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ABSTRACT 

In this paper explicit expressions and some recurrence relations are derived for marginal and joint moment generating 
functions of generalized order statistics from Erlang-truncated exponential distribution. The results for k-th record val- 
ues and order statistics are deduced from the relations derived. Further, a characterizing result of this distribution on 
using the conditional expectation of function of generalized order statistics is discussed. 
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1. Introduction 

A random variable X is said to have Erlang-truncated 
exponential distribution if its probability density function 
(pdf) is of the form 

   1 e e ,f x     1 e
0, , 0

x
x


 

 
 

 df

  (1) 

and the corresponding distribution function  is 

 F x  1 e
e , x

 
 0, , 0,

x
       (2) 

where 

   1F x F x 



. 

For more details on this distribution and its applica- 
tions one may refer to [1]. 

[2] introduced and extensively studied the generalized 
order statistics gos . The order statistics, sequential 
order statistics, Stigler’s order statistics, record values are 
special cases of gos  1, , , , ,X n m k 

 
. Suppose  
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for , 

  1 0 =1, 2,r k n r m r      ，  and  
is a positive integer. 

Choosing the parameters appropriately, models such as 
ordinary order statistics (      

1 2 1 0, 1nm m m k

 
    ), k-th record values 

 1 2 1, . . 1,i nk i e m m m k N        , sequential  

  1 ; , , , 0nn i    1 2i iorder statistics    , or- 
der statistics with non-integral sample size 

 1; 0i i   , Pfeifer’s record values     

 ; , , , 0    1 2i i n   and progressive type II cen- 
sored order statistics  ,im N k N 

pdf

 are obtained [2, 
3]. 

 , , ,The marginal  of the r-th gos , X r n m k
1 r n
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, is 
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where 
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[4-6] have established recurrence relations for moment 
generating functions of record values from Pareto and 
Gumble, power function and extreme value distributions. 

Recurrence relations for marginal and joint moment 
generating functions of gos  from power function distri- 
bution are derived by [7]. [8,9] have established recur- 
rence relations for conditional and joint moment gener- 
ating functions of gos  based on mixed population, re- 
spectively. [10] has established explicit expressions and 
some recurrence relations for moment generating func- 
tion of gos from Gompertz distribution. 

In the present study, we establish exact expressions 
and some recurrence relations for marginal and joint mo- 
ment generating functions of gos from Erlang-truncated 
exponential distribution. Results for order statistics and 
record values are deduced as special cases and a charac- 
terization of this distribution is obtained by using the 
conditional expectation of function of gos. 

2. Relations for Marginal Moment 
Generating Functions 

Note that for Erlang-truncated exponential distribution 
defined in (1). 

     e= 1f x F x .        (6) 

The relation in (6) will be exploited in this paper to 
derive exact expressions and some recurrence relations 
for the moment generating functions of gos  from the 
Erlang-truncated exponential distribution. 

Let us denote the marginal moment generating func- 
tions of  , , ,X r n m k  by    , , ,X r n m kM t  and its j-th 

derivative by  
   , , ,

j
X r n m kM t . 

We shall first establish the explicit expression for 

   , , ,X r n m kM t 1m. Using (4) and (6), we have when    
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binomially in (8), we get when  
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 On substituting for F x

      

    

 from (2) in (9), we have 
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Now on substituting for r  from (10) in (7) 
and simplifying, we obtain when  
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When  
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Since (11) is of the form 0 0 1m  
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Differentiating numerator and denominator of (12) 
 1r   times with respect to , we get m
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On applying L’ Hospital rule, we have 
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But for all integers  and for all real numbers x, 
we have [11] 

0n 
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n
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n
x i n 

1 !
u b bb

u b
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       (14) 

Therefore, 
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         (15) 

Now on substituting (14) in (13), we find that 
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Differentiating    , , ,X r n m kM t  with respect to t and 
evaluating at , we get the mean of the r-th 0t  gos
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and when  that 

   , , 1, k
rE X r n k E Y

1 e

r
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0m  1k 

           (18) 

as obtained by [12] for exponential distribution at 
. 

Special Cases 

1) Putting ,  in (11) and (17), the explicit 
formula for marginal moment generating function and 
mean of order statistics from Erlang-truncated exponen- 
tial distribution can be obtained as 
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. 

2) Setting  in (16) and (18), the results for upper 
records from Erlang-truncated exponential distribution 
may be obtained in the form 
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as obtained by [13] for exponential distribution at  
 1 e c   . 
A recurrence relation for marginal moment generating 

function for gos df

2 , 2, 1,2, ,r n n k

 from  (1) can be obtained in the 
following theorem. 

Theorem 2.1 For the distribution given in (1) and for 
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Proof [10] has shown that for a positive integer 
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 On substituting for F x

 

 from (6) in (20) and sim- 
plifying the resulting expression, we find that 
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Differentiating both the sides of (21) j times with re- 
spect to t, we get 
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The recurrence relation in (19) is derived simply by 
rewriting the above equation. 

At   in (19), we obtain the recurrence relations 
for moments of gos

   

 

 from Erlang-truncated exponential 
distribution in the form 
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Remark 2.1 Putting ,  in (19) and (22), 
we can get the relations for marginal moment generating 
function and moments of order statistics for Erlang-trun- 
cated exponential distribution as 

0m  1k 

  
 

     

 

 
   

:

1

1 r n

j j
X X

M t
:

1:

1
1 e 1

1 e

r n

r n

j
X

t

n r

j
M t M t



 

n r













 
 
    

 
 

 

and 

 

: 1:

1 e

j j
r n r nE X E X

j

n r





      


 

1
: .

1
j

r nE X   

1 1k 

 

Remark 2.2 Setting  and  in (19) and 
(22), relations for record values can be obtained as 
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Remark 2.3 At , 1j   1 e c 

1m  

   

  in (22), the 
result for single moments of gos obtained by [2] for ex- 
ponential distribution is deduced. 

3. Relations for Joint Moment Generating 
Functions 

Before coming to the main results we shall prove the 
following Lemmas. 

Lemma 3.1 For the Erlang-truncated exponential dis- 
tribution as given in (1) and non-negative integers a, b 
and c with , 
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and then integrating the resulting expression, we estab- 
lish the result given in (23). 

Lemma 3.2 For the distribution as given in (1) and 
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Making use of Lemma 3.1, we establish the result 
given in (27). 

When , 1m     0
, ,

0
a b cI   as ,   
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1 0
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1,2, , 1,m  

so after applying L’Hospital rule and (15), (28) can be 
proved on the lines of (16). 

Theorem 3.1 For Erlang-truncated exponential distri- 
bution as given in (1) and for  
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upon using the relation (6). Now expanding   1r
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Making use of Lemma 3.2, we establish the relation 
given in (30). 

Special Cases 

1) Putting ,  in (30), the explicit formula 
for the joint moment generating function of order statis- 
tics of the Erlang-truncated exponential distribution can 
be obtained as 
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2) Putting  

      

 in (30), we deduce the explicit ex- 
pression for joint moment generating function of upper k 
record values for Erlang-truncated exponential distribu- 
tion in view of (29) and (28) in the form 
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Making use of (6), we can derive the recurrence rela- 
tions for joint moment generating function of gos

1 , 2 and 1,2,r s n n k

 from 
(5). 

Theorem 3.2 For the distribution given in (1) and for 
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which, when rewritten gives the recurrence relation in 
(26). 

At 1 2  in (34), we obtain the recurrence rela- 
tions for product moments of gos from Erlang-truncated 
exponential distribution in the form 

   
  

   

, , , , , ,

, , , 1, , ,

, , ,
1 e

i j

i j

i j

s

E X r n m k X s n m k

E X r n m k X s n m k

j
E X r n m k X

 




  
   

 
 1 , , , .s n m k 

1t
0m  1k 

(35) 

One can also note that Theorem 2.1 can be deduced 
from Theorem 3.2 by letting  tends to zero. 

Remark 3.1 Putting ,  in (34) and (35), 
we obtain the recurrence relations for joint moment gen- 
erating function and product moments of order statistics 
for Erlang-truncated exponential distribution in the form 
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as obtained by [14] for exponential distribution at 
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Remark 3.2 Substituting  and , in (34) 
and (35), we get recurrence relations for joint moment 
generating function and product moments of upper k re- 
cord values for Erlang-truncated exponential distribution. 

4. Characterization 
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and hence the relation given in (37). 
To prove sufficient part, we have from (36) and (37) 
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Differentiating (40) both the sides with respect to x , 
we get 
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