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ABSTRACT 

This study proposes an alternative procedure to identify technology shocks using vector autoregressions (VARs). The 
proposed procedure delivers improved small-sample properties relative to the standard long-run identification method 
provided that the dynamics of the observed variables can only be captured precisely by an infinite-order VAR. Monte 
Carlo experiments on artificial data produced by a standard version of the real business cycle model demonstrate that 
the proposed procedure is associated with smaller average bias and mean square error. These results obtain under a 
range of specifications regarding the share of technology shocks in overall output variability. 
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1. Introduction 

In the real business cycle (RBC) literature, technology 
shocks are frequently identified by implementing long-run 
restrictions in structural vector-autoregressions (VARs) 
(see, e.g. [1-3]). A number of recent studies have called 
into question the plausibility of identifying technology 
shocks by imposing long-run restrictions on VARs. 
Demirel [4], Mertens [5], and Chari et al. [6] find that the 
standard long-run identification approach can be highly 
inaccurate if the number of lags included into the esti-
mated VAR is smaller than the number of lags involved 
with the actual data-generating process. Since in many 
RBC models the reduced-form dynamics of the observed 
variables can only be captured by an infinite-order VAR, 
this type of mismatch between the estimated and actual 
lag structures is often relevant (see [6-9]). In this paper, I 
propose an alternative identification procedure that is 
designed to reduce the lag-truncation bias that emerges in 
the presence of this mismatch. I show that, in the estima-
tion of the impact response of labor to a technology 
shock, the proposed procedure is associated with smaller 
average bias and mean square error relative to the stan-
dard long-run identification method. 

To implement long-run restrictions in structural VARs, 
one needs an estimate for the zero-frequency spectral 
density of the data. Christiano et al. [10,11] show that the 
standard long-run method uses a particular estimate of 
the zero-frequency density that is based on the OLS es- 
timate of the sum of VAR coefficients. In the presence of 
a lag-truncation-type mismatch between the estimated 

and actual VARs, the OLS-based estimate of the sum of 
VAR coefficients can be highly biased. Christiano et al. 
[10] argue that the poor performance of the standard 
long-run identification procedure is primarily due to this 
bias involved with the OLS estimate of the sum of VAR 
coefficients and suggest considering non-parametric me- 
thods to estimate the zero-frequency spectral density of 
the data. Using Monte Carlo simulations, they find that 
their non-parametric procedure (henceforth, the CEV 
method) outperforms the standard OLS-based long-run 
identification scheme under some reasonable parame- 
terizations of the RBC model. 

The motivation for the proposed procedure emerges 
upon an assessment of the consequences of adopting a 
misspecified VAR to identify technology shocks. Ex- 
periments on artificial data produced by estimated ver- 
sions of the RBC model show that, in the presence of 
lag-truncation bias, the standard estimation procedure 
with long-run restrictions delivers a shock that explains 
too much of the short-run variance of labor productivity 
and aggregate employment relative to the true technology 
shock of the RBC model. The discrepancy worsens as the 
share of non-technology shocks in overall output vari- 
ability increases. Motivated by this observation, I suggest 
identifying technology shocks on the basis of the differ- 
ence between the long-run and short-run forecast revision 
variances they generate. More specifically, I propose 
focusing on the disturbance for which the explained frac- 
tion of labor productivity's long-run variance is as great 
as possible relative to the explained fraction of the short- 
run variances of labor productivity and aggregate em- 
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ployment. The proposed procedure selects the shock that 
drives as much as possible of the long-run variation of 
labor productivity while explaining as least as possible of 
the short-run variation. In this sense, it is expected to 
counteract the tendency of the standard method to deliver 
a shock that overshoots the short-run variability of the 
VAR variables. Following Uhlig [12], I use principal 
components analysis to determine the shock that satisfies 
this property. 

Using Monte Carlo simulations, I evaluate the per- 
formance of the proposed method relative to the standard 
long-run and the CEV procedures. In a series of simula- 
tion experiments, I produce artificial data sequences us- 
ing the most commonly adopted parameterizations of the 
RBC model. Then, I apply the proposed procedure as 
well as the standard long-run and the CEV methods to 
each simulated data sequence to recover technology shocks. 
I consider two different VAR specifications in which 
hours worked is entered into the VAR in first differences 
and in levels. I find that, in the estimation of the con-
temporaneous response of labor to a technology shock, 
the proposed method outperforms the standard long-run 
and the CEV methods in terms of average bias and mean 
square error. 

The remainder of the paper is organized as follows: 
Section 2 discusses the identification procedures based 
on long-run restrictions. Section 3 outlines the proposed 
method and describes its implementation. Section 4 eva- 
luates the performance of the proposed approach rela- 
tive to the standard long-run and the CEV method using 
Monte Carlo simulations. Section 5 summarizes the main 
results and concludes. 

2. Identifying Technology Shocks with  
Long-Run Restrictions 

2.1. The Standard Long-Run Method 

As discussed in Gali [13], in a large class of real business 
cycle (RBC) models, long-run variability of labor pro-
ductivity is exclusively driven by technology shocks. This 
distinguishing property is referred to as the exclusion res- 
triction. Furthermore, in the standard RBC framework, 
the impact of a positive technology shock on labor pro-
ductivity is positive in the long-run. This property, in turn, 
implies a sign restriction. Exclusion and sign restrictions 
can be exploited to identify technology shocks using a 
VAR(m) specification of the form 

  1t tY A L Y u t               (1) 

where 

  1

1

m
i

i
i

A L A L 



                (2) 
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clude the first-difference of aggregate employment into 
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where  and the upper-right expression is a 11 0g 
 1n   dimensional row vector of zeros. The form de- 

 by (5) implies that only technology shocks can 
influence labor productivity (the first element in tY ) in 
the long-run. The object  1G  can be identified ing 
the zero-frequency spectra nsity matrix of tY . The 
standard long-run procedure uses the OLS estim es for 

scribed

us

t
l de

a
 1 2, , , mA A A  and Ω to recover the zero-frequency 
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density of a
1

1 .

    (6) 
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Alternative to the  
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Standard Method 

standard long-run me
precise estimates in the presence of VAR misspecifi- 
cation. Christiano et al. [10] argue that this is because the 
OLS-based estimate of the zero-frequency spectral den- 
sity of tY  (given by 6) becomes highly inaccurate if the 
data-generating process is an infinite-order VAR. To 
remedy this problem, they suggest adopting a nonpara- 
metric approach to estimate the zero-frequency spectral 
density. In particular, they consider a Bartlett estimate of 
the form 
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Christiano et al. [10] show that, under certain rele
parameteri ons of the RBC model, the non-parametric 

m

vant 

ethod (henceforth, CEV procedure) proves more suc- 
cessful relative to the standard method1. This is because, 

 0
NP

YS  accounts for some of the information  0
OLS

YS  
is unable to capture due to lag-truncation and provides a 

curate estimate of the zero-frequenc l 
density. However, Mertens [5] shows that the CEV pro-
cedure (fully described by 9) fails to properly utilize this 
additional information in the estimation of the impact 
vector. Consequently, the improved small-sample results 
of the CEV method do not extend to a wider range of 
parameterizations of the RBC model. 

3. Relative Identification 

more ac y spectra

posed identification approach, I next 
uences of implementing the standard 

3.1. Motivation 

To motive the pro
discuss the conseq
long-run identification procedure in the presence of VAR 
misspecification. Suppose that the true data-generating 
process is an infinite-order VAR of the form 
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that the residual covariance matrix of the misspecified 

 VAR   is related to the true residual covariance ma- 
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and  ieF  ,  ieA   denote the lag polynomials 
 F L ,  A L  evaluated at ie 

, 

. This equality follows 
imme ctral domain representations of 

d (1 According to (11) the OLS procedure se- 
lects the autoregressive matrices  1 2, , , m

diately from
n 0). 

 the spe
(1) a

A A A  to 
minimize a quadratic form that measures the distance 
between the actual and fitted lag polynomials averaged 
across all frequencies weighted by the spectral density of 

  t YY i.e. S   at each frequency. 
Equation (11) highlights two major consequences of 

sspecified VAR: 1—adopting a mi In the presence of a 

1Christiano et al. [10] also evaluate an alternative non-parametric esti-
mator of the zero-frequency spectral density suggested by Andrews 
and Monahan [14]. They find that the small-sample performances of 
the Bartlett and Andrews-Monahan estimators are very close. 
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fraction of the infi- 
ni

forecast revision variances of 
ployment as 

g-truncation problem, the OLS procedure cannot be 
expected to deliver an accurate estimate for the sum of 
VAR coefficients unless the spectral density of tY  at 
zero frequency is large relative to non-zero frequencies. 
Thus, in general, we have    1 1A F . 2—Equation 11) 
also implies that 0  , i.e.,     is a positive 
semi-definite matrix. Thu tes  1A  and Ω 
are both biased under isspecification. 

The main motivation for relative identification emerges 
upon an investigation of the implications of these biases 

 (

s, the estima
R mVA

 the short-run variances of labor productivity and aggre- 
gate employment the technology shock is found to drive 
using the standard long-run identification method. Figure 
1 displays the percentage difference between the cur-
rent-period forecast error variances the technology shock 
is estimated to explain in the artificial data (averaged 
across 1000 trials) and the true fraction the technology 
shock explains in the RBC model. It is observed that the 
shock identified using the standard long-run method 
overestimates the true values. This finding obtains under 
alternative scenarios regarding the share of technology 
shocks in overall output variability2. In all considered 
cases, the shock the standard long-run method yields 
overshoots the true fraction of short-run variances the 
technology shock explains in the RBC model. As Figure 
2 attests, similar patterns obtain under the parameteriza- 
tion of the RBC model adopted by Chari et al. [6]. 

As discussed in the previous section, the standard 
long-run approach determines the disturbance that 

ndedly explains all of the infinite-period-ahead fore-
cast revision variance of labor productivity. Demirel [4] 
shows that this is equivalent to determining the shock 
that explains on its own as much as possible of the 
long-run variance of labor productivity. Thus, the stan-
dard long-run identification procedure can be viewed as a 
version of the maximum share approach suggested by 
Francis et al. [15] and implemented in the frequency 
domain by DiCecio and Owyang [16]. 

Monte Carlo experiments reveal that, in the presence 
of lag-truncation bias, imposing this i

n on the misspecified VAR yields a shock that tends to 
explain too much of the current-period forecast error 
variance of labor productivity and employment relative 
to the true technology shock. 

To counter this tendency, I propose considering the 
disturbance for which the explained 

te-period-ahead forecast variance of labor productivity 
is as great as possible relative to the explained fractions 
of the current-period forecast variances of labor produc- 
tivity and employment. This procedure involves deter- 
mining the disturbance for which the difference be- 

tween the explained fractions of long-run and shortrun 
variances reaches a maximum. Thus, the procedure places 
a certain amount of weight on minimizing the current- 
period forecast revision variance the identified shock 
explains. Although this property does not perfectly over-
lap with the notion of a technology shock, in the presence 
of lag-truncation bias, the proposed adjustment to the 
long-run identifying assumption works against the ten-
dency of the standard approach to overshoot the true 
short-run variances. This, in turn, results in a more accu-
rate estimate for technology shocks. 

3.2. Implementation 

Define k-period-ahead 
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Using (1) and (4), infinite-period-ahead forecast revi- 
sion variance of labor productivity can be found as 
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Figure 1. Standard long-run method’s bias profile in the 
estimation of short-run variances under the parameteriza- 
tion of Christiano et al. [11]. 
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Figure 2. Standard long-run method’s bias profile in the 
estimation of short-run variances under the parameteriz
tion of Chari et al. [6]. 

2Output variance in these experiments is computed using simu-
lated band-pass filtered data sequences of length 50,000 quar-
ters. 

a- 
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 labor productivity is p s shown in Uhli [12], 
the optimal value of 1Q  (denoted 1Q ) that solves (16) 
is given by the eigenvector of Λ that corresponds to its 
greatest eigenvalue, i.e., the first principal component of 
Λ. Once 1Q  is recov d by solving r the first prince- 
pal component of Λ, the impact vector of the technology 
shock can be estimated as 
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Throughout the rest of t

ere  fo

he an
ies of

 of t

alysis, we shall compare 
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exercises. In these 
 using the baseline 

e relative method de- 
 standard long-run and 

e CEV methods respectively described by (7) and (9). 

4. Monte Carlo Experiments 

To evaluate the performance of the proposed method, 
next conduct a series of simulation 
experiments, I produce artificial data
RBC model adopted by Chari et al. [6] and Christiano et 
al. [11]. Since the model is standard, I shall skip the ex- 
planation of the full theoretical structure. It should how- 
ever be noted that, in the standard RBC model, the equi- 
librium dynamics of the vector  

  log 1 logt t t tY y l L l       

can only be described accurately by an infinite-order 
VAR. Thus, using a finite-order VAR to id ntify tech- 
nology shocks will always result in a lag-trun n bias, 

e
catio
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which will play a central role in the following experi- 
ments. 

I consider two alternative parameterizations of the 
RBC model adopted by [6] and [11]3. These parameter 
choices render the results of the analysis immediately 
comparable with the results of the previous studies. In 
addition, I consider a range of scenarios regarding the 
share of technology shocks in overall output variability. 
Following the rest of the literature, for each alternative 
specification, I simulate 1000 data sequences each of 
length T = 240 quarters. Then, I run a VAR with 4 lags 
on each of these 1000 data series and identify technology 
shocks using the proposed method as well as the standard 
long-run and the CEV methods. In all exercises, I esti- 
mate a bivariate VAR of the form  

  
associated with each 

method in the estimation of the impact coef ient of la- 
bor. The impact coefficient of labor corresp s to the 
co

asi- 
di

increases. As the share of technology shocks be- 
co

. [6] for level and quasi- 
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log 1 logt t t tY y l L l      . 

First, I focus on the average bias 
fic
ond

ntemporaneous percentage response of employment to 
a one-standard-deviation technology shock. Average bias 
is defined as the percentage difference between the true 
impact coefficient in the RBC model and the average of 
all estimated impact coefficients across simulations. 

Figures 3 and 4 display the bias profile of each identi-
fication method under the parameterizations of Chris-
tiano et al. [11] and Chari et al. [6] for level and qu

fference specifications. Observe that the average bias 
associated with the relative identification method is much 
smaller compared to the other methods in all considered 
cases. 

The standard long-run method becomes more accurate 
as the share of technology shocks in overall output vari- 
ability 

mes smaller, the standard method turns less accurate. 
This does not appear to be the case for the CEV method. 
Compared to the relative method, however, the CEV 
method proves less successful. 

Figures 5 and 6 demonstrate the root mean square er-
ror profiles under the parameterizations adopted by Chris- 
tiano et al. [11] and Chari et al

fference specifications. Root mean square error statistic 
measures average bias and sampling uncertainty simul-
taneously. It is defined as 

   21000

1
1 1000 ii

x x


  

where xi denotes the impact coefficient estimate obtained 
from the ith experiment and x is the true lue of the im- 
pact coefficient. 

-run and CEV procedures. This appears 
to

va

Observe that the relative method is also associated 

with significantly smaller mean square error compared to 
the standard long

 be the case for all considered parameterizations and 
volatility specifications. 
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Figure 3. Bias profiles under the parameterization of [11]. 
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Figure 4. Bias profiles under the parameterization of [6]. 

3See Chari et al. [6] and Christiano et al. [11] (or Demirel [4]) 
for a list of adopted parameter values. 
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Figure 5. Mean square error profiles under level and quasi- 
difference specifications (parameterization of [11]). 
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Figure 6. Mean square error profiles under level and quasi- 
difference specifications (parameterization of [6]). 

5. Concluding Remarks 

This study suggests an alternative approach to identify 
technology shocks using VARs. I test the performance of 
the proposed method by applying it to artificial data gen- 
erated by the standard RBC model. I evaluate the small- 
sample performance of the proposed procedure by re- 
covering technology shocks from simulated time-series 
data that are produced by a standard version of the RBC 
model. I consider alternative parameterizations of the 
RBC model as well as a range of specifications regarding 
the share of technology shocks in overall output va abil- 
ity. Monte Carlo experime  on simulated data reveal 

un iden- 
e literature and its 

d by [11]. In particular, it 

ri
nts

that the proposed method delivers considerably improved 
small-sample properties than the standard long-r
tification method widely adopted in th
non-parametric version propose
significantly reduces the average bias and mean square 
error in the estimation of the impact coefficient of labor. 

It is important to note that this study assesses the 
small-sample properties of the proposed relative identi- 
fication approach for a specific range of data-generating 
processes. Since the small-sample performance of an 
estimation procedure depends on the properties of the 
underlying data-generating process, one should be cau- 
tious generalizing the results. At the very least, the find- 
ings suggest that the relative approach can identify tech- 
nology shocks far more accurately provided that the 
data-generating process is the standard RBC model. 
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Appendix 

In the reduced-form VAR described  
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    . Similarly, current-period 
forecast revision variances of labor
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which brings us to (15) in the text. 

-column jth-row element is replaced with unity. Then, 
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