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ABSTRACT 

In this paper, we study the problem of variable selection for varying coefficient transformation models with censored 
data. We fit the varying coefficient transformation models by maximizing the marginal likelihood subject to a shrink- 
age-type penalty, which encourages sparse solutions and hence facilitates the process of variable selection. We further 
provide an efficient computation algorithm to implement the proposed methods. A simulation study is conducted to 
evaluate the performance of the proposed methods and a real dataset is analyzed as an illustration. 
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1. Introduction 

To model the effects of X on the failure time T, the fol- 
lowing linear transformation models are considered 

 0 0
TH T X ,          (1)    

where 0H  is an unknown, strictly increasing function with 

0 , 0 0 0H   is a  vector of unknown regression 
parameters, and the error term 

1p
  has a known continuous 

distribution that is independent of X. In the presence of cen- 
soring, we observe the event time  and the 
censoring indicator 

 min ,T T C
I   T C , where C is the cen- 

soring time and  I ·  is the indicator function. It is usually 
assumed that the censoring variable C is independent of T 
given X. Linear transformation model (1), encompassing 
Cox’s model and the proportional odds model as special 
cases, provide a popular tool in analyzing time-to-failure 
data, and have recently attracted considerable attention 
due to their high flexibility [1-4]. 

In practice, in order to accurately predict the survival 
time, many explanatory variables are generally collected 
and need to be assessed during the initial analysis. De- 
ciding which covariates to have significant effect on the 
survival time and which variables are non-informative is 
practically interesting, but is always a tricky task for sur- 
vival analysis. Variable selection is therefore of funda- 
mental interest for survival analysis. Variable selection 
procedures for survival data have been studied exten- 
sively in the literature; see [5-7] for cox’s model; see [8] 

for proportional odds model. 
Partially linear varying coefficient regression models 

have played an increasingly important role in statistical 
analysis for a good balance between flexibility and par- 
simony. Recently, varying coefficient regression models 
have been studied by many authors. [9] proposed a local 
least-squares method with a kernel weight function. [10] 
proposed an estimation procedure based on the local 
polynomial fitting method. [11] proposed a profile least- 
squares technique for estimating the parametric compo- 
nents and applied the generalized likelihood ratio tech- 
niques to the testing problems for the nonparametric 
components. [12] proposed a class of efficient estimation 
method to estimate a partially linear varying coefficient 
model. Under quantile loss function, based on B-spline 
basis function approximations, [13] proposed the esti- 
mator and test for partially linear varying coefficient 
model. As for variable selection, [14] adopted the SCAD 
variable selection procedure to select important variables 
in the parametric components, and adopted the general- 
ized likelihood ratio tests to select important variables in 
the nonparametric components of semi-parametric model. 
However, very little work has been done for partially 
linear varying coefficient transformation models with 
censored data, which are defined as following 

   0 0 0log T TH T X Z W     

0

,   (2) 

where H  is an unknown, strictly increasing function 
with  0 0 0H  , 0  comprises q unknown smooth 
functions, 
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 , ,1 qZ Z Z 
0

 is a q dimensional covariate, 
 1, ,X  is the regression parameters, pX X   is a 
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p dimensional covariate, W ranges over a non-degenerate  
compact interval, without loss of generality, that is as- 
sumed to be the unit interval [0,1] and   is the error 
with known continuous density, f , and is independent 
of the covariates. In the absence of Z and W, model (2) 
reduces to a linear transformation model (1). When Z is a 
constant, model (2) reduces to a partial linear transfor- 
mation model. [15] studied the partially linear transfor- 
mation models using martingale representation based 
estimating equation. [16] proposed variable selection for 
the partially linear transformation models. To the best of 
our knowledge, there is no paper considering the variable 
selection for varying coefficient transformation models 
with censored data. To solve this problem, in this paper, 
we propose the penalized likelihood function method for 
variable selection in varying coefficient transformation 
models with censored data. The penalized likelihood 
function with adaptive Lasso is proposed. We only con- 
sider here the application of adaptive Lasso, because the 
convexity of 1  penalty enables us to demonstrate the 
method easily. Nevertheless, the same idea is readily 
applicable to other shrinkage methods, such as SCAD 
proposed by [17], or one-step sparse estimator of [18]. 
The major advantages of the proposed procedures over 
the existing ones are their computational expediency and 
the most existing procedures are our special cases for 
survival data. Simulation experiments have provided evi- 
dence of the superiority of the proposed procedures. 

L

 , , , ,T C T

The paper is organized as follows. In Section 2, we 
present the penalized maximum likelihood method with 
the adaptive Lasso (ALasso) penalty. A penalized maxi- 
mum likelihood estimator is proposed for optimizing the 
penalized log marginal likelihood functions. In Section 3, 
we present an algorithm to implement the penalized 
maximum likelihood estimator. In Section 4, we conduct 
a simulation to detect the behavior of the proposed me- 
thod. In Section 5, we illustrate the proposed procedure 
via analyzing lung cancer data.  

2. Penalized Maximum Likelihood 
Estimation 

Let , , ,i i ix z w i i i i i   be independent and iden- 
tically distributed copies of  , , , , ,T C T, ,X Z W  


. The  

observations are  , , , , : 1, ,ii i i ix z w T i  n . Then,  

from model (2), the log-likelihood function of  , , H 

  
  

  

T T
i i i

i i

i i

z w

H T

z w

 

 






  

 
can be written as 

 

 
  

 

1

, ,

log log

log log

log

n

i i
i

T T
i i

L H

T x

H T

T x





 

 


 

 

  


 



 

where   and   are the baseline and cumulative 
hazard functions of  , respectively, and H is an in- 
creasing function. Throughout the paper, f  and f  re- 
spectively denote the first and second derivatives of f  
provided that they exist. Following [19] and [20], we 
approximate   , 1, ,l t l q  

     
 by the B-spline method.  

 1 1π , ,
nkt B t B t  

1

 be a set of B-spline  Let 

basis functions of order   k with n  quasi-uniform 
internal knots. Then,  l t

   T
πl lt t

 can be approximated by 

,            (3)  

where T

,1 , 1, ,
nl l l k      

      

 is the spline coefficient  

vector, substituting (3) into the model (2), we can get 
log-likelihood function: 


     

    

1

, , log log

log log

log

n
T

i i i i
i

i i

T
i i i

L H T x w

H T H T

T x w





    

 



  

 






  

 

  



     



 

   T

1 1π , , π , , ,q qt z t z t      

   

.  where 

In order to obtain the sparsity solution, this motivates 
us to consider a penalized log-likelihood function. The 
penalized log-likelihood function with adaptive Lasso is 
defined as 

1

, , , ,
p

jn j j
j

Q H L H n      


       (4) 

where jn  is tuning parameters. Denote the maximum 
likelihood estimate (MLE) as  , , H   . Since   are 
shown to be consistent [21]. Therefore, we choose  

1

j j
 


  .  

3. Computation Algorithm 

We provide an iterative computation algorithm to solve 
(4). In the spirit of nonparametric maximum likelihood, 
we restrict  H ·  to be a non-decreasing step function 
with  0 0H   and with jumps only at 1 nm , 
where 

t t 
jt

1

n

n i
i

m

 is the jth smallest observed failure time and  




   is the total number of observed failures.  

Consider 

      
     
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   where  H t H  t t H  and   is  
 1nq k   

 , ,Q  
. A direct numerical maximization of the 

above  may be problematic since the 
number of parameters, n n , may be 
very large. We recommend the following iteration 
procedure, which has been stable and effective in our 
numerical experience. 

H
 1k m  

      0 0 0, , H 

      , ,k k kH 

 , ,Q H 
p q 

Step 2. Set the estimator to be  at the  

kth iteration. By differentiating  with repect 
to   , 1, ,H j nt j m  

     

, we can obtain  

Step 1. Choose an intial value . 

      1

1

; , ,
n

k k k k
j i i j n j

i

H t I T t t H   
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         
         
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

Then, j j
j

H t H t I t t 



   . 

Step 3. By differentiating  , ,Q H 
 ,

 with respect to 
   , ,Q H 

    1 1,k k  

  1, , 0kQ H   

, we obtain the score function,  and  

obtain the root  to the equation  

 by using the Newton-Raphson ite- 

rative algorithm. 
Step 4. Repeat Steps 2 and 3 until convergence. 

4. Simulation Studies 

In this section, we examine the finite sample perfor- 
mance of the proposed procedures. The model is 

   0 0 0
TH T X Z Wlog      

 

,     (6) 

where  
     T22, 8 1 , 3,0,1.5,0,0H t t t t t    

i

0 0 0  a n d 
the components of X is standard normal distribution. The 
correlation between X  and jX  is i j  0 with    
and 0.5 



. Z is uniformly distributed on [0,2]. The 
distribution of W is independent of the Z and 

~ 0,1W Un . The baseline hazard function of error  ,  

is     exp 1 expt t , where   is constant; see [2]  

and [21]. The model (6) reduces to the proportional 
hazards model if 0 

1
 and to the proportional odds 

model if   . We consider 0, 0.5 

 ˆ

 and 1. The 
censoring time, C, follows the exponential distribution 
with mean 1. The largest follow-up time is set to 2. 

In our simulation, we use the cubic B-spline with two 
interior knots to approximate the functional coefficient. 
The performance of  ·  will be assessed by using the 
square root of average errors (RASE) 

   
1 2

21 ˆ ,RA E
N

s st t    
 

, 1, ,st s N 

1

S
sN 
  

where  are the grid points at which the 

function ˆ t  is evaluated. In this simulation, N = 200 
is used. To improve the computational efficiency, we 
choose  by the method proposed by [22], which is  jn

 log
jn

nj

n

n



  , where nj

ˆ

 is maximum likelihood esti-  

mation without any penalty. To evaluate variable selec- 
tion performance of adaptive Lasso and Oracle method, 
we report the results over 100 simulations in Table 1. 
Both columns “C” and “IC” are measures of model 
complexity. Column “C” shows the average number of 
zero coefficients correctly estimated to be zero, and 
column “IC” presents the average number of nonzero 
coefficients incorrectly estimated to be zero. As in [14], 
the performance of estimator   will be assessed by 
using the generalized mean square error (GMSE), de- 
fined as 

    0 0
ˆ ˆGMSE .

T
TE XX       

The column “GMSE” and “RASE” report both the 
mean of 100 GMSEs and RASEs, respectively. 

We now summarize the main findings from Table 1. 
1) The estimation errors of the ALasso method ap- 

proach rapidly those of the oracle estimators as the sam- 
ple size increases. 

2) GMSE and RASE are decreasing with increase of 
sample size. 

Figure 1 demonstrates the performance of the curve 
estimation of  ˆ w 100n  for I with . From the 
Figure 1 we can see that the estimated curves are very 
close to the true curve  w

 ˆ w
0 . We may conclude that the 

proposed estimation of the function  performs 
reasonably well. For other cases, the figures perform 
similarly with Figure 1, to save space, we omit them. 

5. An Application 

Now we illustrate the proposed procedures by an analysis 
of the lung cancer data from the Veteran’s Admini- 
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Table 1. Simulation results for different v, ρ and different sample size. 

 n = 100 n = 300 

Method ρ v IC C GMSE RASE IC C GMSE RASE 

ALasso 0 0 0 2.5 0.191 0.441 0 2.58 0.039 0.217 

Oracle 0 0 0 3 0.146 0.413 0 3 0.034 0.216 

ALasso 0 0.5 0.01 2.26 0.257 0.481 0 2.25 0.081 0.237 

Oracle 0 0.5 0 3 0.185 0.476 0 3 0.050 0.241 

ALasso 0 1 0 2.20 0.273 0.614 0 2.35 0.127 0.291 

Oracle 0 1 0 3 0.162 0.619 0 3 0.057 0.291 

ALasso 0.5 0 0 2.45 0.191 0.442 0 2.62 0.062 0.220 

Oracle 0.5 0 0 3 0.140 0.434 0 3 0.057 0.223 

ALasso 0.5 0.5 0 2.42 0.204 0.563 0 2.46 0.077 0.238 

Oracle 0.5 0.5 0 3 0.150 0.548 0 3 0.044 0.240 

ALasso 0.5 1 0.01 2.48 0.344 0.550 0 2.36 0.096 0.280 

Oracle 0.5 1 0 3 0.216 0.558 0 3 0.047 0.284 
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Figure 1. Estimated and curves (solid line) for v = 0 (dash- 
dot line), and v = 1 (dash line). The left panel is the esti- 
mator of θ0(w) for ρ = 0. The right panel is the estimator of 
θ0(w) for ρ = 0.5. 
 
stration lung cancer trail. In this trial, 137 males with 
advanced inoperable lung cancer were randomized to 
either a standard treatment or chemotherapy. Details of 
the study design and method have been given by [23]. 
The data set has been analyzed by many authors, for 
example, [5] fitted the proportional hazards model and [8] 
considered the proportional odds model. In both methods, 
all covariates were assumed linear, which may not be 
true, particularly for the age effect. It is well known that 
age is a complex confounding factor, and its effect 
usually shows a nonlinear trend [15]. 

In our analysis, we take 1

= small cell, 3 = adeno, 4 = large), 3X  to be Karnofsky 
score, 4X  to be months from diagnosis, 5X  to be 
prior therapy (0 = no, 1 = yes) and W to be age. So we 
consider the following model: 

 
 

0 1 1 2 3 3 3 4 4

5 5 1

log H T X X X X

X W

   

  

    

  
   (7) 

For estimation, we first rescale age between 0 and 1, 
and use cubic B-spline with two interior knots to appro- 
ximate the nonparametric function as in simulations. We 
further apply the penalized likelihood function ap- 
proach to select significant variable. For tuning para- 
meters, we choose jn  by the method proposed by [22] 
as conducted in simulations. For comparison, we show 
the regression results for the proportional hazards model 
with  0  and the proportional odds model wi  

1
th

  , respectively. 
Table 2 gives estimators for the regression coefficient 

and corresponding standard errors. From Table 2, only the 
variable 3X  is selected, in other words, only Karnofsky 
score has significant effect on survival time. Our findings 
is the same with [5] expect the age. Figure 2 gives the 
estimator of the nonlinear components. From Figure 2, it 
is easy to see that age has nonlinear effect on the survival 
function. Therefore, the partially linear transformation 
models can be more powerful in discovering significant 
covariates than those assuming simply linear covariate  

X  to be the treatment: (1 = 
standard, 2 = test), 2X  to be cell type: (1 = squamous, 2  
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Table 2. Estimated coefficients for model (6). 

 v = 0 v = 0.5 

Variable MLE ALasso MLE ALasso 

X1 0.179(0.185) 0( 0) 0.106(0.244) 0( 0) 

X2 0.103(0.078) 0(0) 0.058(0.113) 0(0) 

X3 –0.031(0.005) –0.026(0.005) –0.041(0.006) –0.035(0.006) 

X4 0.003(0.009) 0(0) 0.002(0.012) 0(0) 

X5 –0.070(0.222) 0(0) –0.118(0.293) 0(0) 

 v = 1 v = 2 

Variable MLE ALasso MLE ALasso 

X1 0.086(0.287) 0(0) 0.110(0.354) 0(0) 

X2 –0.006(0.143) 0(0) –0.127(0.189) 0(0) 

X3 –0.046(0.007) –0.040(0.007) 0.053(0.009) –0.045(0.009) 

X4 0.000(0.015) 0(0) –0.0025(0.018) 0(0) 

X5 –0.108(0.350) 0(0) –0.063(0.437) 0(0) 
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 θ̂ w  for v = 0, 0.5, 1 and 2. Figure 2. Estimated of 

 
effects, which is consistent with the conclusions of [16]. 
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