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ABSTRACT 

Players are unlikely to immediately play equilibrium strategies in complicated games or in games in which they do not 
have much experience playing. In these cases, players will need to learn to play equilibrium strategies. In laboratory 
experiments, subjects show systematic patterns of learning during a game. In psychological and economic models of 
learning, players tend to play a strategy more if it has been successful in the past (reinforcement learning) or that would 
have given higher payoffs given the strategies of other players (belief learning). This paper uses experimental data from 
the four sessions of a pilot experiment of a three-stage emission game to estimate parameters of experience- 
weighted-attraction (EWA) learning, which is a hybrid of reinforcement and belief learning models. In this estimation, 
we transform the strategy space for the three-stage game extensive form game to a normal form game. This paper also 
considers asymmetric information across players in estimating EWA parameters. In three of the four sessions, estimated 
parameters are consistent with reinforcement learning, which means that players tend to choose to strategies looking at 
past strategies that are more successful than the others. In the other session, estimated parameters are consistent with 
belief learning, which means that players consider forgone payoffs to update their beliefs that determine the probability 
of strategy choice. 
 
Keywords: Learning; Economic Experiments; Equilibrium Strategy 

1. Introduction 

Game theory has made inroads in virtually all fields in 
economics and other social sciences. The equilibrium 
concepts in game theory are internally consistent, gener- 
ating a clear prediction of how players should play in 
non-cooperative games. Empirical evidence, on the other 
hand, suggests people do not behave as game theory pre- 
dicts even in simple games. Rather, it shows that people 
learn through a game, and typically they play an equilib- 
rium strategy only as the game proceeds. How strategies 
evolve and how an equilibrium arises is of great interest. 
An equilibrium analysis approach, however, cannot show 
how equilibrium arises. 

Development of theories of equilibrium dynamics 
arose to explain how players might arrive at equilibrium. 
In biology, evolutionary theory uses the idea of natural 
selection in which types with higher payoffs than average 
expand their share of the population. In economics, 
Cournot suggested simple dynamics more than a century 
ago in which players make a decision based on a best 

response to the previous round of play. Neither evolu- 
tionary nor Cournot theories fully incorporate learning. 
Evolutionary theory has no consideration of learning; 
equilibrium strategy is automatically determined by the 
initial share of strategies. Cournot dynamics are an ex- 
treme case of learning patterns and too simple to explore 
the players’ behavior. For example, Cournot dynamics 
counts only the most recent observations but it is possible 
that more previous observations also influence strategy 
choices. 

While evidence of learning from laboratory experi- 
ments has been increasing, more detailed learning mod- 
els have also been developed. These models have pa- 
rameters that can be estimated using data from laboratory 
experiments. Two major learning models include rein- 
forcement learning and belief learning. Reinforcement 
learning assumes that players tend to choose strategies 
that generated high payoffs in prior rounds. In rein- 
forcement learning, attractions are used for numerical 
evaluations that determine the choice probability of 
strategies. Attractions are updated according to past 
strategy chosen by the player. Belief learning, on the 
other hand, assumes that players use forgone payoffs in 
the past to construct beliefs about what other players will 

*This paper is based on Chapter 4 of the author’s dissertation that was 
submitted to University of Minnesota. I would like to express my ap-
preciation to Stephen Polasky and Terrance Hurley for their valuable 
comments. All remaining errors are mine. 
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do for future choices. Players update beliefs based on the 
past observations. Cournot dynamics is a special case of 
belief learning in which only the most recent observation 
is counted. Fictitious play is another type of belief learn- 
ing model that counts all previous observations equally. 

Several studies have compared these two learning 
models. The findings so far indicated that the perform- 
ance of models depends on the games and no general 
conclusion has been drawn. Roth and Erev [1] showed 
that reinforcement learning performs better than belief 
learning in games with mixed strategy equilibrium (e.g., 
constant-sum games). On the other hand, Ho and Weigelt 
[2] showed that in games with multiple pure strategies 
(e.g., coordination games), a type of belief learning per- 
formed best. 

Camerer and Ho [3] proposed EWA learning as a hy- 
brid of reinforcement and belief learning. Like other 
learning models, in EWA, attractions determine the 
choice probability of strategies, and players update the 
attractions based on observations during the game. EWA 
learning has two key parameters. One parameter (δ in the 
model explained below) weighs between forgone payoffs 
and actually obtained payoffs in updating attractions and 
the other parameter (ϕ in the model explained below) 
discounts past attractions. With different values of these 
two parameters, EWA becomes either simple reinforce- 
ment learning or belief learning. EWA by construction 
contains both belief learning and reinforcement learning 
as special cases, so its fitness is at least as good as either 
of them. Put a different way, EWA always generates best 
fitness among the three learning models in terms log- 
likelihood statistics of estimates. 

In this paper, I estimate parameters in EWA using ex- 
perimental data obtained from the three stage emission 
game experiments conducted in Uwasu [4]. In this three 
stage emission game, players are initially assigned to one 
of the two equally-sized groups. In the first stage, players 
choose emission levels, “High” or “Low”. Emissions are 
thought of as a public bad so that they that negatively 
affects all players in the two groups. In the second stage, 
players who chose “Low” choose whether to punish those 
who chose “High” in the same group. In the third, play- 
ers observe the average payoff of the other group and 
decide if they move to the other group. The evolutionary 
game model shows how cooperation emerges and how 
migration breaks down cooperation in the long term. 

I deal with two features in estimating parameter values. 
First, a strategy space of an extensive form game for the 
EWA estimation is redefined as EWA deals with re- 
peated games of normal form. The emission game used 
in the experiment consists of three stages including an 
activity stage, punishment stage, and migration stage. 
Since each stage has two discrete choices, the new strat- 
egy specification is made according to these strategy 

combinations. The choices made in the first two stages 
determine a player’s type; cooperators who chose “Low”, 
enforcers who chose “Low” and “Punishment”, and de- 
fectors who chose “High”. Further, each of the three 
types is differentiated by groups, which generates six 
strategies in each period. Thus, with this strategy trans- 
formation, players play a formal game with six strategies. 
Second, I deal with imperfect information across group 
members for the estimation. In the emission game, play- 
ers can move across two groups while they share differ- 
ent information across groups. In EWA players use the 
average payoff of the other group and payoffs for each 
strategy in their group to decide whether to change 
groups. I construct information matrices for payoffs for 
the parameter estimations to take into account this asym- 
metric information across groups. 

Data from four sessions in the three-stage emission 
game experiment are used to estimate EWA parameters. 
Predictive errors, differences between the number of ac- 
tual choice of strategies and the predicted number are 
small across sessions. In C1 session (the session with 12 
participants), the number of predicted strategy choices in 
the final round are the same as the actual number of 
strategy choices. In this session, two players moved from 
Group 2 to Group 1 and in the final period all players 
play “High” in the final period. The EWA learning pro- 
duced the same strategy choices in the final period. In 
other words, EWA learning successfully shows how 
equilibrium strategy arises for this session. 

The estimated parameters also show a consistent pat- 
tern of learning across sessions. Specifically, in three of 
the four sessions, players appear to follow reinforce 
learning, which means that players tend to choose strate- 
gies that are more successful than others. In one session, 
the estimated parameters suggest the belief learning, 
which indicates that players see payoffs from forgone 
strategies. The estimated initial attractions are also con- 
sistent with the game structure of the experiment. Strate- 
gies that involve punishment and migration have smaller 
value of initial attractions than other strategies. Similarly, 
attractions of enforcers in the group with a severer pun- 
ishment rule are higher than those in the group with a 
soft punishment rule. 

Next section explains EWA learning in details. Section 
3 shows estimation strategies. Section 4 presents and 
discusses the results. Section 5 concludes the paper. 

2. EWA Learning 

Consider a normal form game with N players. Let Si be a 
set of pure strategies for player  1,2, ,i i N  . The 
strategy space of the game is expressed as  

1 NS S  S  . There are J strategies so that let 
 , , ,j J

i i
1 2, ,i i i is S s s  s s   be a pure strategy for 
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player i and  1 2, , , Ns s s s  S be a strategy profile. 
The payoff for player i is given by  π ,i i is s

T  
. Assume 

that this game is finitely repeated for  periods. 
Let  is t  denote a strategy chosen by player i in period 
t, and let     ,i i iπ s t s t  denote player i’s payoff in 
period t. 

EWA learning has two updated variables, attractions 
 j

iA t  and experience weights i  with given ini- 
tial values of 

 tN
 0j

iA  and  0iN  where the superscript 
j denotes a strategy and the subscript i denotes a player. 
An attraction determines the probabilities of strategy j 
being chosen at period t by player i. Each player has an 
attraction for each strategy and these are updated at the 
end of the period. Initial attractions,  0j

iA  are esti- 
mated using data from laboratory experiment. The ex- 
perience weight,  can be thought of as a players 
experience that determines the speed of updating for at- 
tractions and an identical experience weight 

 iN t

 0N  is 
given to attractions for all strategies. The initial experi- 
ence weights are usually assumed to be identical across 
players with a value of  0 1iN   for all i. This assump-
tion has no substantial effects on the learning process 
(Camerer 2003). 

An experience weight is updated according to 

 N t    1 1 1i iN t       for all 1t        (1) 

where 0 


 is a depreciation rate of past experience 
and 0, 

 

1  is a parameter that determines the update- 
ing speed of an experience weight. An attraction for 
strategy j for player i is updated according to (for t > 1) 

    

    

1

1 ,

j j
i i

i i

N t A t
N t

1 1

,j j
i i i   

A t

I s s t



 

    

     

  ,i i

s s 



 t

  (2) 

where jI s s t  is an indicator function 1  if 
 i

j
is s t , and  otherwise; and 0  0,1   is called 

an imagination weight parameter. 
Each parameter plays an important role. The parameter 

δ weighs the consideration of forgone payoffs (strategies 
that were not chosen in the past). The parameters ϕ dis- 
counts previous attractions. To make interpretation clear, 
it is useful to think special cases. When 1   and 

0   with , the attraction updating rule be- 
comes 

 0 1N 

           1 1j j
i i , πj

i i ,i i
j

iA t N t A t I   

0  1

s s t  s s t 

(3) 

which is the reinforcement learning because attractions 
of the strategies that have been successful increase more 
quickly and forgone payoffs are ignored. On the other 
hand, when  and   , the updating rule be- 
comes 

 
     

 
1 1 π ,

1

j j
i i i ij

i

N t A t s s t
A t

N t




    


 

    (4) 

which is the belief based model in the sense that strate- 
gies that were not chosen and a strategy that was chosen 
are equally considered in determining the future strategy 
choice. 

Attractions are mapped into a probability distribution 
function that tells a probability of strategy j being chosen 

in a period t by player i (so that  1
1

J j
ij

P t


 ). Typi- 

cally, the logit form is used: 

 
  
  1

exp
1

exp

j
ij

i J k
ik

A t
P t

A t






 


          (5) 

where λ is a payoff sensitivity parameter. The log-like- 
lihood function is then written as 

  

    
1 1 1

0 , , , ,

ln , 1

j

T N J
j j

i i i
t i j

LL A

I s s t P t

   

  

 
  

 
  

        (6) 

3. The Game Structure and Estimation  
Strategy 

3.1. The Game Structure 

The game structure in this experiment is a three stage 
emission game with N players. There are two groups that 
initially have equal population size before the game starts. 
The three stage game with group division proceeds as 
follows. 

Stage 1: Players get to see their earnings, the average 
earnings of their group, and the average earnings of the 
other group for the first two stages of the experiment in 
the previous round. Then, players choose whether to 
change groups. Changing groups is costly. 

Stage 2: Players simultaneously choose emission lev- 
els, “High” or “Low”. The emission game is global pol- 
lution so that emissions negatively affect all the players 
in two groups. 

Stage 3: Players observe actions in their group at the 
second stage. Players who chose “Low Activity” choose 
whether to punish those who chose “High Activity” in his 
group. Choosing punishment is costly and the two groups 
have different punishment cost structure: the punishment 
in one group is more severe to those who chose “High” 
than in the other. 

What is an equilibrium strategy of this stage game? 
Note that Nash equilibrium of one shot emission game is 
“High” for all players. Thus, backward induction sug- 
gests that {“High”, “Not Punish”, “Not Move”} is a 
sub-game perfect equilibrium for the (one-period) three 
stage game. In a finitely repeated game of this three stage 
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game, again backward induction suggests {“High”, “Not 
Punish”, “Not Move”} for all players in all periods is a 
subgame perfect equilibrium [4]. 

I used data from four experimental sessions for the es- 
timation. These four sessions are different in several 
points. First, subjects’ background is different across 
sessions. In three of the four sessions, most subjects were 
from the Applied Economics and Economics Under- 
graduate Programs (econ), and in one session, subjects 
were from the Conservation Biology Graduate Program 
(cons bio). Second, in three of the four sessions, subjects 
got paid for the participation but in the other session 
subjects did not get paid. Third, these sessions are dif- 
ferent in that subjects know each other in the experiment. 
In two sessions, subjects were recruited from several 
classes so that they were supposed to be strangers each 
other. But in the other two sessions, subjects were re- 
cruited from one class, so they might know each other. 
Finally, the number of rounds and players differ across 
sessions. Table 1 summarizes this information. 

3.2. Estimation Strategy 

The data used in the estimation are from the three-stage 
emission game experiment. The game in the experimen-
tal sessions is extensive form game. Because the EWA 
learning assumes a normal form game, the game needs to 
be redefined as a normal form game. Given the three 
stage with discrete choices, six combinations of players’ 
type can be constructed, as in Table 2. 
 

Table 1. Experimental Information. 

Session S1 S2 S3 C1 

# of Players 10 10 8 12 

# of Round 10 11 7 7 

Subjects major econ econ cons bio econ 

Under graduate or graduate under under graduate under 

Know each other? no no yes yes 

Note: “econ” denotes economics programs and “cons bio” denotes conser- 
vation biology. 

 
Table 2. Re-defined action space. 

Strategy Action 

1 Choose “High” in Group 1 

2 Choose “Low and Not Punish” in Group 1 

3 Choose “Low and Punish” in Group 1 

4 Choose “High” in Group 2 

5 Choose “Low and Not Punish” in Group 2 

6 Choose “Low and Punish” in Group 2 

The definition of this strategy specification is similar 
to the concepts of “players’ type” in the evolutionary 
game model. Now, I show the estimation strategy. 
 Step 1 Construct two information matrices using 

the experimental data: Let I be a  in- 
dicator matrix expressed as: 

 N J T 

  

   

1 11

1N N

I I T

I

I I T

 
   
  


  


            (7) 

where     1 , , T
i i i I t I t I t    ’ is a 6 × 1 vector in 

which   1J
iI t   if    j

i is t s t  and , otherwise. 0
Let Π is a  N J T   payoff matrix expressed as: 

  

   

1 11

1N N

T

T

   
    
   


  


            (8) 

where      1 , , T
i i it t  t     ’ is a 1J   vector 

with     ,j j
i i it s s t π . 

Note that, in the experiment, players had six strate- 
gies; 1,2, ,6j  

4,or 5,or 6j
. If a player chose a strategy 

from   (1,or 2,or 3) in period t-1, choos- 
ing a strategy from  in period t 
requires him to move from Group 2 to Group 1 (or 
Group 1 to Group 2), which involves a moving cost. 
The moving cost is taken into account in constructing 
the payoff matrix for the parameter estimation. For 
example, if he chose Strategy 6 while he had chosen 
Strategy 1 in the previous period, he is supposed to 
move from Group 1 to Group 2 so that his payoff from 
choosing Strategy 6 is reduced by the moving cost. 

1, 2, or 3 4, 5,or 6j  

 Step 2 Write the log-likelihood function: Because 
the conditional logit function is a non-linear mo- 
del, the estimation is done by a maximum likeli-
hood method. The full log-likelihood function for 
our case can be then written as 

  

    

     
  

1 1 1

1 1 1
1

0 , , , ,

ln , 1

exp 1
ln ,  

exp 1

j

T N J
j j

i i i
t i j

j
T N J

ij
i i J k

t i j ik

LL A

I s s t P t

A t
I s s t

A t

   





  

  


 
   

 
 
  
  

 

 


 (9) 

where λ is called a payoff sensitivity parameter. 
The practical difficulty in estimation is that the ar- 

guments of the probability function are a non-linear 
functions of parameters. Moreover, the information 
used in the calculation of attractions varies over peri- 
ods because it depends on the history of strategies. (For 
simplicity, the superscript j and the subscript i are 
omitted hereafter.) For example, uses only  1A  0  
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and , but  0  A T  uses  Ι t  and  for all 
. 

 t
1, ,t T

 

However, note the attraction updating Equation (2) 
is expanded to: 

    





 

0 0

1 1

1 2

π

A

I

I

I t

I t









   
 

 

  



  
  
    

   

1

π 1

π

1 1

   

N
N t

t





  
   

 




1

2

1

j t

t

t



 

 

 

 





 

 

 

 

 

N J


 
 2

π 1t



 

 0

iA t

0A
 I t

 

where  is a  vector,  is a sca- 
lar,  and 

  1  N
t

   

 are  vectors. (Those 
are from columns in the matrices I and Π, respectively: 
e.g.,  is the first column of I). Furthermore, 
Camerer [5] states that the initial value of N has little 
effect on the process of learning, so . Having 

 substantially simplifies the evolution of N: 

N J



 1

 1I

 0 1
 0 1N

N
1 1t tN t                (11) 

is here used. Using the Equations (10) and (11), we can 
explicitly write the log-likelihood function in MATLAB 
programming codes. 
 Step 3 Maximize the likelihood function in 

MATLAB: Once a log-likelihood function is de- 
fined, it is maximized with respect to the pa- 
rameters subject to  0,1 , 00 and   by 
using a Newton method. 

I assume that initial attractions are identical among 
initial group members, but they can be different across 
groups. Because I have two groups in all the experi- 
mental sessions, there are twelve initial attractions. 

Finally, recall that attractions are mapped into a 
probability function to determine the probability of a 
strategy chosen. In order to have the sum of the prob- 
abilities be one, I fix one of the attractions for each 
group at zero. Thus there are ten initial attractions to be 
estimated. The total number of estimated parameters is 
therefore 15:

  
is  

      4 5
1 1 1 10 , 0G G GA A

ed at 0
 

 1 20 ,GA
 0 fix
 

 3 0 ,GA

  ,
 

1 0 , A
6

1GA
 5

2 0 , 6
2 2 2 20 , 0A A

ed at 
1 20 ,G GA A

  2 0 fix

4 0 ,GA
0

G G  is  
, δ, κ, ϕ, and, λ. 3

GA

4. Results 

Table 3 reports the estimation results for the four ex- 
perimental sessions. The estimated learning parameters 
vary across sessions. However, Sessions 1, 2, and 3 have 
similar parameter values for δ and ϕ: δ are close to zero 
and ϕ are close to one. This combination of parameter 
values indicates reinforcement learning. Δ = 0 means 

that players do not consider forgone payoffs and ϕ = 1 
means players equally weigh past experience. Meanwhile, 
players in S3 show a different learning pattern with δ = 
0.62, and ϕ = 0. This indicates that the learning pattern is 
close to the belief learning with putting an equal consid-
eration on what happened in the periods. 

Note also that κ in the four sessions is close to one. 
Recall the parameter κ controls for the speed of growth 
of a particular attraction. The larger the κ is, the quicker 
the attraction grows. So, having κ = 1, players stick to 
playing the same strategy. This result makes sense be- 
cause many players in the sessions tend to keep choosing 
the same strategy (i.e., “High”, “No Movement”, and “No 
Movement”) in the emission game. 

The estimated parameters from the four sessions are 
plotted in an EWA parameter configuration box (Figure 
1). This box clarifies the relationship between the values 
 

Table 3. Estimation results. 

 C1 S1 S2 S3 

A1
G1(0) 0.04 0.00 0.00 0.62 

A2
G1(0) 1.00 0.92 0.98 0.00 

A3
G1(0) 0.988 0.999 0.5 0.999 

A4
G1(0) 0.58 0.14 0.19 1.07 

A5
G1(0)) 8.37 12.22 21.38 12.36 

A1
G2(0) 8.31 26.56 13.94 −8.92 

A2
G2(0) −0.72 19.59 9.87 11.34 

A4
G2(0) −1.18 18.32 −10.23 −5.98 

A5
G2(0) −1.17 −3.53 −10.42 −5.87 

A6
G2(0) 3.94 −29.67 4.31 0.14 

δ 3.84 −29.93 −12.41 −3.02 

κ 3.93 42.54 13.97 14.18 

ϕ 3.86 36.19 4.97 −19.72 

λ 3.89 35.17 13.01 15.19 
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Figure 1. EWA parameter configuration box (Camerer [5]). 
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of each parameter and the corresponding learning pat- 
terns. For example, at the corner δ = 0 with κ = 0 or 1, 
this figure shows it is average reinforcement learning or 
cumulative learning. In average reinforcement learning, 
attractions do not cumulate but the rate of decay depends 
on the value of ϕ. In cumulative reinforcement learning, 
attractions cumulate so that players tend to stick to the 
same strategy. In this figure, it is clear that players in S1, 
S2, and C1 follow cumulative reinforcement (because of 
κ close to one) while those in S3 follow the belief learn- 
ing. 

Comparative studies of learning models have sug- 
gested that learning patterns differ across types of games 
[1,2,5]. However, we here observe different learning 
patterns in the same game. What possibly explains the 
difference in learning patterns across the sessions with 
the same game is the subjects’ characteristics. The sub- 
jects in S1, S2, and C1 were undergraduate students from 
intermediate economics classes. Subjects in S3 were 
graduate students majoring in conservation biology. Thus 
academic background and academic years are different in 
these two groups. Some studies show evidence that eco- 
nomics majors tend not to cooperate in the public goods 
game. Yet, these studies provide no evidence that the 
high likelihood of choosing defection emerged as a result 
of different learning pattern. A second possibility is the 

depth of understanding or educational levels. The EWA 
theory provides no clue about which learning is more 
advanced or requires more sophistication. There are other 
factors that affect learning patterns. For example, 
whether subjects know each other affects learning pat- 
terns. In fact, in S3, subjects knew each other, but it is 
true for C1 as well. Therefore, this stranger effect re- 
mains unclear. 

We can see the estimated initial attractions reflect the 
observations in the experimental sessions. First, attract- 
tions for strategies that require no migration seem to be 
higher than those for strategies that involve migration. 
(Higher values of attractions yield higher probabilities of 
choosing the strategy.) That is, for  1 0j

GA , attractions for 
1,2,3j   are generally higher than those for 4,5,6j  . 

Likewise, for  2 0j
GA , attractions for  are 

generally higher than those for . Second, com- 
paring 

4,5,6j 
1,2,3j

 3
GA 1  with 0  6

2 0GA , I show that Group 2 
members are more likely to choose “Punish” than Group 
1 members, which reflects the fact that Group 2 has a 
more severe punishment rule than Group 1. Uwasu [4] 
provided statistical evidence for this observation. 

To see the overall fitness of EWA learning, I calcu- 
lated predictive choice probabilities using the estimated 
parameter values. Figure 2 presents the predictive errors 
in choice probabilities for the four sessions. The predict- 

 

 

Figure 2. Predictive probabilities errors.  
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tive errors are calculated by taking the difference be- 
tween actual choice probability and predictive probabil- 
ity. The largest errors of probabilities do not exceed 0.25 
for one type in any period in the four sessions. In some 
rounds of sessions there are large predictive errors. The 
data from S1, S2, and S3 show that these large predictive 
errors are produced when there were sudden changes in 
strategy choices. For example, in S3 most players chose 
defection in Group 1 in the first three rounds, but in the 
fourth round, two enforcers suddenly emerged. The pre- 
dictive error for this case was 0.22. Similar patterns are 
seen in the middle rounds of S1 and S2, too. Nevertheless, 
the large predictive errors shrink within two rounds of 
the game, which implies the reflection of attraction up- 
dating in the EWA learning. 

Among the four sessions, EWA best fits the actual 
choices in C1 with the smallest predictive errors. I calcu- 
lated the number of strategy choices using the predicted 
probability. Figure 3 shows the actual and predictive 
numbers of strategy choices for the class session as an 
example. In the final round, three of the three subjects in 
Group 1 and seven of the seven subjects in Group 2 
chose “High” (Defector). And the predictive number of 
choices is exactly the same in the final round as the ac- 
tual number. This is exactly the stable equilibrium in the 
context of evolutionary theory. In other words, EWA was 
able to show how equilibrium strategy arises in an ob- 
servation at the laboratory level. 
 

 
(a) 

 
(b) 

Figure 3. Actual vs. predictive numbers of strategy choices 
in C1. 

5. Concluding Remarks 

This paper estimated parameters in EWA learning using 
data from the three-stage emission game with punish- 
ment and endogenous grouping mechanism. The Maxi- 
mum-likelihood estimation results showed a consistent 
pattern of learning across experimental sessions. In three 
of the four sessions, players are following reinforcement 
learning while one shows a type of belief learning. The 
EWA generated good fit to the real data and the predic- 
tive errors were small in most sessions. In one session, 
EWA produced stable equilibrium prediction. In general, 
EWA generated much better prediction of strategy 
choices than the evolutionary game models. Note that the 
evolutionary game model has no parameter that explains 
different learning patterns. For example, as explained in 
Uwasu [4], the evolutionary game model cannot explain 
a cyclical patter between choosing “High” and “Low” as 
in S1, EWA predicted more or less this choice pattern. In 
addition, the speed of learning in the evolutionary game 
model is very slow while players in the experiment use 
more information and thus learn more quickly. Finally, 
the results indeed had significant implications because 
even the seemingly identical equilibrium result is a- 
chieved through different paths. In particular, the estima- 
tion results suggest that the learning patterns are associ- 
ated with players’ characteristics. The sessions with un- 
dergraduate economics majors showed reinforcement 
learning while a session with graduate conservation bi- 
ology majors showed reinforcement learning. Experi- 
mental literature has examined how characteristics of 
players and groups such as gender, academic background, 
or knowing each other affect the provision of public 
goods [6,7]. Yet, to the best of my knowledge, no one 
has examined the question of how characteristics of 
players and groups such as gender, academic background, 
whether players know each other, affects learning be- 
havior in games. 
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