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ABSTRACT 

The differential transformation method (DTM) is applied to investigate free vibration of functionally graded beams 
supported by arbitrary boundary conditions, including various types of elastically end constraints. The material proper- 
ties of functionally graded beams are assumed to obey the power law distribution. The main advantages of this method 
are known for its excellence in high accuracy with small computational expensiveness. The DTM also provides all 
natural frequencies and mode shapes without any frequency missing. Fundamental frequencies as well as their higher 
frequencies and mode shapes are presented. The significant aspects such as boundary conditions, values of translational 
and rotational spring constants and the material volume fraction index on the natural frequencies and mode shapes are 
discussed. For elastically end constraints, some available results of special cases for isotropic beams are used to validate 
the present results. The new frequency results and mode shapes of functionally graded beams resting on elastically end 
constraints are presented. 
 
Keywords: Functionally Graded Beams; Free Vibration; Natural Frequency; Mode Shape; Differential Transformation 

Method 

1. Introduction 

A new class of composite materials, called functionally 
graded materials (FGMs), is considered in this paper. 
The potential uses of FGMs in engineering applications 
include aerospace structures, engine combustion cham- 
bers, fusion energy devices, engine parts and other engi- 
neering structures. In recent years, the static and dynamic 
analyses of functionally graded (FG) beams have in- 
creasingly attracted many researchers. 

Sankar [1] provided an elasticity solution based on 
Euler-Bernoulli beam theory for bending analysis of FG 
beams. An analytical solution of cantilever FG beams 
subjected to various types of loadings was presented by 
Zhong and Yu [2] using the Airy stress function. Deflec- 
tion and natural frequency results of the layered FG 
beams were obtained from the zigzag theoretical model- 
ing and experiment by Kapuria et al. [3]. Sina et al. [4] 
employed the first order shear deformation (FSDT) to 
solve the free vibration problem of FG beams. The La- 
grange multiplier method was used to solve the funda- 
mental frequency of FG beams based on different higher- 
order beam theories in the study of Simsek [5]. Free vi- 
bration analysis of simply supported FG beams was done  

by Aydogdu and Taskin [6]. Wattanasakulpong et al. [7] 
used an improved third order shear deformation theory to 
analyze free vibration of FG beams using the Ritz me- 
thod. The finite element method was used by Alshorbagy 
et al. [8] to investigate free vibration characteristics of 
FG beams. Yang and Chen [9] provided analytical solu-
tion based on classical beam theory (CBT) for investi-
gating natural frequencies and critical buckling load of 
FG beams with edge cracks. The edge cracked FG beams 
were also studied by Kitipornchai et al. [10] using Ti- 
moshenko beam theory. The problems of FG beams rest- 
ing on elastic foundations were solved by Sahraee et al. 
[11] and Pradhan and Murmu [12] using differential qua- 
drature method (DQM). Isotropic beams, supported by 
elastically end constraints, were the subject of many re- 
searchers [13-16], but none is dealing with FG beams. 

Differential transformation method (DTM) based on 
Taylor series expansion was initially introduced by Zhou 
[17] in his study of electrical circuits. It was first imple- 
mented to solve vibration analysis of beams by Malik 
and Dang [18]. Kaya and Ozgumus [19-21] successfully 
used the DTM to solve many cases of vibration problems. 
Pradhan et al. [22] also used the DTM to solve the buck- 
ling problem of a single walled carbon nanotube. 

According to the authors’ knowledge, there is no pre-  *Corresponding author. 
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vious study on free vibration of FG beams supported by 
elastically end constraints in the open literature. In this 
study, the effective tool, DTM, is implemented to ana- 
lyze free vibration of FG beams with arbitrary boundary 
conditions, including various types of elastically end 
constraints. Fundamental frequencies as well as their 
higher frequencies and mode shapes are presented. The 
effects of spring constants and the material volume frac- 
tion index on the natural frequencies and mode shapes 
are discussed. Some available special cases in the open 
literature are used to validate the present results derived 
from DTM. 

2. Functionally Graded Materials 

A functionally graded beam made of ceramic-metal is 
considered in this study. The beam geometry and the 
variation of material volume fraction across the beam 
thickness associated with the power law distribution are 
shown in Figure 1. 

Based on the rule of mixture, the effective material 
properties, P, can be written as 

m m c cP P V PV                (1) 

where Pm, Pc, Vm and Vc are material properties and the 
volume fraction of the metal and ceramic respectively 
with the relation 

1m cV V  .                (2) 

According to the power law distribution, the volume 
fraction of ceramic can be written as 

1

2

n

c

z
V

h
   
 

               (3) 

where the positive number, 0 n   , is the power law 
or volume fraction index. The FG beam becomes a fully 
ceramic beam when n is set to zero. From the above rela-
tionship, the material properties, in terms of Young’s 
modulus and mass density are expressed as 
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z
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 

,       (4a) 
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.       (4b) 

Delale and Erdogan [23] indicated that the effect of 
Poisson’s ratio on the behavior of the FG plate is much 
less than that of the Young’s modulus, thus the Poisson’s 
ratio will assume to be constant in our study. 

3. The FGM Beam Vibration Analysis 

Consider a classical beam theory (CBT) based on the 
Kirchhoff-Love hypothesis, the displacements of an arbi- 
trary point along x and z axes can be expressed as fol-
lows: 

     0 0, , , , , ,
w

u x z t u z w x z t w x t
x


  


.    (5) 

where 0u  and 0w  are the displacements at a point in 
the mid-plane. From the displacements in Equation (5), 
one can obtain the non-zero strains of the beam as 

2 2
0 0

0 02 2
; ,xx x x

u uw w
z z

x xx x
    

  
     
  

.  (6) 

The normal force resultant, xN , moment resultant, 

xM , and transverse shear force, xQ , take the form: 

11 0 11x xN A B   ,              (7a) 

11 0 11x xM B D   ,             (7b) 

0
11 11

x x
x

M
Q B D

x x x

   
  

  
,         (7c) 

where 

     2 2
11 11 11 22

, , 1, , d
1

h

h

E z
A B D z z z




  
 .    (8) 

The extensional stiffness  11A , extensional-bending 
 

 

Figure 1. Geometry of a functionally graded beam and volume fraction profile. 
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coupling stiffness  11B  and bending stiffness  11D  
can be written in the function of the volume faction index 
(n) as: 

 
 11 2 11

c m
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E Eh
A E
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The axial inertia term is neglected, therefore, the gov- 
erning equations of the FG beams derived from Hamil- 
ton’s principle can be expressed as follows: 
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: 0 0xN u w
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(11) 

Substituting harmonic vibration mode, ie tw W  , 
into Equation (11) leads to a time independent governing 
equation as follows: 
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where   is a natural frequency and  2
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d

h

h
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
   is 

the moment of inertia which can be expressed in term of 
the volume faction index as: 
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4. Application of DTM to FG Beam  
Vibration Analysis 

The principle of the DTM is to transform the governing  

differential and boundary condition equations into a set 
of algebraic equations using transformation rules. The 
basic operations required in differential transformation 
for the governing differential and boundary condition 
equations are shown in Tables 1 and 2 respectively. 

The general function, f (x) in Tables 1 and 2 is con- 
sidered as the transverse displacement W (x). Apply the 
basic operations of DTM in Table 1 with the fundamen- 
tals of the DTM presented in [18] to the governing dif- 
ferential equation, Equation (12), one can obtain the re- 
currence equation as: 
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where 
2
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B
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A

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 

. 

It is seen that Equation (14) is independent from boun- 
dary conditions. Therefore to obtain frequency results, 
the displacement function of Equation (14) must be used 
to satisfy the corresponding boundary equations. 

4.1. FG beams without Elastically End  
Constraints 

Three types of general edge conditions, without any 
springs, at x = 0 and L are: Simply supported (S), 

 
Table 1. Basic operations of DTM for the governing equa-
tions. 

Original functions Transformed functions 
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Table 2. Basic operations of DTM for the boundary conditions. 

x = 0 x = L 

Original B.C. Transformed B.C. Original B.C. Transformed B.C. 
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W = 0, 
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Free (F), 
2

2

d
0

d

W

x
 , 
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d
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x
 . Now consider a beam  

with free-free (F-F) boundary conditions. The bending 
moment and shear force at x = 0 and L are zero. Let the 
non-zero values of deflection and slope at x = 0 indicate 
by C0 and C1 respectively. Applying the basic operations 
of DTM for the boundary condition at x = 0, using Table 
2, one obtains 

       0 10 , 1 , 2 0, 3 0W C W C W W    .    (15) 

Substituting Equation (15) into the recurrence equation 
Equation (14) leads to  W r  for all values of r as fol-
lows: 
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 4 2 0 0,1, 2,3,W r r           (16c) 
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For the boundary condition at x = L, applying the basic 
operations of DTM using Table 2, one obtains 
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Substituting  W r  from Equation (16) into Equation 
(17) leads to two polynomial equations which can be 
arranged into the following matrix form. 
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The frequency results can be determined by setting the 
determinant of the coefficient matrix of Equation (18) to 
zero. Hence, the frequency equation can be expressed 
with the finite number of terms in each component of the 
matrix from r to R as: 
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Solving the frequency equation in Equation (19), one 
obtains the frequency results as:  R

r  , where r = 1, 2, 
3,···, R. Therefore,  R

r  is the thr  estimated frequency 
corresponding to R. Hence, an appropriate value of R is 
obtained by convergence analysis with the following 
criterion, 

   1R R
r r                 (20) 

where δ is a given error tolerance. 
The mode shape function can be obtained using  
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Following the same procedure, one can obtain the fre-
quency equation and mode shape function for other kinds 
of boundary conditions without any spring support as 
given in Appendix A. 

4.2. FG Beams with Elastically End Constraints 

A FG beam supporting by elastic translational and rota- 
tional springs at both ends, called E-E boundary condi- 
tions, is shown in Figure 2. For this case, the boundary 
conditions at the left end can be expressed as, 

d
0, 0

dTL x RL x

W
k W Q k M

x
    .     (22) 

The boundary conditions in Equation (22) can be take 
another form as 

3 2

3 2

d d d
0, 0

dd d
TL RLk kW W W

W
xx x 

    .   (23) 

 

 

Figure 2. Geometry of FG beam with E-E boundary condi- 
tion. 
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Where kTL and kRL are the translational spring constant 
(MN/m) and the rotational spring constant (MN·m/rad) at 
the left end respectively. Let the non-zero values of de-
flection and slope at x = 0 be C0 and C1 respectively. Use 
Table 2 to apply the basic operations of DTM for these 
non-zero quantities at x = 0, one obtains 

       
0 1

d
0 , 1

d

W x
W W x C W C

x
    .   (24) 

The expressions for non-zero values of bending mo- 
ment and shear force at x = 0 can be written as 
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To find [ ]W r  for all values of r, the components in 
Equations (24) and (25) are substituted into the recur- 
rence Equation (14). 
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At x = L, the boundary conditions are 
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Similarly, applying the DTM to the boundary condi- 
tions (28) yields 
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Substituting  W r  from Equation (26) into Equation 
(29) leads to two polynomial equations which can be 
arranged into the following matrix form: 

11 12 0
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          (30) 

where: 

 

 

 

   
 

   

 

   

4 2 4 12 2
0 0

11 1
1 1

4 1 4 22 2
0 0

1 2
0 0

4 2 ! 4 1 !

4 1 ! 4 2 !

r rr r r r

RRr r
r r

r rr r r r

TL RR TLr r
r r

L I L I
p k

r r

L I L I
k k k

r r

 
 

 
 

  


 

  

 
 

 
 

 
 

 

 
 

 

 

 

   
 

   

 

   

4 1 42 2
0 0

12 1
1 0

4 4 12 2
0 0

1 2
0 0

4 1 ! 4 !

4 ! 4 1 !

r rr r r r

RRr r
r r

r rr r r r

RL RR RLr r
r r

L I L I
p k

r r

L I L I
k k k

r r

 
 

 
 

 


 

 

 
 

 


 


 

 
 

 

 

 

   
 

   

 

   

4 3 42 2
0 0

21 1
1 0

4 4 32 2
0 0

1 2
0 0

4 3 ! 4 !

4 ! 4 3 !

r rr r r r

TRr r
r r

r rr r r r

TL TR TLr r
r r

L I L I
p k

r r

L I L I
k k k

r r

 
 

 
 

 


 

 

 
 

 


 


 

 
 

 

 

 

   
 

   

 

   

4 2 4 12 2
0 0

22 1
1 0

4 1 4 22 2
0 0

1 2
1 0

4 2 ! 4 1 !

.
4 1 ! 4 2 !

r rr r r r

TRr r
r r

r rr r r r

RL TR RLr r
r r

L I L I
p k

r r

L I L I
k k k

r r

 
 

 
 

  


 

  

 
 

 
 

 
 

 

 
 

Similarly, set the determinant of the coefficient matrix 
of Equation (30) to zero with finite number of terms, one 
obtains the following frequency equation. 
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The mode shape function corresponding to the fre-

quency in Equation (31) can be derived as: 
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(32) 

where: (please see the Equation (33) below). 
Following similar procedure, one can obtain the fre- 

quency equation and mode shape function for a clamped- 
elastic supported (C-E) beam in Figure 3 as follows. 

The frequency equation: 
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The mode shape function: 
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where: 
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For the case of simply supported-elastic (S-E) FG 
beams as shown in Figure 4, the expressions for the fre- 
quency equation and the mode shape function can be  

written as: 
The frequency equation: 
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The mode shape function: 
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Figure 3. Geometry of FG beam with C-E boundary condi-
tion. 

 

 

Figure 4. Geometry of FG beam with S-E boundary condi- 
tion. 
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5. Numerical Results and Discussions 

5.1. FG Beams without Elastically End  
Constraints 

FG beams made of Alumina (Al2O3) and Aluminum (Al); 
whose material properties are: E = 380 GPa, ρ = 3960 
kg/m3, ν = 0.3 for Al2O3 and E = 70 GPa, ρ = 2702 kg/m3, 
ν = 0.3 for Al; are chosen for this study. Six types of 
boundary conditions are considered as shown in Table 3. 
The dimensionless frequency is defined as  

 2
Al AlL h E   . From convergence study it is  

found out that R equals to 15 is sufficient for the required 
accuracy. Using R more than 15 will present the same 
results for the first to sixth modes. To receive the fre- 
quency results that are higher than sixth mode, the value  

of R more than 15 may be needed. Five modes of vibra- 
tion with various volume fraction indexes are presented 
in Table 3. 

Only the fundamental frequencies of the work by 
Simsek [5] for three types of boundary conditions, namely, 
(S-S), (C-F) and (C-C), are found in the open literature. 
Very good agreement with the present results for all 
volume fraction indexes is confirmed as shown in Table 
3. It is seen that, for all boundary conditions, all frequen- 
cies decrease as volume fraction indexes increase. The 
C-C and F-F frequencies are practically equal and they 
are the highest of all boundary conditions. Results in the 
table show that the volume fraction index is one of the 
most important parameters that have significant impact 
on the frequency of vibration and therefore, it must be  

 
Table 3. Dimensionless frequencies of Al2O3/Al beams without springs (L/h = 20). 

B.C. Mode Al2O3 n = 0.2 n = 0.5 n = 1.0 n = 2.0 n = 5.0 Al 

 
Ω1 

 
5.483 
5.478* 

5.102 
5.098* 

4.669 
4.665* 

4.221 
4.216* 

3.852 
3.847* 

3.668 
3.663* 

2.849 
2.846* 

 Ω2 21.933 20.408 18.676 16.884 15.407 14.670 11.396 

S-S Ω3 49.350 45.917 42.021 37.989 34.667 33.007 25.642 

 Ω4 87.734 81.631 74.703 67.536 61.629 58.680 45.586 

 Ω5 137.082 127.551 116.726 105.528 96.299 91.687 71.227 

 
Ω1 

 
1.953 
1.952* 

1.816 
1.817* 

1.663 
1.663* 

1.504 
1.503* 

1.372 
1.371* 

1.307 
1.306* 

1.015 
1.015* 

 Ω2 12.242 11.390 10.424 9.424 8.599 8.188 6.361 

C-F Ω3 34.278 31.893 29.187 26.386 24.079 22.926 17.810 

 Ω4 67.171 62.498 57.194 51.707 47.185 44.926 34.901 

 Ω5 111.037 103.313 94.547 85.474 77.998 74.267 57.694 

 
Ω1 

 
12.430 
12.414* 

11.566 
11.554* 

10.584 
10.571* 

9.569 
9.555* 

8.732 
8.719* 

8.314 
8.301* 

6.459 
6.450* 

 Ω2 34.264 31.881 29.175 26.376 24.069 22.917 17.803 

C-C Ω3 67.172 62.499 57.195 51.707 47.185 44.927 34.902 

 Ω4 111.037 103.313 94.546 85.477 78.001 74.266 57.694 

 Ω5 165.915 154.337 141.262 127.640 116.503 110.935 86.210 

 Ω1 8.566 7.970 7.294 6.594 6.017 5.729 4.451 

 Ω2 27.760 25.828 23.637 21.369 19.500 18.567 14.424 

S-C Ω3 57.918 53.889 49.316 44.584 40.685 38.738 30.094 

 Ω4 99.043 92.153 84.333 76.242 69.574 66.244 51.462 

 Ω5 151.137 140.632 128.692 116.343 106.174 101.085 78.536 

 Ω1 8.566 7.970 7.294 6.594 6.017 5.729 4.451 

 Ω2 27.760 25.828 23.637 21.369 19.500 18.567 14.424 

S-F Ω3 57.918 53.889 49.316 44.584 40.685 38.738 30.094 

 Ω4 99.043 92.153 84.333 76.241 69.573 66.244 51.462 

 Ω5 151.124 140.628 128.681 116.350 106.171 101.079 78.526 

 Ω1 12.430 11.566 10.584 9.569 8.732 8.314 6.459 

 Ω2 34.264 31.881 29.175 26.376 24.069 22.917 17.803 

F-F Ω3 67.172 62.499 57.195 51.707 47.185 44.927 34.902 

 Ω4 111.039 103.314 94.547 85.475 77.998 74.267 57.695 

 Ω5 165.921 154.375 141.272 127.755 116.557 110.945 86.200 

*Simsek [5]. 
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considered in designing a beam to meet the required fre- 
quency. Changing this parameter also means changing 
flexibility of beams. 

5.2. FG Beams with Elastically End  
Constraints 

Three types of boundary condition; namely, C-E, S-E 
and E-E, of FG beams with elastically end constraints 
will be investigated in the following sections. Due to 
classical beam theory considered in this study, it is ap- 
propriate to choose the thickness ratio (L/h) more than 20. 
In the following investigation the ratio (L/h = 30) is se- 
lected for all of the next calculation. However, the fre- 
quency equation and mode shape function presented in 
this study can be used effectively for other values of the 
thickness ratio. 

5.2.1. Vibration Analysis of FG Beams with C-E 
Boundary Condition 

Consider a FG beam completely clamped at the left end 
and supported by translational and rotational springs at 
the right end. The beam is defined as the C-E beam. The 
frequency results for the first six modes with various 
volume fraction indexes are shown in Table 4. To verify 
the results, only the available work of Lai et al. [14] on 
the isotropic beam (n = 0 for full Al2O3) with the same 
type of support is shown in the second row. All modes of 
frequencies agree excellently. Again, all frequencies de-
crease as volume fraction indexes increase. 

Effects of varying the values of spring constants, with 
n fixed at 0.5, on the response of FG beams for the first 
three modes are shown in Table 5. All frequencies in- 
crease as spring constants increase as expected. Observe  

 
Table 4. Dimensionless frequencies of Al2O3/Al beams (L/h = 30, kTR = 1.173 MN/m and kRR = 1.056 × 103 MN·m/rad). 

 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

n = 0 
Lai et al. [14] 

2.566 
2.566 

13.213 
13.213 

35.270 
35.270 

68.193 
68.193 

112.077 
112.078 

166.941 
166.923 

n = 0.2 2.547 12.970 34.493 66.611 109.420 162.902 

n = 0.5 2.429 12.056 31.780 61.192 100.378 149.361 

n = 1.0 2.305 11.112 28.987 55.605 91.051 135.293 

n = 2.0 2.206 10.343 26.707 51.033 83.400 123.834 

n = 5.0 2.171 9.987 25.611 48.803 79.643 118.170 

n = 10.0 2.146 9.768 24.957 47.482 77.423 114.786 

 
Table 5. Dimensionless frequencies of Al2O3/Al beams (n = 0.5; L/h = 30). 

kRR (MN·m/rad) 
(MN/m) 

1 10 102 103 104 105 106 

Ω1 2.051 2.056 2.102 2.383 2.788 2.891 2.903 

Ω2 10.983 10.995 11.113 12.006 14.116 14.898 14.997 kTR = 1 

Ω3 30.617 30.628 30.745 31.726 35.036 36.755 36.994 

Ω1 3.669 3.670 3.678 3.733 3.826 3.853 3.856 

Ω2 11.493 11.505 11.613 12.430 14.362 15.085 15.177 kTR = 10 

Ω3 30.793 30.805 30.920 31.890 35.144 36.831 37.067 

Ω1 6.737 6.739 6.766 6.969 7.492 7.710 7.738 

Ω2 16.370 16.372 16.391 16.541 16.967 17.163 17.189 kTR = 102 

Ω3 32.806 32.816 32.911 33.704 36.300 37.649 37.839 

Ω1 7.553 7.559 7.616 8.091 9.669 10.544 10.673 

Ω2 23.677 23.680 23.718 24.051 25.559 26.793 27.008 kTR = 103 

Ω3 46.330 46.331 46.336 46.385 46.612 46.809 46.844 

Ω1 7.637 7.644 7.705 8.213 9.932 10.897 11.038 

Ω2 24.674 24.680 24.736 25.248 27.718 29.845 30.217 kTR = 104 

Ω3 51.235 51.240 51.293 51.786 54.615 57.896 58.574 

Ω1 7.646 7.652 7.713 8.225 9.958 10.932 11.074 

Ω2 24.768 24.774 24.832 25.362 27.924 30.124 30.507 kTR = 105 

Ω3 51.653 51.659 51.717 52.262 55.410 59.017 59.746 

Ω1 7.647 7.653 7.714 8.226 9.961 10.935 11.078 

Ω2 24.778 24.783 24.842 25.374 27.945 30.152 30.535 kTR = 106 

Ω3 51.693 51.699 51.758 52.309 55.486 59.122 59.855 
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that for very large value of kTR and kRR, the frequencies, 
Ω1, Ω2 and Ω3 approach those of C-C beam in Table 3. 

The first to forth mode shapes of FG beams with C-E 
boundary condition are shown in Figures 5(a)-(d), re- 
spectively. It is seen that different values of spring sup- 
port change the mode shapes of the vibrating beams sig- 
nificantly. Note that for kTR = kRR = 0, the beam corre- 
sponds to a C-F beam and as kTR = kRR→∞, a C-C beam 
is obtained. 

5.2.2. Vibration Analysis of FG Beams with S-E 
Boundary Condition 

Dimensionless frequency results of FG beams, with S-E 
boundary conditions as shown in Figure 4, for the first 
six modes are tabulated in Table 6. To verify the results, 
again, only the work of Lai et al. [14] on the isotropic 
beam (n = 0) is available as shown in the second row of 
Table 6. All frequencies, Ω1 to Ω6, agree excellently. It is 
seen that, all frequencies decrease as volume fraction 
indexes increase. 

The first three frequencies for S-E boundary condition 
with variable spring constants, kTR and kRR are presented 
in Table 7. To illustrate the effects of spring constants 
and material volume fraction on the fundamental fre- 
quency, 3-D figures for S-E and C-E beams are plotted in 
Figure 6. And Figure 7 shows the 1st to 4th mode shapes 
of FG beams with S-E boundary condition. 

5.2.3. Vibration Analysis of FG Beams with E-E 
Boundary Condition 

FG beams supported by translational and rotational 
springs at both ends as shown in Figure 2 are considered 
in this section. Dimensionless frequencies of various 
modes and volume fraction indexes are presented in Ta- 
ble 8. Again, the accuracy is confirmed by the case of 
isotropic beams by Lai et al. [14]. It is observed that the 
first and second frequency results depend mostly on the 
effects of translational and rotational spring stiffnesses at 
both ends, Hence, they show different trends of change in 
comparison with other modes when the value of the 

 

 
(a)                                                         (b) 

 
(c)                                                         (d) 

Figure 5. The 1st to 4th mode shapes of Al2O3/Al beams with C-E boundary conditions (n = 0.5; L/h = 30; kTR = kRR). 
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Table 6. Dimensionless frequency results of Al2O3/Al beams (L/h = 30; kTR = 29.32 MN/m; kRR = 0 MN·m/rad). 

 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

n = 0 
Lai et al. [14] 

3.826 
3.826 

10.471 
10.471 

28.340 
28.340 

58.189 
58.189 

99.200 
99.200 

151.238 
151.238 

n = 0.2 3.843 10.412 27.707 56.785 96.773 147.525 

n = 0.5 3.736 10.001 25.517 52.039 88.603 135.026 

n = 1.0 3.576 9.616 23.284 47.142 80.156 122.113 

n = 2.0 3.411 9.355 21.493 43.128 73.207 111.470 

n = 5.0 3.331 9.322 20.663 41.150 69.752 106.164 

n = 10.0 3.273 9.282 20.176 39.986 67.718 103.042 

 
Table 7. Dimensionless frequencies of Al2O3/Al beams (n = 0.5; L/h = 30). 

kRR (MN·m/rad) 
(MN/m) 

1 10 102 103 104 105 106 

Ω1 0.929 0.933 0.968 1.160 1.386 1.437 1.442 

Ω2 7.725 7.736 7.849 8.662 10.379 10.959 11.031 kTR = 1 

Ω3 24.803 24.815 24.931 25.893 28.919 30.378 30.577 

Ω1 2.652 2.652 2.652 2.653 2.654 2.655 2.655 

Ω2 8.455 8.464 8.558 9.239 10.707 11.216 11.279 kTR = 10 

Ω3 25.022 25.034 25.148 26.093 29.048 30.471 30.665 

Ω1 4.503 4.507 4.544 4.830 5.549 5.845 5.884 

Ω2 13.800 13.800 13.803 13.830 13.906 13.940 13.945 kTR = 102 

Ω3 27.559 27.567 27.650 28.331 30.434 31.470 31.613 

Ω1 4.855 4.860 4.916 5.362 6.689 7.345 7.437 

Ω2 18.907 18.911 18.955 19.339 21.004 22.274 22.488 kTR = 103 

Ω3 40.260 40.261 40.274 40.392 40.944 41.430 41.519 

Ω1 4.891 4.897 4.954 5.418 6.818 7.517 7.615 

Ω2 19.513 19.519 19.576 20.088 22.404 24.226 24.532 kTR = 104 

Ω3 43.716 43.722 43.776 44.278 47.059 50.075 50.673 

Ω1 4.895 4.901 4.958 5.424 6.831 7.534 7.633 

Ω2 19.572 19.578 19.636 20.161 22.540 24.408 24.720 kTR = 105 

Ω3 44.018 44.023 44.082 44.625 47.648 50.896 51.530 

Ω1 4.895 4.901 4.959 5.425 6.832 7.535 7.634 

Ω2 19.578 19.584 19.642 20.168 22.553 24.426 24.739 kTR = 106 

Ω3 44.047 44.053 44.112 44.659 47.706 50.975 51.611 

 

   
(a) S-E                                                  (b) C-E 

Figure 6. Fundamental frequency of Al2O3/Al beams with S-E and C-E boundary conditions (L/h = 30). 



N. WATTANASAKULPONG, V. UNGBHAKORN 

Copyright © 2012 SciRes.                                                                                 WJM 

307

 

 

Figure 7. The 1st to 4th mode shapes of Al2O3/Al beams with 
S-E boundary conditions (n = 0.5; L/h = 30; kTR = 10 MN/m, 
kRR = 10 MN·m/rad). 

volume fraction index increases. It is clear that as the 
values of kTL = kTR = kRL = kRR→∞, this E-E FG beam 
behaves like the C-C FG beam (see Table 3). 

Table 9 shows the frequency results of the first three 
modes with variable spring constants. It is similar to the 
previous cases that frequencies increase as the spring 
constants increase. 

To understand the vibration behavior of FG beams 
supported by elastically end constraints, the effect of 
spring constants at both ends on the fundamental fre-
quencies is shown as 3-D plot in Figure 8. Figure 9 
shows the 1st to 4th mode shapes of E-E beams. It is ob-
served that the first mode shape depends mostly on the 
translational springs which move up and down, including 
a small bending along the length of the beam. But for the 
second mode shape, it seems to be dependent on the rota-
tional springs in which the movement is clockwise and  

 
Table 8. Dimensionless frequencies of Al2O3/Al beams (L/h = 30; kTL = kTR = 1.173 MN/m; kRL = kRR = 1.056 × 103 MN·m/rad). 

 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

n = 0 
Lai et al. [14] 

0.781 
0.781 

2.771 
2.771 

14.243 
14.242 

36.242 
- 

69.209 
- 

113.112 
- 

n = 0.2 0.802 2.822 14.046 35.532 67.700 110.531 

n = 0.5 0.825 2.838 13.206 32.943 62.419 101.637 

n = 1.0 0.849 2.838 12.343 30.290 56.994 92.486 

n = 2.0 0.876 2.833 11.653 28.148 52.588 85.025 

n = 5.0 0.906 2.858 11.364 27.163 50.494 81.420 

n = 10.0 0.920 2.861 11.178 26.566 49.245 79.284 

 
Table 9. Dimensionless frequencies of Al2O3/Al beams (n = 0.5; L/h = 30). 

kRL = kRR (MN·m/rad) 
(MN/m) kTL = kTR 

1 10 102 103 104 105 106 

Ω1 0.760 0.760 0.760 0.762 0.765 0.766 0.766 

Ω2 1.330 1.355 1.582 2.746 4.439 4.945 5.006 1 

Ω3 11.204 11.226 11.444 13.112 17.442 19.325 19.579 

Ω1 2.208 2.209 2.218 2.275 2.361 2.384 2.386 

Ω2 4.144 4.150 4.212 4.658 5.596 5.924 5.966 10 

Ω3 12.144 12.163 12.355 13.842 17.836 19.611 19.852 

Ω1 4.213 4.221 4.293 4.823 6.031 6.487 6.545 

Ω2 11.536 11.536 11.536 11.538 11.543 11.546 11.546 102 

Ω3 19.378 19.384 19.445 19.952 21.611 22.494 22.621 

Ω1 4.816 4.828 4.937 5.811 8.529 10.070 10.305 

Ω2 18.314 18.323 18.406 19.133 22.115 24.313 24.683 103 

Ω3 37.532 37.535 37.565 37.832 39.012 39.962 40.127 

Ω1 4.888 4.899 5.014 5.936 8.922 10.705 10.983 

Ω2 19.450 19.461 19.575 20.585 25.188 29.146 29.864 104 

Ω3 43.392 43.403 43.509 44.497 49.920 56.023 57.300 

Ω1 4.895 4.907 5.022 5.949 8.963 10.772 11.054 

Ω2 19.566 19.578 19.695 20.736 25.521 29.675 30.430 105 

Ω3 43.986 43.997 44.114 45.196 51.223 58.101 59.537 

Ω1 4.896 4.907 5.023 5.951 8.967 10.779 11.061 

Ω2 19.578 19.589 19.707 20.751 25.555 29.728 30.486 106 

Ω3 44.044 44.056 44.174 45.265 51.352 58.304 59.754 
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Figure 8. The fundamental frequency of Al2O3/Al beams 
with E-E boundary condition (n = 0.5; L/h = 30). 

 

 

Figure 9. The 1st to 4th mode shape of Al2O3/Al beams with 
E-E boundary conditions (n = 0.5; L/h = 30; kTR = 10 MN/m; 
kRR = 10 MN·m/rad). 

 
anti-clockwise. If the spring constant becomes large, the 
mode shapes of E-E beams behave like C-C beams. 

6. Concluding Remarks 

This research applies the differential transformation method 
to solve the governing differential equation of free vibra- 
tion of functionally graded beams supported by various 
types of general boundary conditions, including elastic- 
cally end constraints. FG beams made of Al2O3/Al are 
chosen to study the free vibration behavior. In general, 
the results revealed that trend of frequency results for 
various modes of vibration decreases as the volume frac- 
tion indexes increase, except for the case of the E-E 
boundary conditions in which the trend of the first two 
modes is reversed owning to the effects of translational 
and rotational springs at both ends. It is also seen that 
there are considerable changes of frequencies as well as 
mode shapes when the stiffness of spring becomes larger. 
The frequency equation and mode function presented in 
this study can be specialized to approximate any other 

boundary conditions, with or without springs, by setting 
the values of spring constants as appropriate. 
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Appendix A 
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The frequency equation: 

 

 

 

 
 

 

 

 

4 1 4 12 2
0 0

0 0

4 1 4 32 2
0 0

1 0

4 1 ! 4 1 !

0
4 1 ! 4 3 !

r rr r r rR R

r r
r r

r rr r r rR R

r r
r r

I L I L

r r

I L I L

r r

 
 

 
 

 

 

 

 


 

  
 

 

 
 

The mode shape function: 
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The frequency equation: 
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The mode shape function: 
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S-F 
The frequency equation: 
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The mode shape function: 
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C-F 
The frequency equation: 
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The mode shape function: 
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C-C 
The frequency equation: 
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The mode shape function: 
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