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ABSTRACT

This paper provides a methodology for valuing areléfault swapgCDS). In these financial instruments a sequence of
payments is promised in return for protection agaithe credit losses in the event of default. Giherwidespread use
of credit default swaps, one major concern is wlethe credit risk has been priced accurately. Gradk assessment
of counterparty is an area of renewed interest thuhe present financial crises.

This article proposes a non parametric model fdineating pricing of the CDS, using learning netwsikased on
the structural approach pioneered by Mertd as regards the independent variables; he propasedodel for as-
sessing the credit risk of a company by charadtegizthe company’s equity as a call option on itseds. The model
that we are introducing turns out peculiar not ofdy the use of the neural network, but also fa tise of the implied
volatility of one-year options written on the sheaad the analyzed companies, instead of histovicHdtility: this leads to
a higher capability of getting the signals launch®dthe market about the future creditworthinesgheffirm (historic
volatility, being a medium value, brings in temdol@gs in the evaluation Besides, our analysis differs from the
structural approach for the fact that it considéing 30-month mean-reverting historical series for CDS apie and this

turns out to be one of the main advantages of auvdrd-looking model.
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1. Introduction

In recent years, the market for credit derivatihias ex-
panded dramaticallyCredit derivatives are flexible and
efficient instruments that enable users to iscdete trade
credit risk. Credit derivatives allow users to &el credit
risk from other quantitative and qualitative fast@sso-
ciated with owing an exposure. Hence, they candssl u
to transfer and hedge credit risk in an efficiemd exi-
ble manner, customized to a client's requirementss
transfer of credit risk may be complete or partehd
may be for the life of the asset or for a shorteriqad.
Credit risk includes not just default or insolvenigk but
also changes in credit spreads and thereby maakets;
changes in credit ratings and generic changes aditcr
quality. Credit derivatives can be used when a isathe
cash market is either not efficient or not possitideen
when cash market alternatives exist, credit ddrvieat

in return, the protection seller agrees that indase of a
credit event of a reference entity, it will pay thedler the
loss on a bond of the reference entity, that ishibied’s
par value less its recovery.

Nowadays, banks, corporate, hedge funds, insurance
companies and pension funds are hugely exposedyas b
ers or sellers, or both. By transferring the rigle CDS
have acted as a kind of insurance and providediives
for risk-taking. They are therefore at the hearthef pre-
sent crisis.

Given thewidespread use of credit default swaps, as an
investment or a risk management tool, one majocewn
is whether the credit risk has been priced acclyralis
article proposes a non parametric model for esthgat
pricing of these credit derivatives, using learningt-

may be preferred because they do not require fgndin works. The recent application of nonlinear methetgh

Furthermore, since derivatives are over-the-coucoer
tracts, transactions are confidential. Finally,espef set-
tlement and liquidity are reasons why credit dees
are a better alternative to the reinsurance mafkegdit
derivatives are swaps, forward and option contrauds-
ticularly credit default swaps (CDS); they can lsedito
hedge against all these types of credit risk. Feimaple
credit default swap, over some time period, onentau
party (the protection seller) receives a predeteechifee
payment from another counterparty (the protectioyeb);
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as neural networks to credit risk analysis, showsnise

of improving on traditional credit models. Neuratn
works differ from classical credit systems mainiytieir
black box nature and because they assume a nar-line
relation among variables. The two main issues tade
fined in a neural network application are the nekwo
typology and structure and the learning algoritirhe
connections (links) among neurons have an assdciate
weight which determines the type and intensity lof t
information exchanged. As regards the independant v

JSSM



16

ables of the model, we start from the typical agstion
of the structural approach based on the theorefirai-
dation of Merton’s [1] option pricing model: theleeant
information in order to evaluate credit risk can die
tained from the market data of the analyzed congsani
The model developed by Merton views a firm’'s equaity
an option on the firm (held by the shareholdersitoer
repay the debt of the firm when it is due, or almmnthe
firm without paying the obligations. What makes ttha
model successful is its reliance on the equity miaak an
indicator, since it can be argued that the markeitali-
zation of the firm (together with the firm’'s lialiés)
reflect the solvency of the firm. Therefore, optipricing
theory is used in order to create a link betweenctiedit
market and the securities market. The model thaarge
introducing turns out peculiar not only for the usk
neural networks, but also for the use of the intbliela-
tility of one-year options written on the sharesthé
companies, instead of historical volatility: thesats to a
higher capability of getting the signals launchedthe
market about the creditworthiness of the firm (@istal
volatility, being a medium value, brings in tempddags in
the evaluation). Besides, our analysis differ froime
structural approach for the fact that it considee t
30-month historical series for CDS spreads, arsltthins
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getting the data from the Bloomberg™ database. &Ve h
considered the risk free rate equal to one-yeastaoh
maturity Treasury Bills yield, taken from the FealeRe-
serve System database. We then discuss in detaixh
perimental settings and the results we obtainedlihg to
considerable accuracy in prediction. The architectf
the neural network is feed-forward, trained for QG0
learning epochs using the back-propagation algorith
with two hidden layers of 9 and 10 neurons eachthisy
study carried out it turns out obvious that neuetvorks
are able to totally capture the variability relatito the
market dynamics of credit default swap. The papeise
evidencing that, as far as this field of the finahmarkets
is concerned, neural networks constitute a higldiidv
instrument of calculation: in fact there still dogot exist
in literature a formula of evaluation for the CDfble to
tie the quoted spreads to the specific underlyimgables
of each examined firm, and the neural network aamwill
be shown, satisfy this lack with high effectivendasing
the problem of determination of the functional fdrom a
statistical point of view. As we will show, it isagsy to
calculate the sensitivity of the CDS spread to dade-
pendent variable, in order to determine a sta#ificicing
formula for CDS.

The paper concludes with a discussion of advantages

out to be one of the main advantage of our forwardsnq imitations of the solution achieved.

looking model.

The paper is organized as follows. The paper begin€: Credit Derivatives: Innovative Financial

in Sectionl, by stating the implications of credit deriva-
tives in portfolio credit risk management. In Sent,
we first briefly overview the main principles andacac-
teristics of neural networks, focusing the attemtidoove
all on the concepts that are most useful for th@iegtion

to financial instruments; then we describe the ipgic
model we developed and tested for credit derivative

Section3 develops the theory underlying our implemen-

tation of Merton’s model. Sectioa describes the data
and we present our results: the effectiveness afahe
network in approximating the evaluation of credifalilt
swap is illustrated. As regards the sample, itudes 18
American firms, relative to various fields, incladi fi-
nancial institutions which, operating typically tvia high
leverage due both to the activity carried out anihé laws
concerning the capital of banks, usually introduces
markable factors of distortion in parametric modé&le
shall show that neural networks are not affectedhisy

Instruments

Credit derivatives are financial instruments usetrans-
fer credit risk of loans and other assets. Theyodateral
financial contracts with payoffs linked to a crerbtated
event such as a default, credit downgrade or batdyu
There are various types, but the basic structufeallo
credit derivatives are swaps, options and forwabde to
their high flexibility credit derivatives can bersttured
according to the end-users’ needs. For instance, th
transfer of credit risk can be effected to the whidk of
the underlying asset or for a shorter time, andriesfer
can be a complete or a partial one. Delivery cke fdace
in the form of over the counter contracts or emleeldinh
notes. Moreover, the underlying can consist ofraylsi
credit-sensitive asset or a pool of credit-sersitigsets [2].

2.1 Credit Derivatives: Products and Structures

problem. The temporal range embraces the period Seffhe most important and widely used credit derivata/a
tember 2002-March 2006: we have considered the fivecredit default swap It is an agreement in which the one

year CDS spread relative to each firm, for a tofal80
observations on a quarterly basis obtained thraihgh
Fitch™ database. As already pointed out, impliektie
ity has a determining role among the variable$aat we
have obtained a positive correlation with CDS sg@sea
equal to 0.6338. Leverage is another key variabie,
tained dividing the face value of the debt of tinetby the
total of its liabilities (including the market caglization),

1 The credit default swap is also known as crddfault put, credit swi
default swap, credit put or default |
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counterparty (the protection buyer) pays a peridde;
typically expressed in fixed basis points on théamal
amount, in return for a contingent payment to theeo
counterparty (the protection seller) in the evdmtta
third-party reference credit defaults. A defaulistsctly
defined in the contract to include, for exampleykraptcy,
insolvency, and/or payment default. The definitmha
credit event, the relevant obligations and thelesatint
mechanism used to determine the contingent payarent
flexible and determined by negotiation between the
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counterparties at the inception of the transactfince
1991, the International swap and Derivatives assioci
(ISDA) has made available a standardized lettefficon
mation allowing dealers to transact credit swapteuthe
umbrella of an ISDA Master Agreement. The evolutidn
increasingly standardized terms in the credit ddives

17

that pays out if a specified company’s rating isvde
graded. This kind of option is sometimes embedded i
bond structures.

Finally, credit linked notes are created by embegdi
credit derivatives in notes. Credit derivatives édhe
advantage that funding is not necessary; wherezditcr

market has been a major growth because it has edduciinked notes have the benefit of avoiding countespesk.

legal uncertainty that hampered the market's growth

The contingent payment in the event of default loan
identified as either:
—a payment of par by the protection seller in exgiean
for physical delivery of the defaulted underlying;

Credit linked notes are frequently issued by spequia-
pose vehicles (corporations or trusts) that holdesform
of collateral securities financed through the iss@aof
notes or certificates to the investor. The investoeives a
coupon and par redemption, provided there has heen

-a payment of par less the recovery value of theredit eventof the reference entity. The vehicieees into

underlying as obtained from dealers;
—a payment of a binary, i.e. fixed, amount.

a credit swap with a third party in which it seflsfault
protection in return for a premium that subsidizbe
coupon to compensate the investor for the referentity

Credit default swaps can be viewed as an insurancgefaylt risk.

against the default of the underlying or a putaptn the
underlying. Figure 1 exhibits the basic structufre oredit
default swap.

Moreover, there is the total return swap, in whicte
counterparty (total return payer) pays the othamter-

2.2 Fundamental Attractions of Using Credit
Derivatives

In theory, credit derivatives are tools that endilancial
operators to manage their portfolio of credit rishere

party (total return receiver) the total return ofasset (the  efficiently; they enable market participants to igev
reference obligation) for receiving a regular flogtrate  fiexible personal approaches to the managementealitc
payment, such as Libor plus a spread. “Total réturnyisk associated with a variety of underlying fina@h@s-
comprises the sum of interest, fees and any chemge-sets. The promise of these important instrumenssnioa
value payments (any appreciation or depreciatioith W escaped regulators and policymakers. “Credit dévies

respect to the reference obligation.

In contrast to the credit default swap, the to&lim
swap does not only transfer the credit risk bub dle
market risk of the underlying; it effectively creata
synthetic credit-sensitive instrument. A total ratgwap
allows an investor to enjoy all of the cash flowneéfits of
a security without actually owing the security.

and other complex financial instruments have cbated
to the development of a far more flexible, effidcieand
hence resilient financial system than existed gusjuar-
ter-century ago” [3].

The credit derivatives market offers its usersraesof
tools which enable the transfer of credit risk. Aeb
review of the available products reveals that instmo

Credit spread option is an option on a reference&ases one party to a transaction receives a fee@mnd

credit’'s spread in the loan or bond market. Inr@ag put
option one party pays a premium for the right tth ae
bond to a counterparty at a certain spread at imitkef
time in the future. A credit spread option gives buyer
protection in the event of any unfavourable credit
gration. In a default option, the asset can beomlyt on
default. The credit spread is the differential gidde-
tween the reference credit and a pre-determinedhsen
mark rate. Thus, in credit spread derivatives, paynis

mits to provide the other party with a payment dtidhe
credit quality of a third party deteriorate. Whildte
mechanism contained in these products are easy-to u
derstand, the broad range of applications is noteh-
ately obvious.

The users of the risk-management benefits of credit
derivatives tend to be quite diverse. An incredgirig-
portant user group includes financial institutionsrpo-
rate and fund managers. Financial institutions hawve

based on the movement of the value of one referenggraced the full range of benefits; the use of ¢rddiiva-

credit against another.

Loan or Loan Portfolio
[ Protection buyer |
Fee/spread

\ wnigcm payment
[ Protection seller |

(bpspa.)

Figure 1. Credit default swap

2 For more detailed information on the charactasstif credit deriva-
tives see DA, S., (1998); TAVAKOLI, J.M., (1998
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tives by banks has been motivated by the desirefimove

portfolio diversification and to improve the managmt

of credit portfolios. Corporate is also lookingéaluce the
credit exposure to key trading partners and spedii

they are interested in using credit derivativedstaate
credit risks in project financing. For fund manageal-

though the asset benefits of credit derivativels stifer

from lack of liquidity, the use of structures tiegdge out
spread risk has some appeal.

This paragraph focuses on a range of uses fortcredi
derivatives and divides them between credit risknma
agement and asset opportunitigs5s].
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2.2.1 Using Credit Derivatives for Managing CreditRisk
The principal feature of these instruments is ttegy
separate and isolate credit risk facilitating treling of
credit risk with the purpose of:

—replicating credit risk;
—transferring credit risk;
—-hedging credit risk.

In practice, the rationale behind a transaction retate
to the management of credit lines, to regulatoryiteh
offsets, to balance sheet optimization, portfoledging
and diversification or pure risk reduction itse@redit

derivatives can be used as a risk management ool b

portfolio managers to:

—-Achieve portfolio diversification: credit derivatg
can be used to achieve portfolio diversification by
allowing access to previously unavailable credits.
They can also be used to diversify across a rafge o
borrowers and to gain exposure to an asset without
owing it.

—-Reduce concentration risk: investors can reduce
portfolio credit risk concentrations using derivas
structures; they can thus manage country and indust
risks. Reducing credit concentration in loan pdidto
is commonly viewed as the main use of credit
derivatives. However, to date credit derivatives ar
generally referenced to assets which are widetietia
i.e. for which market prices are readily availalolefor
which a rating by an international agency is atchan

ELIANA ANGELINI, AESSANDRO LUDOVICI

the cover is clearly defined and incontrovertible.
Other than non-payment by a protection purchaser of
money due in respect of the credit protection amttr

it must be irrevocable; there must be no clausden
contract that would allow the protection provider
unilaterally to cancel the credit cover or that Vaou
increase the effective cost of cover as a result of
deteriorating credit quality in the hedged expositre
must also be unconditional; there should be noselau
in the protection contract outside the direct colndif

the bank that could prevent the protection provider
from being obliged to pay out in a timely manner in
the event that the original counterparty fails takm

the payment due. There are cases where a bank
obtains credit protection for a basket of reference
names and where the first default among the
reference names triggers the credit protectionthad
credit event also terminates the contract. In thise,

the bank may recognise regulatory capital relief fo
the asset within the basket with the lowest
risk-weighted amount, but only if the notional ambu

is less than or equal to the notional amount of the
credit derivative. In the case where the secondulief
among the assets within the basket triggers thditcre
protection, the bank obtaining credit protection
through such a product will only be able to recegni
any capital relief if first-default-protection hatso be
obtained or when one of the assets within the hiaske
has already defaulted [9].

2.2.2 Asset Opportunities

~Manage exposures while maintaining client relation-cyegit derivatives have evolved to become an ingmrt
ships. Changes to credit risk management in th@nancial asset class. As already argued, credivatives

banking sector are an additional factor contrilbgtio

enable credit risk to be separated from the fundio-

greater use of credit derivatives. Investors ca@ Usponent of its underlying instrument; as it is oftha form

credit derivatives to reduce exposures withoufrsgll
them. This effectively frees up credit lines, aliow/

of the underlying instrument that creates obstafdethe
investor, this separation of the credit risk createportant

more business to be done with a customergpportunities. The decision to use the asset oppitigs

Furthermore, a bank that is concerned about credigf credit derivatives tends to be based on ondeffol-
loss on a particular loan can protect itself by|owing needs:

transferring the risk to someone else while keeping
the loan on its books. As part of their credit risk
management, banks are viewing credit derivatives
more and more often as tradable products, which can
be transferred to third parties before the matudéte
[6,7,8].

—Manage regulatory capital: the new supervisorysule
provided for by Basel Il are also increasing the
incentives for banks to use credit derivatives. Y¢he
guarantees or credit derivatives are direct, eiplic
irrevocable and unconditional, and supervisors are
satisfied that banks fulfil certain  minimum
operational conditions relating to risk management
processes, they may allow banks to take account of
such credit protection in calculating capital
requirements. A guarantee or credit derivative must
represent a direct claim on the protection provider
and must be explicitly referenced to specific
exposures or a pool of exposures, so that the eaten

Copyright © 2009 SciRes

—-Access to new markets: investors can create new
assets with a specific maturity not currently zafalié
in the market;

—Obtain tailored investments: credit derivatives b&n
used to create instruments with exact risk- return
profile sought. Maintaining diversity in credit
portfolios can be challenging. This is particulatriye
when the portfolio manager has to submit with
constraints such as currency denominations, listing
considerations or maximum or minimum portfolio
duration. Credit derivatives are being used to esklr
this problem by providing tailored exposure to ded
that are not otherwise available in the wished form
not available at all in the cash market.

—-Improve the risk-return profile of portfolios: ciied
derivatives offer new possibilities of turning avem
market opinion into an investment strategy. This
particularly entails assumption of specific types o

JSSM
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credit risk without the acquisition of the assselft.

effective, at least compared to those of otherdffel

Instead of purchasing a specific bond, a markef10,11,12].

participant who considers some credit risks to be Neyral networks offer several advantages overrée t
overvalued can earn an attractive premium as gitjonal statistical methods. First, neural netveodo not

protection seller in the credit default swap market qqyire the restrictive assumptions imposed by eonv
Premiums are generated without having to tie up anyiona| methodologies. Second, neural networks oan d

capital for the purchase of a bond issue (at Esking

velop input-output map boundaries that are highdy n

as no credit event occurs). On the other hand, @ark |ineaf [13,14]. Third, they have greater fault tolerance
participants who consider risks to be underestithate 5, adaptability. Neural network examines all infar

can purchase protection by paying a premium. OWingjon available and it can incorporate the new infation

to the limited possibilities for short sales in thend

into the analysis promptly through its memorizatioh

market, hedge funds are increasingly entering intQyrevious learning; it updates its weighting schesmghat
positions in credit derivative market to implement it continually “learns” from experience. Thus, nelunet-

their financial strategies. In particular:

works are flexible, adaptable systems that canompa-

- to hedge dynamic risks: exposures that changeate changing conditions.
with market movements can be hedged using credit

derivatives;

- to manage illiquid credits: credit derivatives dam
utilized to actively manage risk in large illiquigians
portfolios;

3.1 Architecture of Neural Networks

A neural network relates a set of input variableg, {
i=1,2,.k to a set of one or more output variableg,{

j=1,2,.h. An essential characteristic of a neural network,

- to execute short credit positions: credit derivediv differently from other methods of approximation,theat
can be employed to execute short credit positiong uses one or more hidden layers, in which theuinp

without the risk of a short squeeze or high finagci

variables are transformed by a logistic or logsigmo

costs. Hence, investors can use them to hedge&er tafunction: this characteristic, as shown later, gitethese

advantage of deteriorating credit qualities;
- to hedge declining credit quality: default andesut

options and swaps can be used to hedge failingtcred

instruments a particular efficiency in modeling losar
statistical processes.

In the feed-forward neural network parallel elaltiora

qualities. Credit spread options and swaps can bg associated to the typical sequential elaboraibthe
used to hedge fluctuations in credit spreads withoulinear methods of approximation. In fact while iretse-

having to wait for default to get a payout.

3. The Neural Network Model

The general structure of a neural network modebists
of simple processing units called nodes that ictendth

each other using weighted connections. Each uoiéhn
receives and processes inputs, and delivers aesmgt
put. The input can be raw or output of other preites
units. The output can be the final product or gutrto

another unit. In processing the inputs, the modsigas a
weight to each input, where weights represent elative

strength or importance of inputs. A neural net etially

represents a nonlinear discriminant function asitem
of connections between its processing units.

Neural networks have been used in different fielfls
study, such as engineering, medicine, physics #mer
Although the relative structures differ remarkaljth
one another, it is possible to point out some fumelatal
principles regarding essentially the functioning sofch
operative instruments. Moreover, it is importantstart
the treatment emphasizing that, in order to anatywe
financial dynamics, relatively little complex netiks are

® DOLCINO, F., GIANNINI, C., ROSSI, E., (1998For a useft
description of the phenomenon in general termsFRE@REANO, D.
NOLFI, <., (1993)and GORI, M., (2003).

4 Such feature is important for financial analysisduse several stud
have shown that the relation between default rigtt financial factc
(variables) are often non linear. See WU and Y9E)9WU (1991).

Copyright © 2009 SciRes

guential elaboration particular weights are giventhe
input variables through the neurons of the inpyefain
the parallel one the neurons of the hidden layerate
further transformations in order to improve thediacgons.
The connectors (between the input neurons andéhbe n
rons in the hidden layers, and between these anoldput
neurons) are called synapses. The feed-forwardaheur
network with a single hidden layer is the simplast at
the same time the most used network in the econandc
financial field.

Therefore the neurons process the input variahlega
ways: firstly forming linear combinations and lastl
transforming these combinations through a particula
function, typically the logsigmoid function, illustted in

1 ///‘
0.9 -
0.8
0.7
0.6
05 /
0.4 /
0.3 /
0.3
0.2 /
o

-4 -2 0 2
Figure 2. Logsigmoid function
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Figure 2 An essential characteristic of this function is the sample size is limited and requires a longanitng

the threshold behavior near values 0 and 1, whicfst
out to be particularly suitable to economic probdem
which usually, for very high (or very low) value§tbe
independent variables, show little changes in respado
small changes of the variables. At the analytieakl,
the neural network can be described by the follgwin
equations [15]:

time, but of the greater probability that the netwerges
to a local rather than global optimum. Anyway it leeen
demonstrated that a neural network with two layeeble
to approximate any nonlinear function [16]. A fueth
quality of this instrument consists exactly of fhet that it
does not just approximate a phenomenon on the bhais
presumed functional form to be adapted, but atstmae
time it determines the functional form and proceedhe

m
N =W + Z‘% X ¢ (1) evaluation of the weights.
= In Figure 3 a net with a multiple humber of output
N, =L(n )= 1 @) variables is illustrated. A neural network with mlden
kit kT e layer and two output variables is described by ftile
lowing equations:
a m
%= o* 2 Wi ® Moy =g + D6, €)
i=1
where Lf) represents the logsigmoid activation function. 1
It is a system withm input variablesq andq neurons. A Nie =L(N) = ——— (10)
linear combination of these input variables, obsdrat 1+e™
time t, with the weights of the input neuroag; and the q
constant termiias) o oforms the variabl@, . Then this Vi = Vio + 2 VN (11)
variable is transformed by the logistic functiondae- k=1
comes the neuron\at time or observation The set ofj q
neurons at time or observatidnis therefore linearly Yot = Vap +ZV2,ka,t (12)
k=1

combined with the coefficient vectérand added to the
constant termwyo in order to obtain the outpyt con-
cerning time or observatian representing the prediction
of the neural network for the analyzed variablee Téed
forward neural network used with the logsigmoidiact
tion function is often called multi-layer preceptorMLP

It is possible to observe that adding an outpuiabée
implies the evaluation ofyf1) parameters more, equal to
the number of neurons of the hidden layer increa$ede
unit. Therefore adding an output variable impliesia-
creasing number of parameters to be estimated/ égua

network. A highly complex problem could be treatedthe number of the neurons of the hidden layertodhe

widening this structure, and therefore using twesgec-
tively N and P) or more hidden layers [15]:

Ny =W, oD WX (4)
i=1
N, . = L(n ) :; (5)
k.t k.t 1+e_nk,t
Py :p|,o+zp|,ka,t (6)
k=1
1
Py “Tre (7)
q
Y. = Vot D VR, 8)
1=1

Adding another hidden layer increases the number of

parameters (weights) to be estimated by the fastel)

(g-1)+(g+1), since the net with a single hidden layer, with

m input variables and neurons hasngt+1)s+(st+1) pa-
rameters, while the same net with two hidden lagedy
neurons in the second hidden layer has1)s+(s+1)q+

input variables. Using a neural network with mukip
outputs makes sense only if these are closely lateceto
the same set of input variables: as an exampleontl c
mention the temporal structure of the rates ofaiidh or
of the rates of interest. One of the most commditisms
made to these instruments is that they are sulpstgnt
black boxes: questions regarding the nature ofpthe
rameters, the reasons of the choice of their nujrdfer

O
0.0
O@O o

Hidden Output

Input
Layer Layer Layer

=

(g+1) parameters. However the disadvantage of these

models for complexity does not consist of the numnddfe
parameters, which in any case use up degreesufdne if

Copyright © 2009 SciRes

Figure 3. Neural network with one hidden layer andtwo
output neurons
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the number of the neurons, of the number of theldnd
layers, the reasons that relate the architectutieeofiet to
the structure of the underlying problem to be exygld do
not find an answer.

21

through the process known as learning (trainingjhef
neural network. Certainly it is a much more complex
problem than the evaluation of the parameters lofear
model, as for the nature of high nonlinear compiegf

The risk, when models are based on a high number geural networks. For these reasons numerous optimal

parameters, is that their extreme flexibility [1Being
able to explain anything and its opposite, endsnupot
carrying any knowledge contribution. However, wesinu
underline that the same criticism can be made yostar
tistical approximation method: therefore not ordynieu-
ral networks, but also to linear models, univariatel
multivariate regression and so on. Neural networks,
particular, are able to explain very irregular meses, on
which it is therefore difficult to identify a presg relation
of cause-effect. Therefore the black box criticisomsti-
tutes, paradoxically, also one of the greatestitigmlof
neural networks. In any case, the simplicity withieh it
is possible to increase the number of the paraseter
the net must never make forget the importance,nin a
model, of the clarity of the assumptions.

3.2 Data Scaling

A neural network is not able to analyze data ogite
solutions in absolute value: especially if there data
of an unusually elevated or reduced value, problefs
overflow or underflow could happen. When insteaygt si
moid functions are used, it becomes indispensable
preprocess data: this family of functions in faetsha
codominy of type [0,1] (or1,1] in the case of the log-
sigmoid function), for which the values must beleda
to these intervals otherwise the output of thewnetld
become useless, being equal to the superior oridnfe
threshold in correspondence of all the differeniuga
higher or lower than a determined limit. In othesrds,
for a great amount of data not standardize torherval
the neurons would simply transmit the thresholdugal
so a wide part of the information would be lost. fas
as the methods, the linear reduction transformsstie
ries of values in the series§<k X, using the following

formulas:
. X . —min(x
%, =k (_ ) (13)
max(x, ) —min(x,)
if the range is between 0 and 1, and
- X, — Min(x
5, =2 Y MINGs) 14

max(x, ) — min(x, )

if the desired range is between -1 and 1, whileldiga-
rithmic reduction uses the formula:

o _ log+x.)

“ = Tog(maxix,) (15)

3.3 Learning Process
After the data have been scaled, we have to dehlthe

problem of the evaluation of the parameters (waight
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solutions can exist, but they do not minimize tliféed
ence between the predictions of the net and tlectafe
values to be evaluated. In short, in any non lineadel
it is necessary to begin the evaluation of the patars
on the basis of conditions which represent a goésise
value of the same. However, as it will be showe, ¢h-
pability of the process of evaluation of the partareto
converge to a global optimum depends on the goasdnes
of these initial hypothesis: in fact if it is sited near a
local optimum instead of the global one [10], ifilely
that the first one will be reached.

This is illustrated in Figure 3: the initial gueskthe
parameters (or weights of the neurons) could aotidlg
be situated wherever on the x-axis: if it is nedoeal
minimum, the training process of the net would I¢ad
wards this. Later on, it will be observed that trening
process of the network is completed when a point is
reached in which the derivative of the loss functie
null: we must remember that this condition, beyanel
global optimum, identifies also the local ones dhd

tsaddle points. So it can be anticipated that ifléiaening

coefficient, which indicates the sensibility of thet to
the training process, is too low, this would leadthe
impossibility of the network to escape from locatie
mums; while if it is too high, it could carry theaining
process to oscillate continuously far away from olpé-
mum point, and therefore the network would diverge.
analytical terms, it is possible to illustrate tle@rning
process of a net with two hidden layers, for whicis
therefore necessary to determine the set of paeamet
Q={ ok, pre1}-

The problem consists {f8] the minimizing of the loss
function, defined as the sum of the squares ofiffer-
ences between the observed data sagnple the predic-
tion of the ney:

v A

/N

»
»

Q

Figure 4. Example of succession of local and globahini-
mums
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min(Q) YQ)= Z(yt - 9t)2 (16)

V.= f(x:Q) 17)

in which T is the number of the observations of dl-
put vectory, andf (x;Q) represents the neural netwo¥k.
is a nonlinear function af2. All nonlinear optimizations
begin with an initial guess about the solution &mydfur-
ther, better solutions until finding the best pbksiwithin
a reasonable number of iterations. Different metihmd

gies have been proposed in order to lead this lsearc

some make reference to complex results of logical-
merical analysis, e.g. genetic algorithms, in al¢ive to
the classic method of the reduction of the gradmnt

Newton-Raphson method. In any case the chosen alg

rithm continues until the last iteration) or in alternative
a tolerance criterion can be set up, stoppingtdrations
when the reduction of the error function comes dawn
predefined tolerance value. In order to avoid |cmati-
mums, a solution could be to determine a first eshv
gence of the process, and then to repeat it wiskhtaof
different initial parameters in order to verify vther the

ELIANA ANGELINI, AESSANDRO LUDOVICI

Therefore, with i generally equal to 0.9, the dalcu
tion of the parameters moves more fast outsideateqli
in the error surface. Now we will briefly discusiset
methods used to estimate the effectiveness of ahgub
of the net. Relatively to the evaluation of the doess of
the predictions of the net, the most common index i
R-squared (goodness of fit) especially as far asctpa-
bility of the net to predict the data with whichhias been
trained is concerned, and the root mean squarext err
(Rmsg as for the capability to generalize the preditdio
outside the data sample used for the training; tirero
words, divided the sample into two parts, the fifist
sample) will be used in order to train the net, dnel
other (out of sample), in general equal to abodb 25

6qtal data, will be used to estimate the capabiitythe

net to predict data coming from the same populabion
not used for the training.

However, as to the total amount of necessary’ {iEdh
undoubtedly a neural network requires the evalnatib
many more coefficients than, for example, a lineadel,
and this leads to the necessity of a wide sampleclp
the availability of wide samples improves the pctide

solution changes. Alternatively, numerous processegbilities of the net, but it also implies longeaiting
could be carried out to determine the best solutiontimes. Moreover, the availability of a wide samjpiet
However, there are the most important problems whe@lways is a positive aspect, especially in the rfana
the number of the parameters increases or thetectinie ~ field where using very old data brings distortionsthe
of the network becomes particularly complex. Paiin) models, because they tend to vary with extremedigpi

Werbos proposed in the beginning of 1970’s an raédter

and therefore very remote data are no more in alay r

tive to the gradient method called back-propagatiorfions with the present ones.

method. It is a very flexible method to avoid thelp
lems caused by the evaluation of the Hessian matrix
the reduction of the gradient, and surely it is thest
used method. In the passage from an iterationdcstic-
cessive one in the process of evaluation of thamaters,
the inverse Hessian matrix is in fact replaced tydan-
tity matrix having dimension equal to the numhkef the
parameters, multiplied by the learning coefficipnt

(Q,-Q0) =-H,'Z, = -pZ, (18)

In order to avoid oscillations this coefficientdeosen
in the range [0.05,0.5] and it can also be endoggnhat
is it can assume various values when the grademes
down and the process seems to converge; or fidHy
ferent coefficients for the various parameters ¢en
adopted. However, the problem of the choice of tais
efficient remains, together with the existence ofal
minimums. Moreover, low values of the learning deef
cient, although as anticipated are able to avoidlllas
tions, can extend uselessly the convergence ofmihe
mizing process. This can however be acceleratechgdd
a ‘momentum’ for which at iteratiomwe will have:

(Qn - Qn—l) = _pzn—l + /U(Qn—l - Qn—z) (19)

® F. Dolcino, C. Giannini, and E. Rosswhere the concepts
“evaluation error” and “approximation error” aresdyred, 1998.

® R. C. Merton, 1974; F. Black and J. COX, 1976AFLongstaff and
E. Schwartz, 1995; H. E. Lelan and K. B. Toft, 1986 Dufresne and R
Goldstein, 2001.
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4. Credit Risk Approach: Our Assumptions

The recent history of financial markets shows htoithe
impetuous development of the financial innovatioacp
ess, which has invested all the structural compisneh
the same, has been associated the constant engagdgme
the operators in finding more efficient computagibn
methodologies, able to be an effective dynamic stipp
of the analysis. Growing concerns about credit hiake
created the need for sophisticated credit riskyasimband
management tools. Credit risk measurement models an
credit risk management tools are both of significam
portance in the credit market.

The valuation of credit default swap depends on the
credit quality of the reference entity. The defquriedic-
tion has long been an important and widely studigt.
There are two main types of models that attempdeto
scribe default processes in the credit risk litanext
structural and reduced form models. The first apginds
based on modeling the underlying dynamics of irstere
rates and firm characteristics and deriving theadléf
probability based on these dynaniidd,19,20,21]. So
they use the evolution of firms’ structural variedl such
as asset and debt values, to determine the tirdefatlt.
Merton’s Model was the first modern model of defaul
and is considered the first structural model. Inrteie’s
model, a firm defaults if, at the time of servicitig debt,
its assets are below its outstanding debt. In doerd
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approach, instead of modeling the relationship efadlt
with the features of a firm, this relationshipeatned from
the data. Reduced form models do not considerdlze r
tion between default and firm value in an explioanner
[22,23,24]. The time of default in intensity mod&sthe

23

ment amount. The higher the distance to defauhdtsl
DD), the lower the PD. To convert the DD into a P®
timate, Merton assumes that asset values are Ieg-no
mally distributed.

Define E as the value of the firm’s equity and \las

first jump of an exogenously given jump processe Th 5 e of its assets. Let &nd \, be the values of E and V

parameters governing the default hazard rate &eeréa
from market data. Structural default models provide
link between the credit quality of a firm and therfs

economic and financial conditions. Thus, defaults a
endogenously generated within the model instead of

exogenously given as in the reduced approach.

The focus of our model is on the structural apphoac

pioneered by Merton, with some important integiratio

4.1 A Brief Review of the Structural Approach:
Merton’s Model

Merton proposes a simple model of the firm thatjutes
a way of relating credit risk to the capital sturet of the
firm. The firm has issued two classes of securigeglity
and debt. The equity receives no dividends. The ided
pure discount bond. The value of the firm’'s assetss-
sumed to obey a lognormal diffusion process witloa-
stant volatility. Merton adopts are the inexistenufe
transaction costs, bankruptcy costs, taxes or enabl
with indivisibilities of assets; continuous timeading;
unrestricted borrowing and lending at a constatgrast
rate r; no restrictions on the short selling of élssets; the
value of the firm is invariant under changes inciépital
structure (Modigliani-Miller Theorem) and that tfiem’s
asset value follows a diffusion process.

Merton models equity in this levered firm as a ogit
tion on the firm's assets with a strike price eqimthe
debt repayment amount (D). If at expiration (cailieg
to the maturity of the firm’s short-term liabilise as-
sumed to be composed of pure discount debt instrtene
the market value of the firm's assets (V) excedus t
value of its debt, the firm’s shareholders will mise the
option to “repurchase” the company’s assets byyiega
the debt. However, if the market value of the fsna's-
sets falls below the value of its debt (V<D), thation
will expire unexercised and the firm’s shareholdert
default. The probability of default (PD) until exgiion is
set equal to the maturity date of the firm’s puigcdunt
debt, typically assumed to be one year. Thus, tharfil
expiration is equal to the likelihood that the optiwill
expire out of the money. To determine the PD, tak ¢
option can be valued using an iterative methodsti e
mate the unobserved variables that determine the \¢d
the equity call option, in particular, V (the markelue

today; in the Merton framework we have:
B, =VoN(d) - De™ N(d,)

_In(V,/D)+(r+a7 12)T

o T
d, =d, -, VT

whereoy is the volatility of the asset value and r is the
risk free rate of interest, both of which are assdro be
constant. Define D* =De™ as the present value of the
promised debt payment and let L=D*yWe a measure of
leverage. Because the equity value is a functiothef
asset value we can use Ito’s lemma to determinanstien-
taneous volatility of the equity from the assettitity:

d,

oE
Oeky = a_vavvo

oE

v N(d,)
wherecg is the instantaneous volatility of the company’s
equity at time zero. These equations alloyvavidoy to
be obtained from & og, L and T. The risk neutral prob-
ability, P, that the company will default by timeig the
probability that shareholders will not exerciseitheall
option to buy the assets of the company for D attitime
T. This depends only on the leverage, L, the asslat
tility, o, and the time of repayment T.

4.2 CDS Valuation

In our analysis, we present some extensions bedhase
model needs to make the necessary assumptiongpd ad
the dynamics of the firm’s asset value process.

We suggest a new way of implementing Merton’s
model using implied volatility, instead of histaalovola-
tility: this leads to a higher capability of getiithe signals
launched by the market about the creditworthindsbe
firm. The historical volatilityis the realized volatility of a
financial instrument over a given time period. Geilg,
this measure is calculated by determining the a@eera
deviation from the average price of a financiatrimsent
in the given time period. Standard deviation is thest
common but not the only way to calculate historicalb-

of assets) andy (the volatility of assets). These values tility. By definition, historical volatility will dways be
for V andoy arethen combined with the amount of debt backward looking and lag the real-time volatilitpve

liabilities D that have to be repaid at a givendiréori-
zon in order to calculate the firm’'s distance tdadé,

ronment. In the current market environment, howgver
where both stocks and implied volatility measures a

defined to be: (V-D)by or the number of standard devia- rising, many measures of historical volatility begdo
tions between current asset values and the delblytep seem no more useful.

Copyright © 2009 SciRes
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The implied volatility of an option contract is the
volatility implied by the market price of the optidbased
on an option pricing model. Implied volatility is far-
ward-looking measure, and differs from historicalar
tility that is calculated from known past pricesao$ecu-

rity.

Past Present Future
Historical Theoretical Implied
Volatility Price Volatility

Historical volatility tells us how volatile as asdeas
been in the past. Implied volatility is the markeisw on
how volatile an asset will be in the future. Toedatine
an option's implied volatility, we have to use acimg
model. We can tell how high/low implied volatility by
comparing the market price of an option to the api
theoretical fair value. This is why we need to aseop-
tion pricing model - to determine the fair valueaof op-
tion and hence know if the market price for theiapis
over/under valued.

In our analysis, equity implied volatilities obsedvin
the equity options market has received much exptora
Our neural network model is based on using theiadpl
volatility of one-year options written on the sharssued
by the company. It is an attractive alternativéhie tradi-
tional structural approach; this implementatioroah to
use a forward-looking model. Otherwise, our modgl d
fers from the structural approach for the fact thabon-
sider the 30-month historical series for CDS spseagk
show that the use of these credit spreads in addit
other inputs, provides a significant improvementtlie
accuracy of the model.

We use a model that takes these inputs:

* Leverageof the firm: the level of indebtedness is a
significant enterprise-specific determinant of risk
Implied volatility: theoretical value designed to
represent the volatility of the security underlyiag
option as determined by the price of the optiore Th
factors that affect implied volatility are the ecise
price, the risk-free rate, the maturity date and th
price of the option.

Historical CDS spreads seri@ CDS is a derivative
that protects the buyer against default by a paetic

company. The CDS spread is the amount paid for 2
protection and is a direct market-based measure of 2°
the company’s credit risk. CDS spreads contain 2

information which is significant for estimating the
probabilities of the occurrence of credit events.
Recovery ratepercentage of notional of the refe-
rence asset repays in the event of default.

can be obtained by investing in financial instrutsen
with no default risk.

Copyright © 2009 SciRes

Risk free rateis the interest rate that it is assumed

5. Data and Empirical Results

In this section the potentialities of neural netkgin the
approximation of the pricing of credit derivativedl be
shown using real market data, collected from Fitchriti
Bloomberg™ data bases.

Starting from September 2002, we have collected on
quarterly basis data regarding 5-year maturity CDS
spreads of 18 companies from various economic sgcto
together with data concerning the leverage of thasf
the implied volatility of 1-year maturity call optis
written on the equities of the firms, and the risde rate
assumed to be equal to the 1-year constant maturity
Treasury Bill yield. As regards the recovery rate,have
used the most commonly values adopted by the apsrat
to price CDS, depending on the economic sectorhictw
the reference entity belongs to. In the followinggilams
we show the sample collected until March 2006, géher
fore covering 14 quarters.

As regards the risk free rate, we must consider dha
portfolio made up of a risky bond with yield equali
and a CDS written on it with a spread equadfi@s virtu-
ally free of any credit risk, so its yield must bqual to
the risk free rate; therefore we have the followany
proximation:

Table 1. Details of the companies included in the sple

Sample description

N Ticker Name Market Cap. (bIn $)
1 AA ALCOA Inc. 30,18
2 BA Boeing Company (The) 71,91
3 CCL Carnival Corporation 30,13
4 COX Cox Communications Inc. * 59
5 CTX Centex Corporation 6,15
6 CVS CVS Corporation 26,96
7 CZN Citizens Communications Corporation 4,81
8 FD Federated Department Stores Inc. 23,16
9 GPS Gap, Inc. (The) 16,23
10 IBM International Business Machines Corporation 149,11
11 JPM JPMorgan Chase & Co. 177,41
12 JWN Nordstrom Incorporated 15,03
13 LEH Lehman Brothers Holdings Inc. 43,46
14 LEN Lennar Corporation 6,74
15 MAR Marriott International, Inc. 19,51
16 MCD McDonald's Corporation 56,05
17 SBC AT&T Inc. 233,83
18 TXT Textron Financial Corporation 12,21

* Company was delisted on December, 9th 2004. Tatsdoes not affect in any way our results.

Risk-free rate

4,5

4
3,5

15

1

0,5

0 I I I I I I I I I I I I I !
09/02 03/03 09/03 03/04 09/04 03/05 09/05 03/06

Figure 5. Risk free rate during our study Gource: Federal
Reserve System)
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Table 2. Recovery ratesSource: Altman and Kishore (1996)) market for CDS exists. In Figure 6 we show thetiata
Econormic sector Recovery rate ship bgtween CDs sprgad, L_everage a_nd Equity libfati
It is evident that there is no linear relation bedw them.
Hotel chains 0,26 Moreover, only a few data are characterized byvarle
e 0% age of more than 2: of course these can only bé&shan
Telecommunications 0,37 which for prudential regulation can have a highrgea
Comsmctons gf’é ratio. In the following part we will show how nelra
Food 0,45 networks are able to price both industrial and rfial
firms at the same time, even if they show a strypidif-
CDS. Spread ’ . ferent leverage.

800 1

1

We have used a feed forward neural network, with th
back propagation algorithm; it is a 4-layer netwaskth
two hidden layers and therefore an output layeordy
one node (the CDS spread).

The input layer consists of 18 nodes: in the ficatr
nodes we have the risk free rate, the recovery the
leverage and the implied volatility of the firm; the re-
maining 14 nodes we have the series of quarterlys CD
spreads of the firm. If there is a lack in the data just
90 use the value of the preceding quarter. This ambroa
merges data coming from the firm with data (the CDS
spreads) coming from the market, giving great ¢iffee
ness to the predictions of the network. Moreover th

Leverage 2 12 i power of this approach can be appreciated obsetheiy
in this way the network is able to price CDS widier-

Figure 6. Relationship between CDS Spread, Lever-
age and Equity volatility in our sample @Gource: our
elaborations)

ence entities coming both from the industrial fiéMhich
usually have low leverages and high CDS spreadd) an
from the financial field (which have an extremeligin
gearing ratio but are characterized by a historyoof

r, =i—-sp CDS spreads because of the prudential regulatigingu
_ _ _ ) _ this detail to discriminate between them). Figurghdws
showing an inverse relationship betwesmandrf, confirmed  ine structure of the network. The sample has ofseou

by market data. We have the following correlatiatues:

Source: our elaborations

been shuffled; the learning parameter has beeledétt
0.5 and the initial parameters of the neurons Hzaen
chosen in the rangeZ,2]. Our study shows that a logarith-

Variable Correlation with CDS Spread mic reduction is more efficient, because our saroptesists
Risk-free (Rf) -0,2187 of extremely variable data, so a simple linear cédn
Recovery rate (R) -0,1475 would enhance the distortions brought by the sttectaut-
Leverage (L) -0,0485 liers, that is data very different from the restiaf sample.
Equity volatility (V) 0,6338

Of course we can notice a negative correlation Rith
(the recovery rate) and a strong positive corrahatiith
V (the implied volatility which in our study provés be
very effective in predicting creditworthiness déea-
tion). The absence of a correlation with the legera
should not seem strange: our sample in fact include
nancial companies too, which typically have a vaigh
gearing ratio and a low CDS spread due to prudentia
regulation: in any case the neural network canestiins
problem very well because of its nonparametric bdpa
ties. Without considering the financial firms, tberrela-
tion of leverage and credit spreads would rise. 34.D.

The sample is made up of companies coming from dif-
ferent economic sectors, as it is easy to catctimgahe

RF rate
Recov. Rate
Lewerage
Equity vol.
CDS SP-1
CDS SP-2
CDS SP-3
CDS spP-4
CDS SP-5
CDS SP-6
CDS SP-7
CDS SP-8
CDS SP-9
CDS SP-10
CDS SP-11
CDS sP-12
CDS SP-13
CDS SP-14

[eYoNcYoNoNoNCRoNCRONCRONCRONCRONGN )

INPUT
LAYER

Q00000000

FIRST
HIDDEN
LAYER

o CDS SP

Q000 0CO0QOQO0

SECOND
HIDDEN OUTPUT
LAYER LAYER

recovery rates applied: of course we consider bigy(or  Figure 7. Structure of the neural network Source: our

at least medium)-caps, the only ones for whichgaidi  elaborations)
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BOEINGA%C;MPANY be seen as effective instruments of elaboratioe &bl
satisfy this lack from a statistical point of view.

1
G | Figure 10shows a “delta” for a CDS contract: in fact
’ | I | we find on the x-axis the leverage, and on theig-the
L R R R "7 171rnr values calculated with the finite differences methbat is:
0.5 ]
. SHlev+h)-SHlev
1 . , ‘ , , , ] A=lim>R ) — SHlev)
0 2 4 6 8 10 12 14 h-0 h
PACF In a similar manner we can calculate for a CDSfwl
1 ' ' ‘ ' ' ' ] “greek” letters typical of derivative contracts ngithe
0.5 | 1 outputs of the neural network with10°®. It is evident in
ol b | I S — A b
05 i Values and predictions
b | 350
0 1 2 3 4 5 6 7 325
300 - =
Figure 8. Typical correlogram of a CDS spread timeserie 275
(Source: our elaborations) 250 O

225

. 200
In Figure 8 we show as an example the correlog@am f 7~

the CDS spread time series of The Boeing Compaly on 150
for the sake of simplicity, but we obtained the sam  12s

46

structure for all the companies included in our glemin 100 t—" - %

the first part we can see the correlation betweache ;i 37 s vo %, Ve X o
value and a delayed value (the delay being expiesse 25 | o3 Pl g RTE AT S ntee

the x-axis); the second part shows the correlaben o ‘ - | | | . ‘
tween each value amu preceding values, with on the 0 =20 30 40 50 60 70

x-axis. It is therefore evident that the correlatlmetween
values, even if decreasing, is strong, so the sésiauto-
regressive; we can then express each value in w@&frthe
preceding ones. In this sense a CDS spread is sitoie Delta(leverage)
lar to an interest rate than to an equity pricethsd it o010
shows a mean reversion process which tends to pu oo
spreads higher (lower) than some long-run averegel | -
back to this value over time. Obviously we shaléa 00050 ——
negative (positive) drift. The sinusoidal cycle ehsble 00025
in the correlogram explains this phenomenon: maggov ~ **
it is a consequence of the strict relationship eetwCDS
spreads and risk-free interest rates already disclR5]. 00075

-00100
0025 T

SN DH O EAR D SO D
PP PG SIS PP S

Figure 9. Market data (in yellow) and predictions @ the
neural network (in red) (Source: our elaborations)

Figure 9 showing in red the neural network preditdi
and in yellow the real market data, confirms thfeef
tiveness of the neural network in predicting CD8ads.

In Table 3and 4 the values d®-squaredandRmseare
shown: as it is easy to observe, the results ayelyhco-
herent. We compare the results from or implemesmati rpje 3. Approximation of the neural network Source: our
with another model: Creditgrades™. We must strBes t gaporations)
point that using traditional models such as Credit-

AN & o ® $ ¥ B 4 % & o
R N SN R R S NN P S0 N P A

Figure 10. Relationship between delta and leverag&ource:
our elaborations)

grades™ we would obtain predictions almost useless Error Value
even excluding banks from the sample; neural nétsvor R-squared 0,9082
surely are a great pricing instrument in order al@ate Root mean squared error 14,3988

credit spreads. The architecture of the neural otws
feed forward, trained for 17000 learning epochsgishe Table 4. Comparing statistical results $ource: our elaborations)
back propagation algorithm. Therefore it turns ohvi-

ous that neural networks are able to totally captie NN Credit Grades Linear regression
v_ari?bility brelative to]c ttt;]e ;na{ktit fl_yn?{niC? u(r)f ceit_ede- Correlation 0,9636 0,02 0,9309
rivatives: because of the fact that in literatureré is no
L L R 14,3988 >100 30,86
unanimity on the determination of the form of thBE& mse
R-square 0,9086 >1 0,8566

spread evaluation function, neural networks carefoee
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Figure 10shows a “delta” for a CDS contract: in fact

we find on the x-axis the leverage, and on theiy-the
values calculated with the finite differences mdihbat is:

SP(Iev+ h) - SRlev)

A=lim
h- h

(20)

In a similar manner we can calculate for a CDShal
“greek” letters typical of derivative contracts nggithe
outputs of the neural network with10°. It is evident in

the diagram that for high leverages “delta” become

negative: in fact we must remember that highly taged
companies belong usually to the financial sectorthsit
they are less risky because of the prudential egigul.
This effect is explained very well by the netwoirk fact
for low leverages (typical of the industrial fielde see a
direct relationship between leverage and CDS sprdad
other words, the neural network is able to recagie
risk of the activity carried out by the companyngsthe
time series of its CDS spread: in the part of adudg
covering the correlation, we obtained an averadaeva
for each observation and the preceding one of G8Gt
is evident from the correlogram shown above. This ¢
relation, along with the part regarding the indefeart
variables, typical of the structural approach, ek the
major part of the variability of CDS spreads.

6. Conclusions and Future Work

In this paper we have discussed an innovative @gbro
to the study of CDS valuation, using neural network

Our analysis is based on modeling the underlying d

Vega(vol)
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Figure 11. Relationship between vega and equity \atility
(Source: our elaborations)
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Figure 12. Relationship between gamma and leverage
(Source: our elaborations)
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Figure 13. Relationship between omega and leverage
(Source: our elaborations)

namics of interest rates and firm characteristiod de-
riving the default probability based on these dyitam
(the structural approach).

The model that we propose is peculiar for the diske
implied volatility of one-year options written olnet shares
of the analyzed companies, instead of historictstifiy.
Besides, the model differs from the structural apph for
the fact that it considers the 30-month historgeglies for
CDS spreads, including additional market variabldss
implementation allows to use a forward-looking nlode
and to capture the dynamic behavior of CDS spreads
equity volatility. This approach merges data cornfiogn
the firm with data (the CDS spreads) coming frora th
market, giving great effectiveness to the preditiof

)}he neural network. Moreover, the power of this elod

can be appreciated observing that in this way #tevork
is able to price CDS with reference entities combagh
from the industrial field (which usually have loevir-
ages and high CDS spreads) and from the finanieilal f
(which have an extremely high gearing ratio but are
characterized by a history of low CDS spreads texaf
the prudential regulation, using this detail tocdiminate
between them).

We find that the neural network technique is usédul
analyzing the pricing of a credit default swap. @adel
produces a much lower forecasting error than th@sh-
tional models, such as Creditgrattésindicating a rela-
tively high precision in the neural network prediot In
particular, in the last part, starting from the tigprrela-
tion observed between each CDS spread value and the
preceding one in the time series of each compamy, w
have trained a neural network based both on these t
series and on the structural details of the firthgt is
leverage, option-implied equity volatility and reeoy
rates. Our results in terms &f-squaredand Rmseare
highly coherent and are confirmed by the empiritzdb.

Our analysis presents the results that we haveaethi
and shows that the neural network model offersltam-a
native to traditional methodologies to deal withngadi-
cated issues related to CDS valuation.

Anyway, in this period, the CDS market is particlyla
volatile. The impact on the economy of the deflatin
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housing bubble, the credit crisis in general, hstaked [9]
fear about increasing corporate defaults. Thisicis
about credit risk. A credit bubble has balloonedyfears,

being enhanced by the existence of CDS. As creitji-o

nators can pass their risk to other agents, theg baen [10]
less careful about the quality of their loans.Hattsense,

CDS have given an incentive for distributing moredit

to more risky borrowers. As banks and all finanaiati-  [11]

tutions and companies have committed themselvésein
CDS market, they are now highly dependent on market
continuity and on its smooth functioning. The fadlof a
major participant (bankruptcies of Bear Sternsnttmse
of AIG and Lehman Brothers) can put at stake adl th
others; the faith in the reliability of the markeds been
deeply shaken by these events.

In any case, some aspects of the proposed evaluatio
methodology require additional research: the péessiext
step for the research community is to improve tloel@is
in the case of catastrophic circumstances (thealeet
LFHI (low frequency-high impact) events); another i [15]
teresting case of study would regard the analykithe

(12]

(13]

recent financial crisis when more reliable inforioat  [16]
regarding financial companies will be available.
[17]
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