors asso-
ciated with owing an exposure. Hence, they can be used 
to transfer and hedge credit risk in an efficient and flexi-
ble manner, customized to a client’s requirements. This 
transfer of credit risk may be complete or partial, and 
may be for the life of the asset or for a shorter period. 
Credit risk includes not just default or insolvency risk but 
also changes in credit spreads and thereby market values, 
changes in credit ratings and generic changes in credit 
quality. Credit derivatives can be used when a sale in the 
cash market is either not efficient or not possible. Even 
when cash market alternatives exist, credit derivatives 
may be preferred because they do not require funding. 
Furthermore, since derivatives are over-the-counter con-
tracts, transactions are confidential. Finally, speed of set-
tlement and liquidity are reasons why credit derivatives 
are a better alternative to the reinsurance market. Credit 
derivatives are swaps, forward and option contracts, par-
ticularly credit default swaps (CDS); they can be used to 
hedge against all these types of credit risk. For a simple 
credit default swap, over some time period, one counter-
party (the protection seller) receives a predetermined fee 
payment from another counterparty (the protection buyer); 

in return, the protection seller agrees that in the case of a 
credit event of a reference entity, it will pay the seller the 
loss on a bond of the reference entity, that is the bond’s 
par value less its recovery. 

Nowadays, banks, corporate, hedge funds, insurance 
companies and pension funds are hugely exposed as buy-
ers or sellers, or both. By transferring the risk, the CDS 
have acted as a kind of insurance and provided incentives 
for risk-taking. They are therefore at the heart of the pre-
sent crisis. 

Given the widespread use of credit default swaps, as an 
investment or a risk management tool, one major concern 
is whether the credit risk has been priced accurately. This 
article proposes a non parametric model for estimating 
pricing of these credit derivatives, using learning net-
works. The recent application of nonlinear methods, such 
as neural networks to credit risk analysis, shows promise 
of improving on traditional credit models. Neural net-
works differ from classical credit systems mainly in their 
black box nature and because they assume a non-linear 
relation among variables. The two main issues to be de-
fined in a neural network application are the network 
typology and structure and the learning algorithm. The 
connections (links) among neurons have an associated 
weight which determines the type and intensity of the 
information exchanged. As regards the independent vari-
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ables of the model, we start from the typical assumption 
of the structural approach based on the theoretical foun-
dation of Merton’s [1] option pricing model: the relevant 
information in order to evaluate credit risk can be ob-
tained from the market data of the analyzed companies. 
The model developed by Merton views a firm’s equity as 
an option on the firm (held by the shareholders) to either 
repay the debt of the firm when it is due, or abandon the 
firm without paying the obligations. What makes that 
model successful is its reliance on the equity market as an 
indicator, since it can be argued that the market capitali-
zation of the firm (together with the firm’s liabilities) 
reflect the solvency of the firm. Therefore, option pricing 
theory is used in order to create a link between the credit 
market and the securities market. The model that we are 
introducing turns out peculiar not only for the use of 
neural networks, but also for the use of the implied vola-
tility of one-year options written on the shares of the 
companies, instead of historical volatility: this leads to a 
higher capability of getting the signals launched by the 
market about the creditworthiness of the firm (historical 
volatility, being a medium value, brings in temporal lags in 
the evaluation). Besides, our analysis differ from the 
structural approach for the fact that it consider the 
30-month historical series for CDS spreads, and this turns 
out to be one of the main advantage of our forward- 
looking model. 

The paper is organized as follows. The paper begins, 
in Section 1, by stating the implications of credit deriva-
tives in portfolio credit risk management. In Section 2, 
we first briefly overview the main principles and charac-
teristics of neural networks, focusing the attention above 
all on the concepts that are most useful for the application 
to financial instruments; then we describe the pricing 
model we developed and tested for credit derivatives. 
Section 3 develops the theory underlying our implemen-
tation of Merton’s model. Section 4 describes the data 
and we present our results: the effectiveness of neural 
network in approximating the evaluation of credit default 
swap is illustrated. As regards the sample, it includes 18 
American firms, relative to various fields, including fi-
nancial institutions which, operating typically with a high 
leverage due both to the activity carried out and to the laws 
concerning the capital of banks, usually introduces re-
markable factors of distortion in parametric models. We 
shall show that neural networks are not affected by this 
problem. The temporal range embraces the period Sep-
tember 2002-March 2006: we have considered the five- 
year CDS spread relative to each firm, for a total of 180 
observations on a quarterly basis obtained through the 
Fitch™ database. As already pointed out, implied volatil-
ity has a determining role among the variables; in fact we 
have obtained a positive correlation with CDS spreads 
equal to 0.6338. Leverage is another key variable, ob-
tained dividing the face value of the debt of the firm by the 
total of its liabilities (including the market capitalization), 

getting the data from the Bloomberg™ database. We have 
considered the risk free rate equal to one-year constant 
maturity Treasury Bills yield, taken from the Federal Re-
serve System database. We then discuss in detail the ex-
perimental settings and the results we obtained, leading to 
considerable accuracy in prediction. The architecture of 
the neural network is feed-forward, trained for 17000 
learning epochs using the back-propagation algorithm, 
with two hidden layers of 9 and 10 neurons each: by the 
study carried out it turns out obvious that neural networks 
are able to totally capture the variability relative to the 
market dynamics of credit default swap. The paper ends 
evidencing that, as far as this field of the financial markets 
is concerned, neural networks constitute a highly valid 
instrument of calculation:  in fact there still does not exist 
in literature a formula of evaluation for the CDS, able to 
tie the quoted spreads to the specific underlying variables 
of each examined firm, and the neural network can, as will 
be shown, satisfy this lack with high effectiveness, facing 
the problem of determination of the functional form from a 
statistical point of view. As we will show, it is easy to 
calculate the sensitivity of the CDS spread to each inde-
pendent variable, in order to determine a statistical pricing 
formula for CDS. 

The paper concludes with a discussion of advantages 
and limitations of the solution achieved. 

2. Credit Derivatives: Innovative Financial 
Instruments 

Credit derivatives are financial instruments used to trans-
fer credit risk of loans and other assets. They are bilateral 
financial contracts with payoffs linked to a credit related 
event such as a default, credit downgrade or bankruptcy. 
There are various types, but the basic structures of all 
credit derivatives are swaps, options and forwards. Due to 
their high flexibility credit derivatives can be structured 
according to the end-users’ needs. For instance, the 
transfer of credit risk can be effected to the whole life of 
the underlying asset or for a shorter time, and the transfer 
can be a complete or a partial one. Delivery can take place 
in the form of over the counter contracts or embedded in 
notes. Moreover, the underlying can consist of a single 
credit-sensitive asset or a pool of credit-sensitive assets [2]. 

2.1 Credit Derivatives: Products and Structures 

The most important and widely used credit derivative is a 
credit default swap1. It is an agreement  in which the one 
counterparty (the protection buyer) pays a periodic fee, 
typically expressed in fixed basis points on the notional 
amount, in return for a contingent payment to the other 
counterparty (the protection seller) in the event that a 
third-party reference credit defaults. A default is strictly 
defined in the contract to include, for example, bankruptcy, 
insolvency, and/or payment default. The definition of a 
credit event, the relevant obligations and the settlement 
mechanism used to determine the contingent payment are 
flexible and determined by negotiation between the 

1 The credit default swap is also known as credit default put, credit swap, 
default swap, credit put or default put. 
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counterparties at the inception of the transaction. Since 
1991, the International swap and Derivatives association 
(ISDA) has made available a standardized letter confir-
mation allowing dealers to transact credit swaps under the 
umbrella of an ISDA Master Agreement. The evolution of 
increasingly standardized terms in the credit derivatives 
market has been a major growth because it has reduced 
legal uncertainty that hampered the market’s growth. 

The contingent payment in the event of default can be 
identified as either: 

-a payment of par by the protection seller in exchange 
for physical delivery of the defaulted underlying; 

-a payment of par less the recovery value of the 
underlying as obtained from dealers; 

-a payment of a binary, i.e. fixed, amount. 

Credit default swaps can be viewed as an insurance 
against the default of the underlying or a put option on the 
underlying. Figure 1 exhibits the basic structure of a credit 
default swap. 

Moreover, there is the total return swap, in which one 
counterparty (total return payer) pays the other counter-
party (total return receiver) the total return of an asset (the 
reference obligation) for receiving a regular floating rate 
payment, such as Libor plus a spread. “Total return” 
comprises the sum of interest, fees and any change-in 
value payments (any appreciation or depreciation) with 
respect to the reference obligation. 

In contrast to the credit default swap, the total return 
swap does not only transfer the credit risk but also the 
market risk of the underlying; it effectively creates a 
synthetic credit-sensitive instrument. A total return swap 
allows an investor to enjoy all of the cash flow benefits of 
a security without actually owing the security. 

Credit spread option is an option on a reference 
credit’s spread in the loan or bond market. In a spread put 
option one party pays a premium for the right to sell a 
bond to a counterparty at a certain spread at a definite 
time in the future. A credit spread option gives the buyer 
protection in the event of any unfavourable credit mi-
gration. In a default option, the asset can be put only on 
default. The credit spread is the differential yield be-
tween the reference credit and a pre-determined bench-
mark rate. Thus, in credit spread derivatives, payment is 
based on the movement of the value of one reference 
credit against another. 

 

 
Figure 1. Credit default swap 

that pays out if a specified company’s rating is down-
graded. This kind of option is sometimes embedded in 
bond structures. 

Finally, credit linked notes are created by embedding 
credit derivatives in notes. Credit derivatives have the 
advantage that funding is not necessary; whereas credit 
linked notes have the benefit of avoiding counterparty risk. 
Credit linked notes are frequently issued by special pur-
pose vehicles (corporations or trusts) that hold some form 
of collateral securities financed through the issuance of 
notes or certificates to the investor. The investor receives a 
coupon and par redemption, provided there has been no 
credit event of the reference entity. The vehicle enters into 
a credit swap with a third party in which it sells default 
protection in return for a premium that subsidizes the 
coupon to compensate the investor for the reference entity 
default risk. 

2.2 Fundamental Attractions of Using Credit 
Derivatives 

In theory, credit derivatives are tools that enable financial 
operators to manage their portfolio of credit risks more 
efficiently; they enable market participants to devise 
flexible personal approaches to the management of credit 
risk associated with a variety of underlying financial as-
sets. The promise of these important instruments has not 
escaped regulators and policymakers. “Credit derivatives 
and other complex financial instruments have contributed 
to the development of a far more flexible, efficient, and 
hence resilient financial system than existed just a quar-
ter-century ago” [3]. 

The credit derivatives market offers its users a range of 
tools which enable the transfer of credit risk. A brief 
review of the available products reveals that in most 
cases one party to a transaction receives a fee and com-
mits to provide the other party with a payment should the 
credit quality of a third party deteriorate. Whilst the 
mechanism contained in these products are easy to un-
derstand, the broad range of applications is not immedi-
ately obvious. 

The users of the risk-management benefits of credit 
derivatives tend to be quite diverse. An increasingly im-
portant user group includes financial institutions, corpo-
rate and fund managers. Financial institutions have em-
braced the full range of benefits; the use of credit deriva-
tives by banks has been motivated by the desire to improve 
portfolio diversification and to improve the management 
of credit portfolios. Corporate is also looking to reduce the 
credit exposure to key trading partners and specifically 
they are interested in using credit derivatives to isolate 
credit risks in project financing. For fund managers, al-
though the asset benefits of credit derivatives still suffer 
from lack of liquidity, the use of structures that hedge out 
spread risk has some appeal. 

This paragraph focuses on a range of uses for credit 
derivatives and divides them between credit risk man-
agement and asset opportunities2 [4,5]. 

2 For more detailed information on the characteristics of credit deriva-
tives see  DAS, S., (1998); TAVAKOLI, J.M., (1998). 
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2.2.1 Using Credit Derivatives for Managing Credit Risk 
The principal feature of these instruments is that they 
separate and isolate credit risk facilitating the trading of 
credit risk with the purpose of: 

-replicating credit risk; 
-transferring credit risk; 
-hedging credit risk. 

In practice, the rationale behind a transaction may relate 
to the management of credit lines, to regulatory capital 
offsets, to balance sheet optimization, portfolio hedging 
and diversification or pure risk reduction itself. Credit 
derivatives can be used as a risk management tool by 
portfolio managers to: 

-Achieve portfolio diversification: credit derivatives 
can be used to achieve portfolio diversification by 
allowing access to previously unavailable credits. 
They can also be used to diversify across a range of 
borrowers and to gain exposure to an asset without 
owing it. 

-Reduce concentration risk: investors can reduce 
portfolio credit risk concentrations using derivatives 
structures; they can thus manage country and industry 
risks. Reducing credit concentration in loan portfolios 
is commonly viewed as the main use of credit 
derivatives. However, to date credit derivatives are 
generally referenced to assets which are widely traded, 
i.e. for which market prices are readily available, or for 
which a rating by an international agency is at hand. 

-Manage exposures while maintaining client relation- 
ships. Changes to credit risk management in the 
banking sector are an additional factor contributing to 
greater use of credit derivatives. Investors can use 
credit derivatives to reduce exposures without selling 
them. This effectively frees up credit lines, allowing 
more business to be done with a customer. 
Furthermore, a bank that is concerned about credit 
loss on a particular loan can protect itself by 
transferring the risk to someone else while keeping 
the loan on its books. As part of their credit risk 
management, banks are viewing credit derivatives 
more and more often as tradable products, which can 
be transferred to third parties before the maturity date 
[6,7,8]. 

-Manage regulatory capital: the new supervisory rules 
provided for by Basel II are also increasing the 
incentives for banks to use credit derivatives. Where 
guarantees or credit derivatives are direct, explicit, 
irrevocable and unconditional, and supervisors are 
satisfied that banks fulfil certain minimum 
operational conditions relating to risk management 
processes, they may allow banks to take account of 
such credit protection in calculating capital 
requirements. A guarantee or credit derivative must 
represent a direct claim on the protection provider 
and must be explicitly referenced to specific 
exposures or a pool of exposures, so that the extent of 

the cover is clearly defined and incontrovertible. 
Other than non-payment by a protection purchaser of 
money due in respect of the credit protection contract 
it must be irrevocable; there must be no clause in the 
contract that would allow the protection provider 
unilaterally to cancel the credit cover or that would 
increase the effective cost of cover as a result of 
deteriorating credit quality in the hedged exposure. It 
must also be unconditional; there should be no clause 
in the protection contract outside the direct control of 
the bank that could prevent the protection provider 
from being obliged to pay out in a timely manner in 
the event that the original counterparty fails to make 
the payment due. There are cases where a bank 
obtains credit protection for a basket of reference 
names and where the first default among the 
reference names triggers the credit protection and the 
credit event also terminates the contract. In this case, 
the bank may recognise regulatory capital relief for 
the asset within the basket with the lowest 
risk-weighted amount, but only if the notional amount 
is less than or equal to the notional amount of the 
credit derivative. In the case where the second default 
among the assets within the basket triggers the credit 
protection, the bank obtaining credit protection 
through such a product will only be able to recognise 
any capital relief if first-default-protection has also be 
obtained or when one of the assets within the basket 
has already defaulted [9]. 

2.2.2 Asset Opportunities 
Credit derivatives have evolved to become an important 
financial asset class. As already argued, credit derivatives 
enable credit risk to be separated from the funding com-
ponent of its underlying instrument; as it is often the form 
of the underlying instrument that creates obstacles for the 
investor, this separation of the credit risk creates important 
opportunities. The decision to use the asset opportunities 
of credit derivatives tends to be based on one of the fol-
lowing needs: 

-Access to new markets: investors can create new 
assets with a specific maturity not currently available 
in the market; 

-Obtain tailored investments: credit derivatives can be 
used to create instruments with exact risk- return 
profile sought. Maintaining diversity in credit 
portfolios can be challenging. This is particularly true 
when the portfolio manager has to submit with 
constraints such as currency denominations, listing 
considerations or maximum or minimum portfolio 
duration. Credit derivatives are being used to address 
this problem by providing tailored exposure to credits 
that are not otherwise available in the wished form or 
not available at all in the cash market. 

-Improve the risk-return profile of portfolios: credit 
derivatives offer new possibilities of turning a given 
market opinion into an investment strategy. This 
particularly entails assumption of specific types of 
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credit risk without the acquisition of the asset itself. 
Instead of purchasing a specific bond, a market 
participant who considers some credit risks to be 
overvalued can earn an attractive premium as a 
protection seller in the credit default swap market. 
Premiums are generated without having to tie up any 
capital for the purchase of a bond issue (at least as long 
as no credit event occurs). On the other hand, market 
participants who consider risks to be underestimated 
can purchase protection by paying a premium. Owing 
to the limited possibilities for short sales in the bond 
market, hedge funds are increasingly entering into 
positions in credit derivative market to implement 
their financial strategies. In particular: 
- to hedge dynamic risks: exposures that change   
with market movements can be hedged using credit 
derivatives; 

- to manage illiquid credits: credit derivatives can be 
utilized to actively manage risk in large illiquid loans 
portfolios; 

- to execute short credit positions: credit derivatives 
can be employed to execute short credit positions 
without the risk of a short squeeze or high financing 
costs. Hence, investors can use them to hedge or take 
advantage of deteriorating credit qualities;  

- to hedge declining credit quality: default and spread 
options and swaps can be used to hedge failing credit 
qualities. Credit spread options and swaps can be 
used to hedge fluctuations in credit spreads without 
having to wait for default to get a payout. 

3. The Neural Network Model 

The general structure of a neural network model consists 
of simple processing units called nodes that interact with 
each other using weighted connections. Each unit (node) 
receives and processes inputs, and delivers a single out-
put. The input can be raw or output of other processing 
units. The output can be the final product or an input to 
another unit. In processing the inputs, the model assigns a 
weight to each input, where weights represent the relative 
strength or importance of inputs. A neural net essentially 
represents a nonlinear discriminant function as a pattern 
of connections between its processing units. 

Neural networks have been used in different fields of 
study, such as engineering, medicine, physics and others. 
Although the relative structures differ remarkably with 
one another, it is possible to point out some fundamental 
principles regarding essentially the functioning of such 
operative instruments. Moreover, it is important to start 
the treatment emphasizing that, in order to analyze the 
financial dynamics, relatively little complex networks are 

effective, at least compared to those of other fields3 

[10,11,12]. 

Neural networks offer several advantages over the tra-
ditional statistical methods. First, neural networks do not 
require the restrictive assumptions imposed by conven-
tional methodologies. Second, neural networks can de-
velop input-output map boundaries that are highly non 
linear4 [13,14]. Third, they have greater fault tolerance 
and adaptability. Neural network examines all informa-
tion available and it can incorporate the new information 
into the analysis promptly through its memorization of 
previous learning; it updates its weighting scheme so that 
it continually “learns” from experience. Thus, neural net-
works are flexible, adaptable systems that can in corpo-
rate changing conditions. 

3.1 Architecture of Neural Networks 

A neural network relates a set of input variables {xi},  
i=1,2,..k to a set of one or more output variables {yj},  
j=1,2,..h. An essential characteristic of a neural network, 
differently from other methods of approximation, is that 
it uses one or more hidden layers, in which the input 
variables are transformed by a logistic or logsigmoid 
function: this characteristic, as shown later, gives to these 
instruments a particular efficiency in modeling nonlinear 
statistical processes. 

In the feed-forward neural network parallel elaboration 
is associated to the typical sequential elaboration of the 
linear methods of approximation. In fact while in the se-
quential elaboration particular weights are given to the 
input variables through the neurons of the input layer, in 
the parallel one the neurons of the hidden layer operate 
further transformations in order to improve the predictions. 
The connectors (between the input neurons and the neu-
rons in the hidden layers, and between these and the output 
neurons) are called synapses. The feed-forward neural 
network with a single hidden layer is the simplest and at 
the same time the most used network in the economic and 
financial field. 

Therefore the neurons process the input variables in two 
ways: firstly forming linear combinations and lastly 
transforming these combinations through a particular 
function, typically the logsigmoid function, illustrated in 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Logsigmoid function 

3 DOLCINO, F., GIANNINI, C., ROSSI, E., (1998). For a useful 
description of the phenomenon in general terms, see FLOREANO, D., 
NOLFI, S., (1993) and GORI, M., (2003). 
4 Such feature is important for financial analysis because several studies 
have shown that the relation between default risk and financial factor 
(variables) are often non linear. See WU and YU (1996); WU (1991). 
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Figure 2. An essential characteristic of this function is 
the threshold behavior near values 0 and 1, which turns 
out to be particularly suitable to economic problems, 
which usually, for very high (or very low) values of the 
independent variables, show little changes in response to 
small changes of the variables. At the analytical level, 
the neural network can be described by the following 
equations [15]: 
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where L(nk,t) represents the logsigmoid activation function. 
It is a system with m input variables xi and q neurons. A 
linear combination of these input variables, observed at 
time t, with the weights of the input neurons ωk,i and the 
constant term (bias) ωk,0 forms the variable nk,t. Then this 
variable is transformed by the logistic function and be-
comes the neuron Nk,t at time or observation t. The set of q 
neurons at time or observation t is therefore linearly 
combined with the coefficient vector k and added to the 
constant term ωk,0 in order to obtain the output yt con-
cerning time or observation t, representing the prediction 
of the neural network for the analyzed variable. The feed 
forward neural network used with the logsigmoid activa-
tion function is often called multi-layer preceptor or MLP 
network. A highly complex problem could be treated 
widening this structure, and therefore using two (respec-
tively N and P) or more hidden layers [15]: 
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Adding another hidden layer increases the number of 
parameters (weights) to be estimated by the factor (s+1) 
(q-1)+(q+1), since the net with a single hidden layer, with 
m input variables and s neurons has (m+1)s+(s+1) pa-
rameters, while the same net with two hidden layers and q 
neurons in the second hidden layer has (m+1)s+(s+1)q+ 
(q+1) parameters. However the disadvantage of these 
models for complexity does not consist of the number of 
parameters, which in any case use up degrees of freedom if 

the sample size is limited and requires a longer training 
time, but of the greater probability that the net converges 
to a local rather than global optimum. Anyway it has been 
demonstrated that a neural network with two layers is able 
to approximate any nonlinear function [16]. A further 
quality of this instrument consists exactly of the fact that it 
does not just approximate a phenomenon on the basis of a 
presumed functional form to be adapted, but at the same 
time it determines the functional form and proceeds to the 
evaluation of the weights. 

In Figure 3 a net with a multiple number of output 
variables is illustrated. A neural network with a hidden 
layer and two output variables is described by the fol-
lowing equations: 
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It is possible to observe that adding an output variable 
implies the evaluation of (q+1) parameters more, equal to 
the number of neurons of the hidden layer increased of one 
unit. Therefore adding an output variable implies an in-
creasing number of parameters to be estimated, equal to 
the number of the neurons of the hidden layer, not to the 
input variables. Using a neural network with multiple 
outputs makes sense only if these are closely correlated to 
the same set of input variables: as an example we could 
mention the temporal structure of the rates of inflation or 
of the rates of interest. One of the most common criticisms 
made to these instruments is that they are substantially 
black boxes: questions regarding the nature of the pa-
rameters, the reasons of the choice of their number, of 

 

 

Figure 3. Neural network with one hidden layer and two 
output neurons 
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the number of the neurons, of the number of the hidden 
layers, the reasons that relate the architecture of the net to 
the structure of the underlying problem to be explained do 
not find an answer. 

The risk, when models are based on a high number of 
parameters, is that their extreme flexibility [17], being 
able to explain anything and its opposite, ends up in not 
carrying any knowledge contribution. However, we must 
underline that the same criticism can be made to any sta-
tistical approximation method: therefore not only to neu-
ral networks, but also to linear models, univariate and 
multivariate regression and so on. Neural networks, in 
particular, are able to explain very irregular processes, on 
which it is therefore difficult to identify a precise relation 
of cause-effect. Therefore the black box criticism consti-
tutes, paradoxically, also one of the greatest qualities of 
neural networks. In any case, the simplicity with which it 
is possible to increase the number of the parameters of 
the net must never make forget the importance, in any 
model, of the clarity of the assumptions. 

3.2 Data Scaling 

A neural network is not able to analyze data or to give 
solutions in absolute value: especially if there are data 
of an unusually elevated or reduced value, problems of 
overflow or underflow could happen. When instead sig-
moid functions are used, it becomes indispensable to 
preprocess data: this family of functions in fact has a 
codominy of type [0,1] (or [-1,1] in the case of the log-
sigmoid function), for which the values must be scaled 
to these intervals otherwise the output of the net would 
become useless, being equal to the superior or inferior 
threshold in correspondence of all the different values 
higher or lower than a determined limit. In other words, 
for a great amount of data not standardize to the interval 
the neurons would simply transmit the threshold value, 
so a wide part of the information would be lost. As far 
as the methods, the linear reduction transforms the se-
ries of values xk in the series 

k
x̂ xk, using the following 

formulas: 
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if the desired range is between -1 and 1, while the loga-
rithmic reduction uses the formula: 
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3.3 Learning Process 

After the data have been scaled, we have to deal with the 
problem of the evaluation of the parameters (weights) 

through the process known as learning (training) of the 
neural network. Certainly it is a much more complex 
problem than the evaluation of the parameters of a linear 
model, as for the nature of high nonlinear complexity of 
neural networks. For these reasons numerous optimal 
solutions can exist, but they do not minimize the differ-
ence between the predictions of the net and the effective 
values to be evaluated. In short, in any non linear model 
it is necessary to begin the evaluation of the parameters 
on the basis of conditions which represent a guess of the 
value of the same. However, as it will be shown, the ca-
pability of the process of evaluation of the parameters to 
converge to a global optimum depends on the goodness 
of these initial hypothesis: in fact if it is situated near a 
local optimum instead of the global one [10], it is likely 
that the first one will be reached. 

This is illustrated in Figure 3: the initial guess of the 
parameters (or weights of the neurons) could accidentally 
be situated wherever on the x-axis: if it is near a local 
minimum, the training process of the net would lead to-
wards this. Later on, it will be observed that the training 
process of the network is completed when a point is 
reached in which the derivative of the loss function is 
null: we must remember that this condition, beyond the 
global optimum, identifies also the local ones and the 
saddle points. So it can be anticipated that if the learning 
coefficient, which indicates the sensibility of the net to 
the training process, is too low, this would lead to the 
impossibility of the network to escape from local opti-
mums; while if it is too high, it could carry the training 
process to oscillate continuously far away from the opti-
mum point, and therefore the network would diverge. In 
analytical terms, it is possible to illustrate the learning 
process of a net with two hidden layers, for which it is 
therefore necessary to determine the set of parameters 
Ω={ωk,i, ρl,k,γl}. 

The problem consists of [18] the minimizing of the loss 
function, defined as the sum of the squares of the differ-
ences between the observed data sample y and the predic-
tion of the net ŷ: 
 
 
 
 
 
 
 

 
 

 

 

 

 

Figure 4. Example of succession of local and global mini-
mums 

Ω 
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in which T is the number of the observations of the out-
put vector y, and f (xt;Ω) represents the neural network. Ψ 
is a nonlinear function of Ω. All nonlinear optimizations 
begin with an initial guess about the solution and try fur-
ther, better solutions until finding the best possible within 
a reasonable number of iterations. Different methodolo-
gies have been proposed in order to lead this search: 
some make reference to complex results of logical- nu-
merical analysis, e.g. genetic algorithms, in alternative to 
the classic method of the reduction of the gradient or 
Newton-Raphson method. In any case the chosen algo-
rithm continues until the last iteration n, or in alternative 
a tolerance criterion can be set up, stopping the iterations 
when the reduction of the error function comes down a 
predefined tolerance value. In order to avoid local opti-
mums, a solution could be to determine a first conver-
gence of the process, and then to repeat it with a set of 
different initial parameters in order to verify whether the 
solution changes. Alternatively, numerous processes 
could be carried out to determine the best solution. 
However, there are the most important problems when 
the number of the parameters increases or the architecture 
of the network becomes particularly complex. Paul John 
Werbos proposed in the beginning of 1970’s an alterna-
tive to the gradient method called back-propagation 
method. It is a very flexible method to avoid the prob-
lems caused by the evaluation of the Hessian matrix in 
the reduction of the gradient, and surely it is the most 
used method. In the passage from an iteration to the suc-
cessive one in the process of evaluation of the parameters, 
the inverse Hessian matrix is in fact replaced by an iden-
tity matrix having dimension equal to the number k of the 
parameters, multiplied by the learning coefficient ρ: 

00
1

001 )( ZZH ρ−=−=Ω−Ω −             (18) 

In order to avoid oscillations this coefficient is chosen 
in the range [0.05,0.5] and it can also be endogenous, that 
is it can assume various values when the gradient comes 
down and the process seems to converge; or finally dif-
ferent coefficients for the various parameters can be 
adopted. However, the problem of the choice of this co-
efficient remains, together with the existence of local 
minimums. Moreover, low values of the learning coeffi-
cient, although as anticipated are able to avoid oscilla-
tions, can extend uselessly the convergence of the mini-
mizing process. This can however be accelerated adding 
a ‘momentum’ for which at iteration n we will have: 

)()( 2111 −−−− Ω−Ω+−=Ω−Ω nnnnn Z µρ      (19) 

Therefore, with µ generally equal to 0.9, the calcula-
tion of the parameters moves more fast outside a plateau 
in the error surface. Now we will briefly discuss the 
methods used to estimate the effectiveness of the output 
of the net. Relatively to the evaluation of the goodness of 
the predictions of the net, the most common index is 
R-squared (goodness of fit) especially as far as the capa-
bility of the net to predict the data with which it has been 
trained is concerned, and the root mean squared error 
(Rmse) as for the capability to generalize the predictions 
outside the data sample used for the training; in other 
words, divided the sample into two parts, the first (in 
sample) will be used in order to train the net, and the 
other (out of sample), in general equal to about 25% of 
total data, will be used to estimate the capability of the 
net to predict data coming from the same population but 
not used for the training. 

However, as to the total amount of necessary data5 [10], 
undoubtedly a neural network requires the evaluation of 
many more coefficients than, for example, a linear model, 
and this leads to the necessity of a wide sample. Surely 
the availability of wide samples improves the predictive 
abilities of the net, but it also implies longer training 
times. Moreover, the availability of a wide sample not 
always is a positive aspect, especially in the financial 
field where using very old data brings distortions in the 
models, because they tend to vary with extreme rapidity 
and therefore very remote data are no more in any rela-
tions with the present ones. 

4. Credit Risk Approach: Our Assumptions 

The recent history of financial markets shows how, to the 
impetuous development of the financial innovation proc-
ess, which has invested all the structural components of 
the same, has been associated the constant engagement of 
the operators in finding more efficient computational 
methodologies, able to be an effective dynamic support 
of the analysis. Growing concerns about credit risk have 
created the need for sophisticated credit risk analysis and 
management tools. Credit risk measurement models and 
credit risk management tools are both of significant im-
portance in the credit market. 

The valuation of credit default swap depends on the 
credit quality of the reference entity. The default predic-
tion has long been an important and widely studied topic. 
There are two main types of models that attempt to de-
scribe default processes in the credit risk literature: 
structural and reduced form models. The first approach is 
based on modeling the underlying dynamics of interest 
rates and firm characteristics and deriving the default 
probability based on these dynamics6 [1,19,20,21]. So 
they use the evolution of firms’ structural variables, such 
as asset and debt values, to determine the time of default. 
Merton’s Model was the first modern model of default 
and is considered the first structural model. In Merton’s 
model, a firm defaults if, at the time of servicing the debt, 
its assets are below its outstanding debt. In the second 

5 F. Dolcino, C. Giannini, and E. Rossi, where the concepts of 
“evaluation error” and “approximation error” are analyzed, 1998. 
6  R. C. Merton, 1974; F. Black and J. COX, 1976; F. A. Longstaff and 
E. Schwartz, 1995; H. E. Lelan and K. B. Toft, 1996; C. Dufresne and R.
Goldstein, 2001. 
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approach, instead of modeling the relationship of default 
with the features of a firm, this relationship is learned from 
the data. Reduced form models do not consider the rela-
tion between default and firm value in an explicit manner 

[22,23,24]. The time of default in intensity models is the 
first jump of an exogenously given jump process. The 
parameters governing the default hazard rate are inferred 
from market data. Structural default models provide a 
link between the credit quality of a firm and the firm’s 
economic and financial conditions. Thus, defaults are 
endogenously generated within the model instead of 
exogenously given as in the reduced approach. 

The focus of our model is on the structural approach, 
pioneered by Merton, with some important integration. 

4.1 A Brief Review of the Structural Approach: 
Merton’s Model 

Merton proposes a simple model of the firm that provides 
a way of relating credit risk to the capital structure of the 
firm. The firm has issued two classes of securities: equity 
and debt. The equity receives no dividends. The debt is a 
pure discount bond. The value of the firm’s assets is as-
sumed to obey a lognormal diffusion process with a con-
stant volatility. Merton adopts are the inexistence of 
transaction costs, bankruptcy costs, taxes or problems 
with indivisibilities of assets; continuous time trading; 
unrestricted borrowing and lending at a constant interest 
rate r; no restrictions on the short selling of the assets; the 
value of the firm is invariant under changes in its capital 
structure (Modigliani-Miller Theorem) and that the firm’s 
asset value follows a diffusion process. 

Merton models equity in this levered firm as a call op-
tion on the firm’s assets with a strike price equal to the 
debt repayment amount (D). If at expiration (coinciding 
to the maturity of the firm’s short-term liabilities, as-
sumed to be composed of pure discount debt instruments) 
the market value of the firm’s assets (V) exceeds the 
value of its debt, the firm’s shareholders will exercise the 
option to “repurchase” the company’s assets by repaying 
the debt. However, if the market value of the firm’s as-
sets falls below the value of its debt (V<D), the option 
will expire unexercised and the firm’s shareholders will 
default. The probability of default (PD) until expiration is 
set equal to the maturity date of the firm’s pure discount 
debt, typically assumed to be one year. Thus, the Pd until 
expiration is equal to the likelihood that the option will 
expire out of the money. To determine the PD, the call 
option can be valued using an iterative method to esti-
mate the unobserved variables that determine the value of 
the equity call option, in particular, V (the market value 
of assets) and σV (the volatility of assets). These values 
for V and σV are then combined with the amount of debt 
liabilities D that have to be repaid at a given credit hori-
zon in order to calculate the firm’s distance to default, 
defined to be: (V-D)/ σV or the number of standard devia-
tions between current asset values and the debt repay-

ment amount. The higher the distance to default (denoted 
DD), the lower the PD. To convert the DD into a PD es-
timate, Merton assumes that asset values are log-nor-
mally distributed. 

Define E as the value of the firm’s equity and V as the 
value of its assets. Let E0 and V0 be the values of E and V 
today; in the Merton framework we have: 
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where σV is the volatility of the asset value and r is the 
risk free rate of interest, both of which are assumed to be 
constant. Define D* = De-rt as the present value of the 
promised debt payment and let L=D* /V0 be a measure of 
leverage. Because the equity value is a function of the 
asset value we can use Ito’s lemma to determine the instan-
taneous volatility of the equity from the asset volatility: 
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where σE is the instantaneous volatility of the company’s 
equity at time zero. These equations allow V0 and σV  to 
be obtained from E0, σE, L and T. The risk neutral prob-
ability, P, that the company will default by time T is the 
probability that shareholders will not exercise their call 
option to buy the assets of the company for D at the time 
T. This depends only  on the leverage, L, the asset vola-
tility, σ, and the time of repayment T. 

4.2 CDS Valuation 

In our analysis, we present some extensions because the 
model needs to make the necessary assumptions to adapt 
the dynamics of the firm’s asset value process. 

We suggest a new way of implementing Merton’s 
model using implied volatility, instead of historical vola-
tility: this leads to a higher capability of getting the signals 
launched by the market about the creditworthiness of the 
firm. The historical volatility is the realized volatility of a 
financial instrument over a given time period. Generally, 
this measure is calculated by determining the average 
deviation from the average price of a financial instrument 
in the given time period. Standard deviation is the most 
common but not the only way to calculate historical vola-
tility. By definition, historical volatility will always be 
backward looking and lag the real-time volatility envi-
ronment. In the current market environment, however, 
where both stocks and implied volatility measures are 
rising, many measures of historical volatility begin to 
seem no more useful. 
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The implied volatility of an option contract is the 
volatility implied by the market price of the option based 
on an option pricing model. Implied volatility is a for-
ward-looking measure, and differs from historical vola-
tility that is calculated from known past prices of a secu-
rity. 

 

Historical volatility tells us how volatile as asset has 
been in the past. Implied volatility is the markets view on 
how volatile an asset will be in the future. To determine 
an option's implied volatility, we have to use a pricing 
model. We can tell how high/low implied volatility is by 
comparing the market price of an option to the options 
theoretical fair value. This is why we need to use an op-
tion pricing model - to determine the fair value of an op-
tion and hence know if the market price for the option is 
over/under valued. 

In our analysis, equity implied volatilities observed in 
the equity options market has received much exploration. 
Our neural network model is based on using the implied 
volatility of one-year options written on the shares issued 
by the company. It is an attractive alternative to the tradi-
tional structural approach; this implementation allows to 
use a forward-looking model. Otherwise, our model dif-
fers from the structural approach for the fact that it con-
sider the 30-month historical series for CDS spreads: we 
show that the use of these credit spreads in addition to 
other inputs, provides a significant improvement in the 
accuracy of the model. 

We use a model that takes these inputs: 

·Leverage of the firm: the level of indebtedness is a 
significant enterprise-specific determinant of risk. 

· Implied volatility: theoretical value designed to 
represent the volatility of the security underlying an 
option as determined by the price of the option. The 
factors that affect implied volatility are the exercise 
price, the risk-free rate, the maturity date and the 
price of the option. 

·Historical CDS spreads serie: a CDS is a derivative 
that protects the buyer against default by a particular 
company. The CDS spread is the amount paid for 
protection and is a direct market-based measure of 
the company’s credit risk. CDS spreads contain 
information which is significant for estimating the 
probabilities of the occurrence of credit events. 

·Recovery rate: percentage of notional of the refe- 
rence asset repays in the event of default. 

·Risk free rate: is the interest rate that it is assumed 
can be obtained by investing in financial instruments 
with no default risk. 

5. Data and Empirical Results 

In this section the potentialities of neural networks in the 
approximation of the pricing of credit derivatives will be 
shown using real market data, collected from Fitch™ and 
Bloomberg™ data bases. 

Starting from September 2002, we have collected on a 
quarterly basis data regarding 5-year maturity CDS 
spreads of 18 companies from various economic sectors, 
together with data concerning the leverage of the firms, 
the implied volatility of 1-year maturity call options 
written on the equities of the firms, and the risk free rate 
assumed to be equal to the 1-year constant maturity 
Treasury Bill yield. As regards the recovery rate, we have 
used the most commonly values adopted by the operators 
to price CDS, depending on the economic sector to which 
the reference entity belongs to. In the following diagrams 
we show the sample collected until March 2006, there-
fore covering 14 quarters. 

As regards the risk free rate, we must consider that a 
portfolio made up of a risky bond with yield equal to i 
and a CDS written on it with a spread equal to sp is virtu-
ally free of any credit risk, so its yield must be equal to 
the risk free rate; therefore we have the following ap-
proximation: 
 

Table 1. Details of the companies included in the sample 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Risk free rate during our study (Source: Federal 
Reserve System) 

Sample description
N Ticker Name Market Cap. (bln $)
1 AA ALCOA Inc. 30,18
2 BA Boeing Company (The) 71,91
3 CCL Carnival Corporation 30,13
4 COX Cox Communications Inc.  * 5,9
5 CTX Centex Corporation 6,15
6 CVS CVS Corporation 26,96
7 CZN Citizens Communications Corporation 4,81
8 FD Federated Department Stores Inc. 23,16
9 GPS Gap, Inc. (The) 16,23

10 IBM International Business Machines Corporation 149,11
11 JPM JPMorgan Chase & Co. 177,41
12 JWN Nordstrom Incorporated 15,03
13 LEH Lehman Brothers Holdings Inc. 43,46
14 LEN Lennar Corporation 6,74
15 MAR Marriott International, Inc. 19,51
16 MCD McDonald's Corporation 56,05
17 SBC AT&T Inc. 233,83
18 TXT Textron Financial Corporation 12,21

* Company was delisted on December, 9th 2004. This fact does not affect in any way our results.
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Table 2. Recovery rates (Source: Altman and Kishore (1996)) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Relationship between CDS Spread, Lever-
age and Equity volatility in our sample (Source: our 
elaborations) 

spir f −=  

showing an inverse relationship between sp and rf, confirmed 
by market data. We have the following correlation values: 

 
Source: our elaborations 

Variable Correlation with CDS Spread 

Risk-free (Rf) -0,2187 
Recovery rate (R) -0,1475 
Leverage (L) -0,0485 
Equity volatility (V) 0,6338 

 
Of course we can notice a negative correlation with R 

(the recovery rate) and a strong positive correlation with 
V (the implied volatility which in our study proves to be 
very effective in predicting creditworthiness deteriora-
tion). The absence of a correlation with the leverage 
should not seem strange: our sample in fact includes fi-
nancial companies too, which typically have a very high 
gearing ratio and a low CDS spread due to prudential 
regulation: in any case the neural network can solve this 
problem very well because of its nonparametric capabili-
ties. Without considering the financial firms, the correla-
tion of leverage and credit spreads would rise to 0.317. 

The sample is made up of companies coming from dif-
ferent economic sectors, as it is easy to catch reading the 
recovery rates applied: of course we consider only big (or 
at least medium)-caps, the only ones for which a liquid 

market for CDS exists. In Figure 6 we show the relation-
ship between CDS spread, Leverage and Equity volatility. 
It is evident that there is no linear relation between them. 
Moreover, only a few data are characterized by a lever-
age of more than 2: of course these can only be banks, 
which for prudential regulation can have a high gearing 
ratio. In the following part we will show how neural 
networks are able to price both industrial and financial 
firms at the same time, even if they show a strongly dif-
ferent leverage. 

We have used a feed forward neural network, with the 
back propagation algorithm; it is a 4-layer network, with 
two hidden layers and therefore an output layer of only 
one node (the CDS spread). 

The input layer consists of 18 nodes: in the first four 
nodes we have the risk free rate, the recovery rate, the 
leverage and the implied volatility of the firm; in the re-
maining 14 nodes we have the series of quarterly CDS 
spreads of the firm. If there is a lack in the data, we just 
use the value of the preceding quarter. This approach 
merges data coming from the firm with data (the CDS 
spreads) coming from the market, giving great effective-
ness to the predictions of the network. Moreover the 
power of this approach can be appreciated observing that 
in this way the network is able to price CDS with refer-
ence entities coming both from the industrial field (which 
usually have low leverages and high CDS spreads) and 
from the financial field (which have an extremely high 
gearing ratio but are characterized by a history of low 
CDS spreads because of the prudential regulation, using 
this detail to discriminate between them). Figure 7 shows 
the structure of the network. The sample has of course 
been shuffled; the learning parameter has been settled to 
0.5 and the initial parameters of the neurons have been 
chosen in the range [-2,2]. Our study shows that a logarith-
mic reduction is more efficient, because our sample consists 
of extremely variable data, so a simple linear reduction 
would enhance the distortions brought by the so- called out-
liers, that is data very different from the rest of the sample. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Structure of the neural network (Source: our 
elaborations) 

Economic sector Recovery rate

Hotel chains 0,26
Department stores 0,33
Finance 0,36
Telecommunications 0,37
Constructions 0,39
Metal and mechanic 0,42
Food 0,45
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Figure 8. Typical correlogram of a CDS spread time serie 
(Source: our elaborations) 
 

In Figure 8 we show as an example the correlogram for 
the CDS spread time series of The Boeing Company only, 
for the sake of simplicity, but we obtained the same 
structure for all the companies included in our sample: in 
the first part we can see the correlation between each 
value and a delayed value (the delay being expressed on 
the x-axis); the second part shows the correlation be-
tween each value and p preceding values, with p on the 
x-axis. It is therefore evident that the correlation between 
values, even if decreasing, is strong, so the series is auto-
regressive; we can then express each value in terms of the 
preceding ones. In this sense a CDS spread is more simi-
lar to an interest rate than to an equity price, so that it 
shows a mean reversion process which tends to pull 
spreads higher (lower) than some long-run average level 
back to this value over time. Obviously we shall have a 
negative (positive) drift. The sinusoidal cycle observable 
in the correlogram explains this phenomenon: moreover, 
it is a consequence of the strict relationship between CDS 
spreads and risk-free interest rates already discussed [25]. 

Figure 9 showing in red the neural network predictions 
and in yellow the real market data, confirms the effec-
tiveness of the neural network in predicting CDS spreads. 

In Table 3 and 4 the values of R-squared and Rmse are 
shown: as it is easy to observe, the results are highly co-
herent. We compare the results from or implementation 
with another model: Creditgrades™. We must stress the 
point that using traditional models such as Credit-
grades™ we would obtain predictions almost useless, 
even excluding banks from the sample; neural networks 
surely are a great pricing instrument in order to evaluate 
credit spreads. The architecture of the neural network is 
feed forward, trained for 17000 learning epochs using the 
back propagation algorithm. Therefore it turns out obvi-
ous that neural networks are able to totally capture the 
variability relative to the market dynamics of credit de-
rivatives: because of the fact that in literature there is no 
unanimity on the determination of the form of the CDS 
spread evaluation function, neural networks can therefore 

be seen as effective instruments of elaboration able to 
satisfy this lack from a statistical point of view. 

Figure 10 shows a “delta” for a CDS contract: in fact 
we find on the x-axis the leverage, and on the y-axis the 
values calculated with the finite differences method, that is: 
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In a similar manner we can calculate for a CDS all the 
“greek” letters typical of derivative contracts using the 
outputs of the neural network with h-10-6. It is evident in 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Market data (in yellow) and predictions of the 
neural network (in red) (Source: our elaborations) 
 

 

 

 

 

 

 

 
Figure 10. Relationship between delta and leverage (Source: 
our elaborations) 

 
Table 3. Approximation of the neural network (Source: our 
elaborations) 

Error Value 
R-squared 0,9082 

Root mean squared error 14,3988 
 
Table 4. Comparing statistical results (Source: our elaborations) 

 NN Credit Grades Linear regression 

Correlation 0,9636 -0,02 0,9309 

Rmse 14,3988 >100 30,86 

R-square 0,9086 >1 0,8566 
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Figure 10 shows a “delta” for a CDS contract: in fact 
we find on the x-axis the leverage, and on the y-axis the 
values calculated with the finite differences method, that is: 

h

levSPhlevSP
h

)()(
lim

0

−+=∆
→

          (20) 

In a similar manner we can calculate for a CDS all the 
“greek” letters typical of derivative contracts using the 
outputs of the neural network with h-10-6. It is evident in 
the diagram that for high leverages “delta” becomes 
negative: in fact we must remember that highly leveraged 
companies belong usually to the financial sector, so that 
they are less risky because of the prudential regulation. 
This effect is explained very well by the network, in fact 
for low leverages (typical of the industrial field) we see a 
direct relationship between leverage and CDS spreads. In 
other words, the neural network is able to recognize the 
risk of the activity carried out by the company using the 
time series of its CDS spread: in the part of our study 
covering the correlation, we obtained an average value 
for each observation and the preceding one of 0.90, as it 
is evident from the correlogram shown above. This cor-
relation, along with the part regarding the independent 
variables, typical of the structural approach, explains the 
major part of the variability of CDS spreads. 

6. Conclusions and Future Work 
In this paper we have discussed an innovative approach 
to the study of CDS valuation, using neural networks. 
Our analysis is based on modeling the underlying dy 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 11. Relationship between vega and equity volatility 
(Source: our elaborations) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Relationship between gamma and leverage 
(Source: our elaborations) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Relationship between omega and leverage 
(Source: our elaborations) 
 
namics of interest rates and firm characteristics and de-
riving the default probability based on these dynamics 
(the structural approach). 

The model that we propose is peculiar for the use of the 
implied volatility of one-year options written on the shares 
of the analyzed companies, instead of historical volatility. 
Besides, the model differs from the structural approach for 
the fact that it considers the 30-month historical series for 
CDS spreads, including additional market variables. This 
implementation allows to use a forward-looking model 
and to capture the dynamic behavior of CDS spreads and 
equity volatility. This approach merges data coming from 
the firm with data (the CDS spreads) coming from the 
market, giving great effectiveness to the predictions of 
the neural network. Moreover, the power of this model 
can be appreciated observing that in this way the network 
is able to price CDS with reference entities coming both 
from the industrial field (which usually have low lever-
ages and high CDS spreads) and from the financial field 
(which have an extremely high gearing ratio but are 
characterized by a history of low CDS spreads because of 
the prudential regulation, using this detail to discriminate 
between them). 

We find that the neural network technique is useful for 
analyzing the pricing of a credit default swap. Our model 
produces a much lower forecasting error than those tradi-
tional models, such as CreditgradesTM, indicating a rela-
tively high precision in the neural network prediction. In 
particular, in the last part, starting from the high correla-
tion observed between each CDS spread value and the 
preceding one in the time series of each company, we 
have trained a neural network based both on these time 
series and on the structural details of the firms, that is 
leverage, option-implied equity volatility and recovery 
rates. Our results in terms of R-squared and Rmse are 
highly coherent and are confirmed by the empirical data. 

Our analysis presents the results that we have achieved 
and shows that the neural network model offers an alter-
native to traditional methodologies to deal with compli-
cated issues related to CDS valuation. 

Anyway, in this period, the CDS market is particularly 
volatile. The impact on the economy of the deflating 
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housing bubble, the credit crisis in general, have stoked 
fear about increasing corporate defaults. This crisis is 
about credit risk. A credit bubble has ballooned for years, 
being enhanced by the existence of CDS. As credit origi-
nators can pass their risk to other agents, they have been 
less careful about the quality of their loans. In that sense, 
CDS have given an incentive for distributing more credit 
to more risky borrowers. As banks and all financial insti-
tutions and companies have committed themselves in the 
CDS market, they are now highly dependent on market 
continuity and on its smooth functioning. The failure of a 
major participant (bankruptcies of Bear Sterns, then those 
of AIG and Lehman Brothers) can put at stake all the 
others; the faith in the reliability of the market has been 
deeply shaken by these events. 

In any case, some aspects of the proposed evaluation 
methodology require additional research: the possible next 
step for the research community is to improve the models 
in the case of catastrophic circumstances (the so-called 
LFHI (low frequency-high impact) events); another in-
teresting case of study would regard the analysis of the 
recent financial crisis when more reliable information 
regarding financial companies will be available. 
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