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ABSTRACT 

Redistributions of income can be considered as variable transformations of the initial income variable. The transforma- 
tion is usually assumed to be positive, monotone-increasing and continuous, but discontinuous transformations have 
also been discussed recently. If the transformation is a tax or a transfer policy, the transformed variable is either the 
post-tax or the post-transfer income. A central problem has been the Lorenz dominance between the initial and the 
transformed income. This study considers analyses of other properties of the transformed Lorenz curves, especially its 
limits. We take in account mainly two cases (a) the transformed variable Lorenz dominates the initial one and (b) the 
initial Lorenz dominates the transformed one. For applications, the first case is more important than the second. The 
limits obtained are not accurate for a specific transformation, but do hold generally for all distributions and a broad 
class of transformations so that, if one pursues general conditions the inequalities obtained cannot be improved. 
 
Keywords: Pareto Distribution; Tax Policy; Transfer Policy 

1. Introduction 

Redistributions of income according to tax or transfer 
policies can be considered as variable transformations of 
the initial income. The transformation is usually assumed 
to be positive, monotone-increasing and continuous. The 
initial results are given in 

Theorem 1. [1-3] Consider a nonnegative random 
variable X with the distribution function  XF x , mean 

X  and Lorenz curve . Let  be a con- 
tinuous monotone increasing function and assume that 

 exists. Then Lorenz curve 

 XL p  u x

 E u X Y   pYL  for 
 exists and  XY u

1)  if    Y XL p L p
 u x

is monotone decreasing, 
x

2)  if    Y XL p L p
 u x

x
 is constant and 

3)  if    Y XL p L p
 u x

x
is monotone increasing. 

The importance of case (1) is that it gives the inequal- 
ity effect of progressive taxation. The case (2) corre- 
sponds to flat taxes. The last case (3) is of minor eco-
nomic importance, but it is included in order to complete 
the theorem. Recently, Fellman [4,5] has also discussed 
discontinuous transformations. If the transformation is 
considered as a tax or a transfer policy, the transformed 

variable is either the post-tax or the post-transfer income. 
Under the assumption that Theorem 1 should hold for all 
income distributions, the conditions are both necessary 
and sufficient [2,4]. Hemming and Keen [6] have given 
an alternative version of the conditions. In this study we 
consider other general properties of the transformed Lo-
renz curves. 

2. Background 

Consider income X, defined on the interval  ,a b , 
where 0 a x b     , with the distribution function 

 X xF , density function  Xf x , mean X , percentile 

px  defined as  X px pF   and Lorenz curve  XL p . 
The general formulae are 

 d
b

X X
a

xf x x                  (1) 

and 

   1
d

px

X X
X a

L p xf x x


            (2) 

where pa x b  . 
We consider the transformation  Y u X , where 
 u   is non-negative, continuous and monotone-in- 

creasing. Since the transformation can be considered as a 
tax   u x x  or a transfer policy , the  u x  x
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transformed variable is either the post-tax or the post- 
transfer income. 

The mean and the Lorenz curve for variable Y are 

   d
b

Y X
a

u x f x x                (3) 

and 

     1
d

px

Y
Y a

L p u x f x x


  X          (4) 

A fundamental theorem concerning Lorenz dominance 
is [2,4]. 

Theorem 2. Let X  be an arbitrary, non-negative, 
random variable with the distribution  XF x , mean 

X  and Lorenz curve . Let  be a non- 
negative, monotone-increasing function, let 

 XL p  u x
 Y u X  

and let   YE Y   exist. The Lorenz curve  pXL  of 
Y exists and the following results hold: 

1)  if and only if    Y XL p L p
 u x

x
 is mono- 

tone-decreasing, 

2)  if and only if    Y XL p L p
 u x

x
 is constant 

and 

3)  if and only if    Y XL p L p
 u x

x
 is mono- 

tone-increasing. 
In the following, we consider additional properties of 

the Lorenz curve . If   YL p
 u x

x
 

is constant, then according to Theorem 1 (2), 
 and the transformed Lorenz curve is 

identical with the initial one, a case which will be ig- 
nored. 

   Y XL p L p

3. Results 

3.1. The Ratio 
 u x

x
 Is Monotonically  

Decreasing 

According to Theorem 1  Y yF  Lorenz dominates 
 X xF . We introduce the values M and m such that  

 
lim
x a

u x
M

x 
    

and  

 
lim 0
x b

u x
m

x 
  . 

Consequently, 

 
0

u x
M m

x
     . 

Let  X px pF  ,  X qx qF  . Assume that p q  
and that pa x qx x b     and consequently, 

     p q

p q

u x u xu x
M m

x x x
    . 

Note that points  and  are chosen arbitrarily and 
that the equality signs cannot be ignored because we also 
include the functions  

p q

 u x

x
, 

which are not uniformly strict decreasing in the class of 
transformations. Hence, we have to include members for 
which equalities hold for almost the whole range and, in 
addition, sub-intervals in which strict inequalities hold 
can be chosen arbitrarily short and located arbitrarily 
within the range  ,a b . If one pursues general condi- 
tions, the inequalities (8) and (9) obtained below cannot 
be improved. If we assume that  

 u x

x
 

is monotonically decreasing, then  must be con- 
tinuous, otherwise  

)(xu

 u x

x
 

should have positive jumps [1]. 
From  

   p

p

u x u x

x x
  

it follows that    p px u x xu x . The integration over 
the interval p qx x x   yields 

       

       

           

d d

d d

q q

p p

q q

p p

x x

p X p X
x x

x x

p X p X
x x

p Y Y Y p X X X

x u x f x x xu x f x x

x u x f x x u x xf x x

x L q L p u x L q L p 





  

 

   (5) 

and 

      
    p X

Y Y X X
p Y

u x
L q L p L q L p

x




   . 

Analogously, it follows from  

   q

q

u xu x

x x
  

that    q qx u x xu x , and we obtain 
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      
    q X

Y Y X X
q Y

u x
L q L p L q L p

x




   .   (6) 

Consequently, 

 
         

 
    

p X

X X Y Y
Y p

q X

X X
Y q

u x
L q L p L q L p

x

u x
L q L p

x









  

 

.   (7) 

When  in (7), then  0p 

   
 

0, 0,
p

Y X
p

u x
L p L p M

x
    

and one obtains 

   
 

 q XX
X Y X

Y Y

u xM
L q L q L q

x


 

 
q

.      (8) 

The lower bound gives an evaluation of how much the 
Lorenz curve has increased. The upper bound is of minor 
interest and is commented on later. 

When  in (7), then  1q 

   
 

1, 1,
q

Y X
q

u x
L q L q m

x
    

and one obtains 

    

 
  

1 1

1 1

X
X Y

Y

p X

X
Y p

m
L p L p

u x
L p

x








  

  

. 

In order to compare these inequalities with the ine- 
qualities in (8), we change the argument from p to q, and 
the inequalities are 

    
 

 1 1 1 1
q XX

X Y X
Y Y q

u xm
L q L q L q

x


 

        

(9) 

The lower bound gives an evaluation of how much the 
Lorenz curve has increased. The upper bound is of minor 
interest and is discussed later. 

Inequality (8) is applicable to small values and ine- 
quality (9) to large values of q. For small values of q, we 
consider the difference 

   
 

 1

q X

Y
Y q

u x
D q L q L q

x




  X        (10) 

and for large q we consider the difference 

   
 

 2 1 1
q X

Y
Y q

u x
D q L q L q

x




   

In general, 

   d

d

qqY

Y Y

u xyL q

q  
   

and  
 d

d
qX

X

xL q

q 
 . 

The ratio  
 u x

x
 

is decreasing and consequently 

   d d d d
0

d d d d

q q q
q

q q q q

u x y y
x

q x q x x x q

     
                

. 

Now we differentiate and obtain  1D q

      

 
 

 
 

1d

d

d

d

d
0

d

q q qX

Y Y q X

qX
X

Y q

qX
X

Y q

u x u xD q x

q x

u x
L q

q x

u x
L q

q x


  







 

 
 
 
 
 
   
 
 

 

Consequently  1D q  is increasing from zero at 0q   
to a maximum  1 0D q  for  (say). 0

Now we differentiate  and obtain 
q q
 q2D

      
    

    

2d d
1

d d

d
1 0

d

q q qX
X

Y Y Y q

qX
X

Y q

u x u x u xD q
L q

q q

u x
L q

q x


  




 
    
 
 

 
   
 
 

 
x

Consequently is decreasing from  2 0D q
shift fr

 2D q   to 
zero when 1q  int 0q , at which the om 
(10) to (11) ormed, is ch  so that 

. The po
f is per osen

   1 0 2 0D q D q . Now, 

 
 

  

 
 

 

0

0

0

0

0 0

0 0

1 1
q X

Y X
Y q

q X

Y X
Y q

u x
L q L q

x

u x
L q L q

x









  

 

; 

that is, 

   0 0

0 0

1 0 and
q X q Y

Y q q X

u x u x

x x

 
 

   . 

X .     (11) 
Consequently, 

      1 0 2 0 0 0Y XD q L q L q    D q
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Since the ratio  
  X

Y

u x

x




 

is decreasing, the difference  

 0qu x


0

0Y

q Xx




  

shifts its sign from plus to minus at nt . Hemming 
 d

poi  0q
nzand Keen ([6]) gave the condition for Lore ominance 

that  
 u x

x
 

crosses the  

Y

X




 

level once from above. Our results above have shown 
that the crossing point is 0q . The condition obtained can 
also be otherwise explained. If we write it as  

 0 0q q
u x

Y X

x

 

we obtain the formula  

 , 

   
0 0

d d

d d
Y

q q

L q
 

X
q q

L q

q q
 , 

that is, the Lorenz curves  and YL q   XL q
 

 have 
parallel tangents and the distance  L q0L q 

0 . 
0Y X  

between the Lorenz curves is maxim l for q q
We define the difference function as 

a

 
 1 0forD q q q

D q
 

 2 0forD q q q
,          (12) 

and the lower bound of  is  YL p

 

 
 

 
  

0

0

for

1 1 for

q Xu x
L q q


 X

Y q

q X

X
Y q

q
x

L q
u x

L q q q
x








 

  



 .     (13) 

Figure 1 shows the Lorenz curves  YL q ,  XL q , 
the lower bound  L q and the differe nce  D q  be- 

, and



X
tween  YL q  and the lower bound  L q . 

Remarks. The variable Y Lorenz dominates  the 
upper b  in (8) and (9) tells us ing aounds  noth bout the 
reductions in the inequality. The upper bound contains 
the maximum value M  and one has to take it for 
granted that it is also inaccurate when M is finite. In ad- 
dition, there may be situations in which M   . The 
minimum value m can be zero, and in this case the upper 
bound is one and the obvious inequality   1YL p   is 
obtained. 

3.2. The Ratio 
 u x

x
 Is Monotonically  

The is case follows similar traces to the 
earli he results are analogous to our earlier 

Increasing 

analysis of th
er study and t

results, but in this case  u x  may be discontinuous. 
Only the inequality signs have changed their directions. 
We introduce the values   and  0m   such 
that  

M 

 
lim
x a

u x
m

x 
  and 

 
lim
x b

u x
M

x 
 

and consequently  



 
0

u x
m M

x
     . 

Note, that in this case the points  are also 
chosen arbitrarily and that the equality signs cannot be 

p  and q

ignored because we also include functions  
 u x

x
 

which are not uniformly strictly ncreasing in the class of 
transformations. Hence, we have to include members for 

 i

which equalities hold for almost the whole range and, in 
addition, the subintervals where strict inequalities hold 
can be arbitrarily short and can be located arbitrarily 
within the range. If one pursues general conditions, the 
inequalities (17) and (18) obtained below cannot be im- 
proved. 

If  u x  is discontinuous, the discontinuities can only  
 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

)p(LX

)p(LY

L
~

D
~

 

Figure 1. A sketch of the Lorenz curves  YL q ,  XL q , 

the lower bound  L q , and the difference  D q  between 

 YL q  and the lower bound  L q  when t

variable Lorenz dominates the initial one. 

he transformed 
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be a c inite ountable number of f positive jumps. Under 
such circumstances  u x  is still integrable. 

We use the same notations as above and assume that 
  ,X p X q x p xF F  , that p q  and consequently 

th
q

at p qx x x  . 
Now,  

     p q

p q

u x u xu x

x x x
  . 

Consider    p px u x xu x . The integration over the 
interval p qx x x   yields 

  px u x xu x    

       

          

d d

d d

q q

p p

q q

p p

x x

X p X
x x

x x

p X p X
x x

p Y Y Y p X X X

f x x f x x

x u x f x x u x xf x x

x L q L p u x L q L p 





  

 

 

(14) 

and 

      
   p X

Y Y X X
p Y

u x
L q L p L q L p

x




   . 

Analogously, if we consider    q qx u x xu x  we 
obtain 

          X Xq Y Y Y q X x L q L p u x   (15) L q L p

and 

      
    q X

Y Y X X
q Y

u x
L q L p L q L p

x




   . 

Hence, 

 
        

 



    

p X

X X Y Y
Y p

q X

X X
Y q

u x
L q L p L q L p

x

u x
L q L p

x







  

 

.   (16) 

When  in (16), then  0p 

 
 

 0, 0L p  ,
p

Y X
p

u x
L p m

x
  

and one obtains 

   
 

 q X

Y X
q

u xm
L q L q

x




  .      (17) 

Now, the initial variable X Lorenz domina
formed Y and the upper bound is the interesting case. 

X
X

Y Y

L q


tes the trans- 

When 1q   in (16), then 

   
 

1 1,
qu x

L M    1, L qY X
qx

one obtains 

 
       1 1 1 1

p X X
X Y X

Y p Y

u x M
L p L p L p

 


     

After a shift from p to q, we obtain 

x
 

 
       1 1 1 1

q X X
X Y

Y q

L q L q
x

   X
Y

u x M
L q

 


  

(18) 

Now the upper bound is of interest. Formula (17) is 
applicable for small values and formula (16) for larg
values of q. In the following, we consider the differ
be

e 
ence 

tween the upper bound and the Lorenz curve  YL q , 
that is, for small values of q 

 
 

   1

q X

X Y
Y q

u x
D q L q L q

x




  .        ) (19

For large values of q, we consider the difference 

 
 

    2 1 1 X Y
Y q

D q L q L q
x

.    (20) 
q Xu x 

   

In general, 

   d d
and

d d
q qY X

Y X

y xL q L q

q q 
  . 

The ratio  
 u x

x
 

is increasing and consequently, 

 d d d
0

d dq q qq x x x d
q q

q

y y
x

q

   
     . 

Now we differentiate  and note that  

   
   

 1D q

 q

q

u x

x
 

is increasing and obtain 

    

 
   

 
 

1d

d Yq 

d

d

d
0

d

q qX

q X

q qX
X

Y q Y

qX
X

Y q

u xD q x

x

u x u x
L q

q x

u x
L q

q x





 






 
  
 
 

 
  
 
 

. 

Consequently  1D q

0 . 
 is increasing from zero to a 

maximum for 
Now we differentiate  and obtain 

q
 2D q
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    
    2 dq qX

u u xD q   
 

 
    

d
1

d
1 0

d

X
q

q qX
X

Y Y q

x
L q

u x u x
L q

q x


 

  



 
     
 
 

. 

Consequently is decreasing from a maximum
to zero. The po ted , at which the shift from 

 to rfor d, satisfies  

d dY Yq q  
 x

 2D q  
int deno
   is pe

 

0q
me 1D q

D
2D q

   1 2q D q . 
Now, 


    

 
   

0

0

0

0 0

0 0

1 X Y
Y q

q X

X Y
Y q

u x

x

u x
L q L q

x







 

, 

that is, 

0 1
q X

L q L q



 

   0 0

0 0

1 0 and
q X q Y

Y q q X

u x u x

x x

 
 

   . 

This condition is identical with the condition, given 
above, in which  

 u x

x
 

Again, the condition  
is decreasing. 

 
1 0

p X

Y p

u x

x




   

can be written  

 0 0q q

Y X

u x x

 
  

and we obtain the formula  
   

0 0

d d

d d
Y X

q q q q

L q L q

q q  , 

 and that is, the Lorenz curves  YL q  XL q  have 
parallel tangents and the di wee Lorenz 
curves is maximal. 

tion a

and the upper bound of  is 

stance bet n the 

We define the difference func s 

   1 0forD q q q
D q

   ,          (21) 
  forD q q q 2 0

 YL q

 

 
 

 
  

0

0

for

1 1 for

q X

X

q X

X
Y q

u x
L q q q

x

L q q q
x








 


  


    (22) 

In Figure 2, we sketch the Lorenz curves 

Y q
L q

u x 
 




 YL q , 

 XL q , the upper bound  and the difference  L q
 D q  between the upper bo  anund   L q d  YL q

res
Y. Note th

. 
ower bounds ar nte

itial variable X inates 
Now the l

the in
0m

e of m
 Lorenz dom

inor i t because 
at 

  
bound in
ev

is possible in some  and wer 
 (17) can be zero. No  ca nd 

 situat
te th

ions
at M

 the lo
n be great a

en M    is possible in some situations a e 
ound in (18) can be even ative. 

mple 1. The Pareto dist on. C r 

nd

onside

 th

in- 
lower b

Exa
co

neg
ributi

me X with the Pareto distribution   1X x xF    
and   1

Xf x x    , where 1   and 1x  . Now,  

1X







 

and the Lorenz curve 

   
1

1 1XL p p




   . 

From   1X p px x pF     we ain   obt
1

1px p 
 

0 1

. 

 so Let the transformation be 

that the function 

 x  x  Y u

  1
1

1u x x

x x
x

x





  

 obtain 

 is decreas-

ing. We Y


 




, the Lo



renz curve 

  1YL p 1 p
 



,  

 



   
   

11
1D q p1 1

1 1
q

  


1


 
 

 
    and 


 

 

   
   2

1
1

1
D q q

 


 


 
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. A sketch of the Lorenz curvesFigure 2     ,Y XL q L q , the 

upper bound  L q , and the difference  D q  between the 

upper bound  L q  and  YL q  
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 

   

 
   

   
   

1

1

0

2

1
1 1

1

1 for
1

1
1 for

1

D q q

D q p q q

D q q q q

 





 




 











    


   


    
 

  

0



 
     

 
   

1

0

0

1 1 for
1

( )

1 1 for
1

q q q

L q

q q q

  
 

 


 


 


 



          
         

  

q

For 1  , the ratio  
 u x

x
 

is decreasing, case be etched in Figure 1, and if 
1

 this ing sk
   the ratio  

 u x

x
 

is increasing, this case being sketched in Figure 2. 

4. Conclusion 

Redistributions of income have commonly been defined 
as variable transformations of the initial income variable. 
The transformations are mainly considered as tax 
transfer policies yielding post-tax or post-transfer in-
comes and therefore, the transformations are usually as-
sumed to be positive, monotone-increasing and continu-
ous. Recently, discontinuous transformations have also
been discussed. The fundamental concern has been the 
Lorenz ordering initial and the transform
in . In t  constructed limits for he trans-
formed Lorenz curves. We considered the optimal cases 
that the transformed variable Lorenz dominates the i

ions on Lorenz 
ol. 44, No. 4, 1976, pp. 823- 

formed one. In applications, the first case is more impor-
tant than the second, because it yields policies which 
reduce the inequality. The case (2) in Theorem 2 is not 
included in this study because the initial and the trans-
formed Lorenz curves are identical. The limits obtained 
hold generally for all distributions and a broad class of 
transformations. If one pursues general conditions the 
inequalities obtained cannot be improved. 
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