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ABSTRACT 

The application herein involves the optimal management of renewable and nonrenewable resources within the context 
of a stochastic model of optimal control. By characterizing the two dimensional Bellman solution, three rules with re- 
spect to resource management are established. Within the context of coastal development, this analysis may help to ex- 
plain why renewable resources may become increasingly vulnerable to random external shocks as nonrenewable re- 
sources are depleted. Although existence of an optimal closed form solution to the multi-sector Bellman model remains 
an open mathematical question, this analysis offers a characterization which can be applied to other scenarios in eco- 
nomics or finance in which two assets following stochastic processes interact. 
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1. Introduction 

Dynamic programming, or optimal control theory, has 
been useful in helping economists to model dynamic 
change within various systems or applications. Most of 
the applications have employed deterministic methods of 
optimal control. Though this is helpful in understanding 
expected long-run outcomes, a more thorough under- 
standing of how systems behave requires a stochastic 
analysis. Stochastic optimal control would be an ideal 
methodology, but it has not been thoroughly exploited 
due to the absence of a universal closed form solution to 
the multi-dimensional stochastic optimal control problem. 
This paper provides a method for characterizing the solu- 
tion to the two-dimensional stochastic dynamic pro- 
gramming problem while examining the link between 
nonrenewable and renewable resource management. 

2. Application to Coastal Development 

Since the 1960’s, there has been much discussion con- 
cerning the management of our natural resources. Most 
scenarios involve a fundamental trade-off, whether it be 
the impact on coastlines from offshore oil drilling, the 
effect on wildlife of a pipeline from Canada to the Gulf 
of Mexico, or the consequences of new construction near 
a coastal estuary. This suggests a rather fundamental 
economic problem. That is, what are the optimal extrac- 
tion rates of dependent renewable and exhaustible re- 
sources when extracting one of the resources may nega-
tively impact the other? 

Hotelling [1] was the first to mathematically model 
optimal management of a nonrenewable resource, and 
Dasgupta and Heal [2], among others, have expanded 
upon Hotelling’s work. In contrast to nonrenewable re- 
sources, associated with each renewable resource is a 
renewal (or spawning) function [3,4]. The interdepend- 
ence of nonrenewable and renewable resources can be 
displayed through this spawning function. For example, 
coastal development can be characterized as the extrac- 
tion of a nonrenewable resource (undeveloped land) and 
its effect on a renewable resource (the indigenous fish or 
wildlife). Extraction of this resource eliminates natural 
habitats and increases pollution levels. As a result, de- 
velopment can prove detrimental to the spawning rates of 
wildlife by contributing to loss of habitat, disease or ster- 
ilization. Although less likely, a decline in fish or wild- 
life may also reduce the desire to further develop a coa- 
stal area. Finally, severe weather and unpredictable cata- 
strophic events such as oil spills influence natural re- 
source stocks and thus the optimal rates of harvest or 
extraction. Therefore, uncertainty is also an important 
consideration. 

3. Methodology 

Merton [5,6], Fischer [7], and Pindyck [8] provide sig- 
nificant insight in their study of financial assets using 
(one-dimensional) stochastic optimal control. Both de- 
terministic and stochastic optimal control have been par- 
ticularly useful in developing a theoretical foundation for 
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the study of resource management. In particular, Swal- 
low [9] studies the effect extraction of a nonrenewable 
resource has on a renewable resource employing deter- 
ministic optimal control. Depletion of the nonrenewable 
resource is assumed to have an adverse effect on the re- 
newal rate (spawning rate) of the renewable resource. 
The two types of resources interact through this rate of 
renewal. However, Swallow’s model has its limitations. 
The model does not allow for joint maximization of the 
harvest and extraction rates, and it is deterministic. 
Pindyck [10] uses stochastic optimal control to model the 
optimal extraction of a single nonrenewable resource 
when demand for the resource, as well as its reserve sup- 
ply, follow stochastic Ito processes. Although Pindyck 
begins his analysis within a global framework, the inabil- 
ity to derive a closed form solution forces him to take 
expected values, thereby localizing his results around a 
mean optimal rate of harvest. This essentially hides, or 
smooths-out, the stochastic element. Chen and Insley [11] 
consider regime switching in a forestry model. The opti- 
mal harvest rate is determined by the value of lumber. 
The value of lumber is estimated via a stochastic Bell- 
man process. The Bellman equation has frequently been 
used to estimate real options pricing in finance [12]. 
Insley and Rollins[13] use this approach, modeling the 
optimal harvest rate of lumber as a call option that can be 
exercised at any time. Theirs is a one dimensional 
Markov decision process model which is solved through 
empirical simulation. 

In contrast, this paper provides a general characteriza- 
tion of the solution to a stochastic version of the two- 
resource Swallow model using the methods of stochastic 
optimal control. In the most general version of our model, 
society acts to maximize expected discounted utility over 
an infinite time horizon, subject to two laws of motion. 
We examine the effect extraction of the exhaustible re-
source has on the optimal harvest rate of the renewable 
resource. This effect is transmitted by the renewal (or 
spawning) function. In the spirit of Swallow’s model, we 
adopt the paradigm of examining the effects of coastal 
development on an estuary. In this context we consider 
marine life to be the renewable resource and undevel-
oped coastal real estate to be the nonrenewable resource. 
It is assumed that although development benefits society 
by providing jobs and a higher standard of living, it also 
produces negative externalities, damaging the marine life 
within the estuary. 

The remainder of the paper is presented as follows. 
Section four extends the deterministic model in [9] to the 
stochastic case. In section five, the optimal harvest and 
extraction rates for the two natural resources are derived, 
and in the spirit of [1], [14] and [15] a stochastic “golden 
rule” describing the opportunity costs associated with 
consuming the resources is described. Society’s prefer- 

ences are revealed by the optimal extraction rates of the 
resources. Section six concludes the paper, and the final 
section contains a mathematical appendix. 

4. The Model 

The methods of optimal control are used to determine the 
optimal extraction rates of the natural resources. The 
model consists of an intertemporal social welfare func- 
tion which is maximized subject to two stochastic, dy-
namic constraints, or laws of motion. One characteristic 
of using the methods of optimal control is that the opti-
mal solution is time consistent. It has the property that all 
future decisions depend only on the initial stocks, and 
these stocks are updated with the passage of time. The 
optimal solutions reflect this “feedback control”1. The 
relevant variables and their arguments are defined in the 
following manner. 

4.1. Definitions 

 X t   existing stock of the renewable resource at time 
t, with initial stock, .  0X X

 E t   stock of the nonrenewable resource at time t, 
with initial stock,  0E E . 

 h t   rate of extraction of the renewable resource, 
or the harvest rate. 

 b t   rate of extraction of the exhaustible resource, 
or the development rate. 

 , ,F X E t   exogenous rate of renewal of the re-
newable resource, or spawning rate. 

Intuition suggests that  , F X E  is increasing and 
convex in both X and E. That is, I assume 

, , andX E XX EEF F F F  are all positive. I also assume that 
X and E are complementary in the sense that EF  in- 
creases with X and XF  increases with E. Thus, 

. Explicitly stated, one must find h and b satis- 
fying the following value function. 

0EXF 

   0
,

0

, max e , , ,t

h b
V X E E U h b X E


  dt       (P) 

subject to the stochastic Itô processes for X and E: 

  1d d 1d ,X F h t X z    and          (L1) 

2d dE b t E 2dz   .             (L2) 

 ,V X E  is the present value form of the value func- 
tion, or indirect utility function. Assume  ,V X E

2z

 is 
differentiable to the third order in each variable. With 
respect to the laws of motion,  and  are two 
standard Wiener processes, the continuous time analogue 

1z

1This is Bellman’s Principle of Optimality which states, “an optimal 
policy has the property that, whatever the initial state and control are, 
the remaining decisions must constitute an optimal policy with regard 
to the state resulting from the first decision,” [16] p. 83. 
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of the random walk. Thus, the instantaneous net growth 
rate of the renewable resource has mean, or ‘drift,’ equal 
to  and variance 2

1F h  . The instantaneous exploita- 
tion rate of the nonrenewable resource has drift, ,b and 
variance, 2

2 . If instead, (L1) were written in terms of 
relative change,   1dd dX F h X t X z  , then the 
initial stock could not be exhausted in finite time [17,18]. 
As written, this is intuitively appealing for it suggests 
that society has the distinct ability to eventually eliminate 
the resource. 

4.2. Preliminary Results 

Lemma 1: The optimal control problem (P) with respect 
to  1L  and  2L  must necessarily satisfy the present 
value form of the Bellman equation, 

     
,

0 m
h b

 

2 2 2 2
1 2 1 2

, , ,

1 1

2 2

X E t

XE

U h b X E V F h V b V

V X E V XE    

   

   


ax

XX





EEV

 
  (1) 

Proof. Located in Appendix. ■ 
The solution to the natural resource problem

 
can be 

obtained by solving the stochastic Bellman Equation (1). 
The first order conditions for the maximum are deter-
mined by differentiating the current value form of the 
Bellman function, 

     

2 2

,

1 1

2 2

E 

 

EJ U 
 , , ,b X

0 an

2 2
1 2 1 2

, , ,

,

X E

XX EE XE

U h b X J J F h J b

J X J E J XE



    

   

 






B X E

J U 

U U





0

   

U

(2) 

with respect to the control variables h and b [19]. The 
first order conditions for the maximum are: 

X h  and . By [20], concavity 
assumptions on  imply that, at optimal h 
and b, 

0b 
U h E

d 0X h E bJ U J U              (3) 

The second order condition for a maximum requires 
the hessian to be positive semi-definite [21]. That is, the 
determinant of the hessian must be positive, or 

. 2Uhh bb hb

The concavity assumption insures that hh bb  
are negative. Since U is assumed to be at least twice con- 
tinuously differentiable with the second derivative con- 
tinuous, hb bh . Since intuition suggests that the 
marginal utility derived from harvesting an additional 
unit of marine life should increase with additional de- 
velopment, assume hbU . For example, development 
clearly affects utility derived from marine life (one will 
enjoy the fruits of the sea more if they have a nice, warm, 
comfortable place to stay at night). In addition, intuition 

from our example supports the assumptions, 
. 

andU U

U

0

0, 0, 0 and 0hhh bbb hhb hbbU U U U  
hIf  and b  are solutions to the problem (P) with 

respect to (L1) and (L2) as determined by the Bellman 
Equation (2), then h  is the optimal harvest rate for the 
renewable resource and b  is the optimal extraction rate 
for the nonrenewable resource. In other words, in order 
to derive the expressions for the optimal harvest rate of 
the renewable resource and the optimal extraction rate of 
the nonrenewable resource, one must solve (2’), 

   

 2 2
2 22 .

X E

E

J bJ

E 

  

 


,

2 2
1 1

0 max , , ,

1

2

h b

XX XE E

U h b X E J F h

J X J XE J



  

 


 
  (2’) 

Then, solutions h
 and b  yield the maximum. 

The optimal Bellman equation satisfies Equation (2) 
without the “max”, 

   
 2 2 2 2

1 2

0 , , ,

1
2

2

X E

XX EE XE

U h b X E J J F h b J

J X J E J XE



1 2   

       

   
 

This equation holds only for the optimal values, h  
and b . Thus, for expositional convenience, one may 
assume without confusion that  Thus, 
the optimal Bellman equation becomes: 

and .h h b b  

   

 2 2 2 2
1 2

0 , , ,
1

2 .
2

X E

XX EE XE

U h b X E J J F h bJ

J X J E J XE



   

    

   1 2
   (4) 

Defining the shock term to be: 

 2 2 2 2
1 2

1
2

2 XX EE XEJ X J E J XE 1 2       , 

Equation (4) becomes,  

  0 ,X E , , .F h J bJ J U h b X E       (4’) 

The trick in solving for the optimal harvest rate of the 
renewable resource, h, is to first differentiate the Bellman 
equation with respect to each of the state variables. These 
equations reflect changes in the solution in response to 
incremental changes in stocks. 

Lemma 2. The Bellman stock derivatives are: 
1) Renewable Resource: 

   0 ,XX X X EX XF h J F J bJ     
    

(5a) 

with renewable resource shock 

    
 

2
1

1 2 ;
X X XX

XE

E DJ J X F h

J E b


 

    

 
 

2) Nonrenewable Resource: 

 0 ,XE E X EE E EF h J F J bJ J          (5b) 

with nonrenewable resource shock 
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      2
1 2 2 .E E XE EEE DJ J X F h J E b          

Proof. Located in Appendix. 

5. A Stochastic Golden Rule 

Theorem 1. The optimal harvest rate for the renewable 
resource is: 

   
. EE X X X X EX E E E X

XX EE EX XE

h F

J F J J J J F J

J J J J

 


    



 

Proof. Using (5a) and (5b  one can solve for the opti- 
m

denominator is the determinant of the 
he

)
al rates, h and b. Obtain the optimal harvest rate by 

solving (5a) for b, and then substituting this expression 
into (5b). ■ 

Note that the 
ssian of J. That is, 2det XX EE EX XED J J J J J     . 

Letting 2detEX
2and det ,EEJ D J    e 

can rea  the 
following manner: 

h F J   

J D J     on
rrange the optimal harvest rate equation in

(6

Dissecting this equation intuitively, an obvious re
is

  .E E X E X X X XJ F J F J      
) 

sult 
 that the optimal harvest rate is directly related to the 

spawning rate. Changes in the spawning rate, F, lead to 
changes in the harvest rate, h, of the same magnitude and 
direction. Also note that Equation (6) contains EF  and 

XF  which represent the marginal changes in the spawn- 
rate from changes in the resource stocks. Xing J  is the 

shadow price of the renewable resource. The act the 
shadow price has on the on the harvest rate is mitigated 
by the discount rate as well as by changes in the spawn- 
ing rate. X E

imp

J F  and  X XJ F  indicate that the extent to 
which the w pric cts the harvest rate depends 
on the sensitivity of the spawning function to existing 
resource stocks. For example, if development has a par- 
ticularly detrimental impact on the spawning rate (

shado e affe

EF  is 
large), then the optimal harvest rate will be lower for any 
given shadow price of the renewable resource. 

Similarly, E  and X  represent the sensitivity of 
the shocks to nges i e natural resource stocks. If  cha n th

orE X   is large, then even small changes in E or X 
 will exacerbate the effect of the shock. 

Similarly, if 
respectively

orE X   is small, then the resource 
stocks have li n the shocks. Finally, as ex- 
pected, increases in

ttle effect o
 lead to increases in h; for the more 

society discounts the ture the less it will conserve. 
In order to analyze this expression further it is n

 fu
eces- 

sary to know the signs of the coefficients   and  . 
Unfortunately, these signs depend on the s ns of e 
higher order derivatives of the value function and there is 
currently no mathematical algorithm for which the value 

function can be determined in general. However, for 
many reasons it is “natural” to focus on the case where 

ig th

 is positive and   is negative2. 
To begin with w n 0 andhe 0    

uously leads to 
an increase in 

the discount rate unambig a corresponding 
increase in the optimal harvest rate. Likewise a decrease 
in   will cause h to decline. Thus, if society heavily 
discounts the future it is less concerned with making cer- 
tain that future generations will be able to enjoy the re- 
source. As a result, society will opt for a relatively high 
rate of harvest. 

Note that whe r neve 0 and 0   , the impact of 
both andX E   on the  negative. Thus, 
the m  the shocks are to changes in the stocks, 
the lower the harvest rate. This represents a “precaution- 
ary motive” on the part of society. If uncertainty is exac- 
erbated by changes in the resource stocks then it is wise 
to extract the resources at a slower rate. 

Corollary 1. The stochastic golden rule f

harvest rate is
ore sensitive

or harvesting 
the renewable resource is3 

 F J J   

 .

E X

E X X X E Xh F F J        
      (6’) 

Proof. This foll directly from Equation (6). ■ 
 ex- 

J 

ows 
Equation (6) states that the returns to consumption

actly balance the returns to conservation. The returns to 
consumption, on the left hand side, involve F and ρ. The 
spawning function is present because consuming the re- 
newable resource still leaves society with the offspring of 
whatever stock remains. Also, one can see that the term 
 E XJ J   involves a weighted difference of the 

f the resources. The higher the difference 
in shadow prices, the more influence the discount rate 
has in driving up the optimal harvest rate. Thus, 

shadow prices o

 E XJ J   is the marginal return to consumption. 
side represents the returns to conserving 

the single period quantity, h. The remainder of this side 
of the expression contains the values of the marginal 
spawning rates, the value of the offspring that is gained 
by not consuming h, and the shock terms. The term in-
volving the difference in the shocks 

The right hand 

E X     can 
be interpreted as the “smoothing” that bout 
through conservation. 

Theorem 2. The op

 comes a

timal extraction rate for the non- 
renewable resource is: 

   
.XX E X E E XE X X X X

XX EE XE EX

J J F J

J J J J

   


  
(7

 

J F J J
b

)

2The author does not pretend to have solved this mathematical di-
lemma. However, there is much evidence suggesting that these are 
most likely the true signs for and   . We assume this when calcu-

lateing the optimal extraction rates of the natural resources. 
3Equation (6’) is the stochastic version of Equation (13’) in [9]. 
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Proof. Solve (5a) for the optimal harvest rate and s
st

ub- 
itute this expression into (5b) to get the optimal extrac- 

tion rate of the nonrenewable resource. ■ 
Next, let 

2det and det 2
XX XEJ D J J   D J     , 

then one can rewrite (7) as: 

 

   .X X X XJ F J   E X E Eb F J J       (8) 

For the same reasons detailed above, it is most
so

 rea- 
nable to investigate the case where 0 and 0   . 

Equation (8) illustrates the relationship between the two 
natural resources. The analysis is similar to the analysis 
of the optimal harvest rate. The shock terms influence the 
optimal extraction rate of the nonrenewable resource and 
the renewable resource in similar fashion. Once again the 
discount rate is positively related to the extraction rate of 
the natural resource. However, by extracting the nonre- 
newable resource society forgoes the potential value of 
the additional progeny associated with the marginal 
spawning rate. Simply put, by decreasing the stock of the 
nonrenewable resource EF and E XF J fall. Thus, the 
value associated with the offspring is lower (by 

E X X XF J F J  ) than it would have been if the non- 
renewable resource had been conserved. Therefore, ex- 
traction of the nonrenewable resource is a detriment to 
the spawning ability of the renewable resource. This is 
the method by which the externality is revealed. 

Corollary 2. The Golden Rule for the extraction of the 
nonrenewable resource is: 

  .X X X EF J      X E EJ J b F J      X  (9) 

Proof. The proof follows directly from Equation (

th



8). ■ 
As with the golden rule for the renewable resource, 
is equates the return to consumption with the return to 

conservation. 
Equations (5a) and (5b) also suggest an alternative ap- 

proach to analyzing the relationship between renewable 
and nonrenewable resources. Now, set Equation (5a) 
equal to Equation (5b). An alternative expression for the 
optimal harvest rate is: 

  
 

   
 

.

EEb J
h F

 
  EX E X X

EX XX

E X E X

EX XX

J F F J

J J

J J

J J



 


   




      (10) 

Of course, one could also use this to solve for an al- 
ternative optimal extraction rate. However, note that 

E X b hJ J U U    by the first order conditions (3). 
Thus, the expression, E XJ J , is the net shadow price 
or net marginal social value of the natural resources. Let 

E XJ J   , then E EE XEJ J   , and X EX XXJ J   . 
One can rewrite (10) as, 

      1
.X

X E X
X X

JE
E

X X

h F b F F
 
   

        

(11) 

Now it is possible to solve for the optimal develop- 
ment rate, 

      1X X
E X E X

E E E E

J
b F h F F

 
   

         

(12) 

Expression (12) is the optimal extraction rate function
for the nonrenewable resource in terms of the harves
associated with 

 
t rate 

the renewable resource. 
Use this approach to investigate the relationship be- 

tween the harvest and extraction rates. In order to ac- 
complish this, it is necessary to examine the coefficients 
of (11) and (12). If 0  , then 0E XJ J  , and the 
marginal unit of a unit of the nonrenewable resource 
(land) is worth more to society than the marginal unit of 
the renewable resource (marine life). Also, by the first 
order condition (3) it then follows that 0b hU U  , and 
the marginal utility associated with development is 
greater than the marginal utility associated with harvest- 
ing marine life. Thus, a society where 0   is more 
interested in enhancing its ability to develop (extract the 
nonrenewable resource). In contrast, if 0   then soci- 
ety will be more interested in improving its ability to 
harvest the marine life within the estuary (harvest the 
renewable resource). For example, a society with an 
abundance of undeveloped land is able to sustain a rela- 
tively high rate of development. Thus,  B EU J may 
be relatively low compared to  h XU J , so 0   
and this society would be most interested in enhancing its 
capacity to harvest the estuary. A society rich  re- 
newable resource would find that 0

 in the
  . This society 

would increase its utility the fastest if it were able to de- 
velop coastal property. As   increases, society in-
creasingly desires the nonrenewable resource over the 
renewable resource. Alternatively, as   decreases, the 
renewable resource becomes relatively more important to 
society. 

The term E X   is the marginal rate of substitution 
of associated with the net marginal social value,  . This 
indicates the tradeoff n the stock of the renewable 
resource and the stock of the nonrenewable resource 
necessary to keep 

betwee

 , the “nature” of the society, con-
stant. Alternatively, by the first order conditions, it also 
represents the tradeoff between fishing and development 
that is necessary to maintain the current difference in 
their marginal utilities. 

Figure 1 illustrates the relationship between extraction 
of the resources and the “nature” of society. The curves 
represent the tradeoff between the harvest rate of the re- 
newable resource, h, and the extraction of the nonre- 
newable resource, b, necessary for society to maintain its 
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nature, or character (maintaining constant  ). The slope 
of these “constant-character curves” is E X  . It is 
easy to see that 0E X   4. A movement towards the 
northwest indicates a trend towards a de resi  for more 
development. Movement in the south ection 
represents the de

east dir
sire of society to enhance its ability to 

harvest the estuary. See Figure 1. 
Now rearrange (10) to obtain, 

 E E X E Xb F J F h F JX X X           (13) 

Since E  and X  have opposite signs, Equation (13) 
on to (2) requires that the o

nity cost of evelo ent equal the opportunity cost 
ha

illustrates that soluti
 d

g t

pportu- 
of pm

rvestin he estuary plus the discount rate, as weighted 
by the character of the society,  . Recall that X EJ F  
and X XJ F  represent the potential increase in offspring 
through conservation of the nonrenewable and the re- 
newable resource respectively. The optimal extrac  
rate,  weighted by 

tion
 b, is E . This is because the opportu- 

nity cost of extracting b units of the nonrenewable re- 
source changes as more of the resource is extracted. Ex- 
tracting b units of the n renewable resource lowers the 
existing stock and the society becomes more interested in 
enhancing its ability to harvest the renewable resource. 
Thus, extracting the nonrenewable resource alters the 
character of society, and thus the opportunity cost of ex- 
tracting that amount in some other period. For similar 
reasons the optimal harvest rate, h, is weighted by X

on

 . 
Referring to the left hand side, extracting the nonrenew- 
 

-/+ηE 

+/-ηX 

 

h η4 

η5 

 

b

η3 

 

η2 

 

η1 

 

Figure 1. Increasing preference towards development (slope 

of ) alters optimal harvest and extraction rates. 

able resource has the cost associated with losing a por- 
tion of the resource stock, Eb . By extracting those units 

 

society also loses the potential increase in offspring of the 
renewable resource that would have been possible with 
that portion of the stock. For example, when some water- 
front property is developed, the habitats and food sources 
of the marine life are damaged. Therefore, the next gen- 
eration will be smaller than it otherwise would have been. 
Thus, X EJ F  represents this lost potential. 

Lastly, if E  is large, then even a small change in 
the sto the nonrenewable resource wil
ef

ck of l aggravate the 
fect of the ck. For example, as the stock of the re- 

source is reduced, foul weather or accidental environ- 
mental damage (such as oil spills) will have a deleterious 
effect on the capability of the remaining nonrenewable 
resource stock to complement the renewable resource as 
it attempts to regenerate. Similar reasoning holds for the 
right hand side, except that whereas X E

sho

J F  is associated 
with the relationship that exists between the resources, 

X XJ F  represents a direct and obvious loss in potential 
offspring through the harvesting of their prospective 
pro enitors. The right hand side also contains the dis-
count rate, weighted by the nature or character of society. 
This becomes Theorem 3. 

Theorem 3. The relationship defined by 

g

  Xh F JE E X E X X Xb F J F      

is the Golden Rule of resource interaction for society. It 
states that the return to consumption must equal the dif- 

   

ference in the opportunity costs of harvesting and ex- 
tracting the natural resources. 

Proof. This follows directly from the preceding argu- 
ment. ■ 

Again referring to Equation (13), if 0  , then the 
opportunity costs of extraction of the res ust be 
eq

ources m
ual. If 0  , then the opportunity costs associated 

with extraction are allowed to differ in a way that is con- 
sistent wit character of society. If society is more 
concerned with enhancing its ability to extract the non- 
renewable (renewable) resource then the opportunity cost 
associated with extraction of that resource is slightly 
greater at the optimum. For example, if 0

h the 

  , then the 
opportunity cost associated with development is higher. 
If 0  , then the opportunity cost of esting the 
estuary is higher. 

Note that 

harv

X   is the percentage change in society’s 
nature with respect to a change in the renewable resource 
st ise,ock. Likew  E   is the percentage change in so- 
ciety’s nature with respect to a change in the nonrenewable 
resource stock. Thu e discount rate is a function of the 
nature of society and the percentage changes in that nature 
that come about as its natural resources are extracted. 

s, th

      
     .

X X X XF h F J

b F JE E X E

    

   

    

   
     (14) 

h
4By the first order conditions . Since bU U    ,U h b  is assumed 

to be concave increasing in both variables, any increase (decrease) in b
will cause η to fall (rise). Likewise an increase (decrease) in h will cause
η to rise (fall). Thus, for h to remain constant, any increase in b must be 
accompanied by an increase in h. Thus, the constant character curves, 

, have positive slope. Moreover, it is interesting to 

note that 

b h EU U J J     X

0E X    is consistent with the case 

0, 00, 0 and       previously explored. 

Copyright © 2012 SciRes.                                                                                  TEL 



F. RAYMOND 508 

6. Conclusions 

This model describes the interaction of renewa
rces within the context of a stochastic, 
l of optimal control. It reveals a mul- 

rvest of the
re

athematical question, this 
an

 to thank Fwu-Ranq Chang fo
lier drafts. 

[1] H. Hotelling, “The Economics of Exhaustible Resources,”
Journal of Po , No. 2, 1931, pp
137-175. doi:1

ble and 
nonrenewable resou
intertemporal mode
tidimensional, stochastic, solution to a deterministic ver- 
sion of the two-resource Swallow [9] model. The analy- 
sis provides a multidimensional interpretation of the one- 
dimensional methods first derived by Bellman [16], and 
later explored by Merton [5] and Pindyck [8], [10]. Spe- 
cifically, once the initial stocks are established, depletion 
of the resources each follow stochastic Itô processes, or 
laws of motion. These laws of motion, linked via the 
spawning rate, serve as constraints in the maximization of 
a generalized intertemporal recursive objecttive function. 
Using this approach, we are able to demonstrate Stochastic 
Golden Rules for the harvesting of renewable resources 
and the extraction of nonrenewable resources. 

This characterization suggests that overly zealous ex- 
traction of the nonrenewable resource will reduce both 
the spawning rate and the optimal rate of ha  

newable resource. Moreover, the renewable resource 
becomes increasingly vulnerable to random external 
shocks as the nonrenewable resource is depleted. Within 
the context of coastal development, this analysis provides 
a logical economic explanation for the conjecture that 
extensive development may have severe, unpredictable 
repercussions for marine life. 

Finally, despite the fact that the existence of an opti- 
mal closed form solution to the multidimensional Bell- 
man model remains an open m

alysis offers a novel characterization of the relation- 
ship between interrelated heterogeneous resources. This 
approach can be applied to a variety of scenarios in eco- 
nomics or finance where two assets that follow stochastic 
processes interact. 
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Appendix  

Lemma 1. The optimal controls satisfying problem  P  
with respect to 1L  and  2L  must necessaryily sat-

isfy the present value form of the Bellman-equation, 

    
,

0 max , X E t
h b

U X E F h V b V
     


2 2 2 2
1 2 1 2

, ,

1 1
.

2 2XX EE XE

h b V

V X V E V XE        


 

Proof. First, recall that, 

As a result, 

t

 

Letting 

      0
,

0

0 , 0 , max e , , , dt

b
V X E E U h b X E t


   . 

h
 

      

 

,
0

,

0 , 0 , max e , , , d

max e , , , d .

t
t

o
h b

t
t

h b
t

V X E E U h b X E t

E U h b X E














 







 
 

s t t  , it follows that: 

s

By the Intermediate Value Theorem, 

 ,  

w
 th ansion for 

      

   

 

    

,
0

,
0

0 , 0 , max e , , , d

max e , , , d

max e , , , d

e , ,

t
t

s t
t

h b

t
t

o
h b

t

V X E E U h b X E t

E U h b X E

E U h b X E t

V X t E t













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




 


  


 




 




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









  

  

. 

,
0

o
h b 

    
0

e , , , d e , , ,
t

t tU h b X E t U h b X E t t  


  

here   1t    as 0t  . 
Now, substitute e Taylor exp

    , ,V X t E t    to get the following. 

 

.

-( , , ,b X E t) ( ) 1 ( (0), (0), )

2)
max 1 12 2, ( ) ( )

2 2

( )

EE XE

Xt Et

tt

t te U h t e V X E

VX
Eo th b e V E V t V X E

V X t V E t o t

1 (
2E XXX V E Vt t V X
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

 
 

 
                 

    



        

       

 

 

Next, rewrite the laws of motion (L1) and (L2) as 




      







  1 1-X F h t X z o t      

 2 2E b t X z o t        . 

 and 

processes, 
vide by
Using the multiplication rules for Wiener 

t , and let 0t di . Then, rearranging, the 
present value form of the Bellman equation: 

    
,

2 2 2 2
1 2 1 2 .

2 2XX EE XEV X V E V XE    

max e , , ,

1 1

t
t X

h b
V U h b X E V F h b
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


 


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

In the present value format all values are dated back to 
time zero. In particular, V  and X EV  are the marginal 
values or shadow prices of th resource stocks at 
time t, discounted b One can also write 
the Bellman equation in ent form. In this fo  
the shadow prices of the rce ks at time t will be 
given in terms of values at me t his form, discount- 
in

e two 
o. 

 value 
stoc

. In t

or

ack to time zer
 curr
resou

 ti

t v

rm

g begins after time t. This allows for continual update- 
ing. To derive the curren alue f m of the Bellman 
equation from the present value form, define 
   , e , .tJ X E V X E  Then,    e , ,t J X E V X E   

and  d
e e .

d
t t

tV J J
t

      Using the following, 

e , e , e , e ,

e , and e

t t t t
t X X E E XX XX

t t
EE EE EX EX

V J V J V J V J

V J V J
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    

 
 

(and rearranging) the present value form is transformed 
into the current value form of the Bellman equ

   

ation: 

 
,

2 2 2 2
1 2 1 2

0 X EJ F h J bmax , , ,

1 1
.

2 2

h b

XX EE XE

U h b X E J
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
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   

Lemma 2. The Bellman derivatives are 
 0 XX X X EX X XF h J F J bJ J       for the re- 

newable resource, and  
 0 XE E X EE E EF h J F J bJ J       f

renewable resource. 
or the non- 

Proof. Differentiate first with respect to the state 
variable X. The Bellman equation is transformed into 

 0

,

XX X X EX E

X X

h b

h b

F h J F J bJ J
x x

J U
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where, 
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Invoking the first order conditions of the Bellman 
 once again, equation

d d
and

d dX h E b

h h b
J U J U

b

x x x x

 
 

       (16a & b) 
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Now use (15) and (16a & b) to derive the first stock 
derivative of the Bellman equation, 

 0 XX X X EX X XF h J F J bJ J     
the stochastic ˆIto  differential of the shadow p

. No  that 
rice of the 

re

te

newable resource is, 

 

    d .

2

2

d d
2

1
d d

XE XXX

EEX XEX

J E J X
1

dX XXDJ J X

2
J E J

 

 

on and recalling the rules for multiplic

X E

 


Substituting the laws of motion (2) & (3) into this ex- 
pressi ation, 
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   

1 1 2 2

2 2

d d d d

1
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1
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d .

XXX EEX

XEX

J X t J E t

J X E t

 

 

 

 

 

Apply the expected value operator to the total differ-
ential 

   
d 0

1
limX t X
t

E DJ E DJ


  to obtain 
dt

    

   
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1
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Thus, 

      2 2
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2

1

2
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EEX XEX

E DJ J F h J b J X
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
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Since, 
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2
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it follows that the renewable resource shock is: 

      2
1 1 . X X XX XEE DJ J X F h J E b       2

(17) 

peat the process, differentiating this time with 
respect to the state variable, E. The Bellman equation is 
transformed into: 

Now re

 0

,

XE E X EE E

E E h b

h b
F h J F J bJ J

E E

h b

 
 
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J U U
E E

 


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  (18) 

where 
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.

E EE XE XXE

XEE EEEJ XE J E
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Substitute (3) and (17) into (18) to derive the “second 
partial” Bellman equation, 

   
 

 0 .XE E X EE E EF h J F J bJ J       

To derive the nonrenewable resource shock, note that 
 derivative of the shadow price of the nonre-

newable resource is: 
the ˆIto

 
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tion (L1) & (L2) into this ex-
pression. 

Substitute the laws of mo
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Following the multiplication rules for Wiener Proc-
es
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Note that 
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Then, using 
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one derive the alternative form for the renew-
able resource shock, 

 can now 
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