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ABSTRACT 

In this study, two studies are performed. One is to apply paraxial boundary conditions which are local boundary condi- 
tions based on paraxial approximations of the one-way wave equations to finite element analysis. To do this, a penalty 
functional is proposed and the existence and uniqueness of the extremum of the proposed functional is demonstrated. 
The other is to improve the capacity of viscous boundary conditions using dashpots. To do this, customary viscous 
boundary conditions are modified to maximize the efficiency according to angles of incidence and materials. For the 
numerical analysis of elasticity with paraxial boundary conditions and the modified viscous boundary conditions, the 
coding of the finite element models is implemented, and the efficiency of those boundary conditions is investigated. 
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1. Introduction 

In many dynamic problems, the analysts are confronted 
with the problem of wave propagation in infinite or semi- 
infinite media. The complex geometry or/and non-homo- 
geneity disturb or prohibit to find the closed-form solu- 
tions to those problems. In this reason various numerical 
techniques are needed. But since such discrete models 
used are necessarily finite in size, echoes would develop 
at the artificial boundaries if no appropriate action was 
taken. Absorbing boundaries are mathematical artifacts 
used to prevent wave reflections at the boundaries of dis- 
crete models for infinite media under dynamic loads. A 
number of these boundaries have been proposed in the 
past three decades and used with various degrees of 
success. The collection of absorbing boundaries can be 
grouped into two broad classes: nonlocal and local ab- 
sorbing boundaries. Nonlocal boundaries are exact, ro- 
bust, accurate, and stable, but some of those are properly 
defined only in the frequency domain, and cannot be used 
for problems involving material nonlinear effects. And 
for some of those the exact condition is not available or 
is too complicated to be practical. For these reasons, a 
number of local absorbing boundaries have been pro- 
posed. Local absorbing boundaries may be good energy 
absorbers, but they are not perfect ones, therefore, a resi- 
dual echo may be present in the solution. However, the 
accuracy of some classes of the local absorbing boun- 
daries can be increased by taking higher order approxi- 
mations for boundary conditions. But the various sequence 

of such boundary conditions make the absorbing boun- 
dary conditions have complex mathematical forms with 
partial derivatives, and thus this complicates the appli- 
cation of such local absorbing boundary conditions to fi- 
nite element analysis. Paraxial boundary conditions are 
such kinds of local boundary conditions, which are based 
on paraxial approximations of the one-way wave equa- 
tions, and thus the application of those to finite element 
analysis is difficult. In this study, to do this, a penalty 
functional is newly proposed and the existence and 
uniqueness of the extremum of the proposed functional is 
demonstrated. The penalty functional proposed in this 
study enables to derive the functional including not only 
the total potential energy but also paraxial boundary con- 
ditions in elastic media and thus to analyze the elasticity 
problems with the paraxial boundary conditions. Conse- 
quently, it may be expected that the proposed approach 
can be applied to any local boundary conditions based on 
approximations of the one-way wave equations. Viscous 
boundary conditions which are also some kinds of local 
boundary conditions are most convenient to apply to fi- 
nite element analysis, but it is known that the capacity is 
not good. In this study the study on improving the capa- 
city of viscous boundary conditions is implemented. Us- 
ing the concept of energy ratio between the reflected wa- 
ves and the incident wave, the efficiency of customary 
viscous boundary conditions can be improved for an ar- 
bitrary angle of incidence and materials. Finally, for the 
numerical analysis of elasticity with paraxial boundary 
conditions and the modified viscous boundary conditions, 
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the coding of the finite element models is implemented, 
and the efficiency of those boundary conditions is inves- 
tigated. 

2. Paraxial and Viscous Boundary 
Conditions 

2.1. Paraxial Boundary Conditions 

Paraxial boundary conditions are based on the paraxial 
approximations of the one-way wave equations, which 
were developed for scalar wave equation [1-3] and for 
the elastic wave [4]. The absorbing boundary conditions 
should be chosen such that its dispersion relation is a 
good approximation of the interior dispersion relation for 
outgoing waves, and the boundary conditions together 
with the differential equation should form a well posed 
problem. The better the boundary conditions describe out- 
going waves the smaller will be the reflection [5]. 

Figure 1 schematically shows the dispersion relation 
for a plane wave and Equation (1) is its mathematical form, 
where x , y are x- and y-directional spatial wave leng- 
ths, and xk and are x- and y-directional wave num- 
bers respectively. 

yk

Using Equation (1), the first and the second down-go- 
ing paraxial boundary conditions, Equations (2) and (3) 
can be derived [6]. 
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Figure 1. Dispersion relation for a plane wave. 

2.2. Viscous Boundary Conditions 

Figure 2 shows the basic idea of a viscous boundary for 
plane strain. The energy arriving at the boundary in Fig- 
ure 2 will be absorbed if tractions, Equations (4)-(5) are 
applied to the boundary which are equal in magnitude 
and opposite in direction to the stresses caused by the in- 
cident wave. 

zz Pa V uz                   (4) 

zx Sb V ux                   (5) 

In Equations (4) and (5) the parameters, a and b, vary 
according to not only the incident angles but also the 
material properties of the medium. The choice of a = b = 
1 which is called “the standard viscous boundary” was 
given by Lysmer and Kuhlemeyer (1969) [7] for the 
whole range of incident angles. The absorption by vis- 
cous boundary conditions cannot be made perfect over 
the whole range of incident angles and/or for all the ma- 
terial properties of medium, but can be made maximum. 
Hence, the parameters a and b in Equations (4) and (5) 
can be chosen to maximize the efficiency of the viscous 
boundary conditions for an arbitrary angle of incidence 
and material through which waves propagate. A good 
measure for the ability of the viscous boundary to absorb 
impinging elastic waves is the energy ratio defined as the 
ratio between the transmitted energy of the reflected 
waves and the transmitted energy of the incident wave. 
This ratio can be computed from the wave amplitudes 
ratios by considering the energy flow to and from a unit 
area of the boundary. The situations for an incident com-
pressional and shear waves are shown in Figure 3.  

The absorption ratio (AR) of the viscous boundary ac- 
cording to the incident angles can be defined such that 

  or1 sin P SAR ER             (6) 

where energy ratio (ER) is defined as follows, for inci- 
dent compressional wave 
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and for incident shear wave Case 1: Incident angle θ 
greater than the critical angle C  
 

 

Figure 2. Schematic representation of a viscous boundary. 
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Figure 3. Incident compressional (P) and shear (S) waves. 
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In Equation (7) PI , PP , and PS  are the complex 
amplitudes of the incident compressional, the reflected 
compressional, and the reflected shear waves and s is the 
ratio of the shear wave velocity to the compressional 
wave velocity. In Equations (8a) and (8b) SI , S , and 

S  are the complex amplitudes of the incident shear, the 
reflected compressional, and the reflected shear waves. 

P
S

Equation (6) can be used to maximize the efficiency of 
viscous boundary conditions (Equations (4) and (5)), and 
varying the parameters a and b in Equations (4) and (5) to 
maximize Equation (6) according to incident angles and 
Poisson’s ratios gives Table 1 for incident compressional 
wave and Table 2 for incident shear wave. 

2.3. Comparison of Paraxial to Viscous 
Boundary Conditions 

Figures 4-7 show the amplitude ratios between the inci- 
dent, the reflected compressional, and the reflected shear 
waves, where “This study”, “Paraxial 1”, “Paraxial 2”, 
“Lysmer (1969)”, and “White (1977)” denote the results 
of the viscous boundary conditions modified in this study, 
the paraxial boundary conditions (Equation (2)), the par- 
axial boundary conditions (Equation (3)), Lysmer-Kuhle- 
meyer (1969) [7]’s boundary conditions, and White et al. 
(1977) [8]’s boundary conditions, respectively.  

Table 1. Values of a and b for P-wave incidence. 

Incident angle (degree) Poisson’s 
ratio 

Coefficient
10 20 30 40 50 60 70 80 90

a 0.79 0.63 0.67 0.74 0.83 0.90 0.95 0.99 1.00
0.10 

b 0.23 0.46 0.67 0.86 1.02 1.16 1.25 1.31 1.35

a 1.57 0.99 0.88 0.87 0.90 0.94 0.97 0.99 1.00
0.20 

b 0.21 0.42 0.61 0.79 0.94 1.06 1.15 1.21 1.24

a 2.57 1.45 1.14 1.03 0.10 0.99 0.99 0.10 1.00
0.30 

b 0.19 0.37 0.54 0.69 0.82 0.93 1.01 1.05 1.08

a 3.90 2.06 1.50 1.25 1.13 1.06 1.02 1.01 1.00
0.40 

b 0.14 0.28 0.41 0.53 0.63 0.71 0.77 0.80 0.83

 
Table 2. Values of a and b S-wave incidence. 

Incident angle (degree) Poisson’s 
ratio 

Coefficient
10 20 30 40 50 60 70 80 90

a 0.93 0.10 1.04 1.01 1.02 1.16 1.25 1.31 1.34
0.10 

b 0.00 0.00 0.00 0.00 0.23 0.58 0.82 0.95 1.00

a 0.81 0.90 0.95 0.93 0.94 1.06 1.15 1.21 1.23
0.20 

b 0.00 0.00 0.00 0.00 0.22 0.58 0.2 0.95 1.00

a 0.68 0.76 0.83 0.81 0.82 0.93 1.01 1.05 1.08
0.30 

b 0.00 0.00 0.00 0.00 0.23 0.58 0.82 0.95 1.00

a 0.49 0.55 0.63 0.62 0.63 0.70 0.77 0.80 0.82
0.40 

b 0.00 0.00 0.00 0.00 0.23 0.57 0.82 0.95 1.00
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Figure 4. Amplitude ratio of the reflected P-wave to the in- 
cident P-wave. 
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Figure 5. Amplitude ratio of the reflected S-wave to the in- 
cident P-wave. 
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Figure 6. Amplitude ratio of the reflected P-wave to the in- 
cident S-wave. 
 

In Figures 4-7 the compressional and shear reflections 
are shown for incident P and S wave. Here, it can be seen 
that all of the boundaries but the viscous boundary modi- 
fied in this study are nearly equal in their reflection am- 
plitudes. Near to perfect absorption is attained for those 
incident waves which are almost normal to the boundary. 

Conversely, total reflection occurs for the waves which 
impinge at 0˚ angles. All the boundaries are almost as 
effective for lower Poisson’s ratios as they are for higher 
ones. Figures 4-7 show that the modified viscous bound- 
ary clearly outperforms its competitors. 

3. Finite Element Analysis of Paraxial and 
Viscous Boundary Conditions 

3.1. Variational Formulation of Paraxial 
Bounary Conditions 

The functional, Equation (9), makes the finite element ana- 
lysis of the paraxial boundary conditions easy because 
the governing equations which are derived from the pro- 
posed penalty functional include the paraxial boundary 
conditions in itself, and thus the development of any spe- 
cial numerical integration schemes and interpolation func- 
tions are not required. 

 2 2

1 1
0 d d

t t

i i it t V
d ,K t G u V        t
      (9) 

where K,  ,  , i , i , and i  are the kinetic en- 
ergy, the total potential energy, the variational operator, 
penalty functions, the paraxial boundary conditions, and 
displacements respectively. 

G u

The first term in Equation (9) (i.e., the functional in- 
cluding K and  ) has the extremum and it is unique. 
Hence, if the extremum for the second term in Equation 
(9) exists and is unique, the extremum for the total func- 
tional, Equation (9), will exist and be unique. The exis- 
tence and uniqueness of the second term in Equation (9) 
was already proved by Kim and Lee (2008) [6]. 
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Figure 7. Amplitude ratio of the reflected S-wave to the in- 
cident S-wave. 
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3.2. Finite Element Formulation of Paraxial 
Boundary Conditions 

The vector forms, Equations (10) and (11), of the finite 
element model for the paraxial boundary conditions can 
be obtained by substituting Equations (2) and (3) into 
Equation (9) such that  


T T
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where ψ, C, and f are the matrices related to interpolation 
functions, elastic stiffnesses, and body forces respec- 
tively, and the rest matrices in Equations (10) and (11) 
are [6] 
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3.3. Finite Element Formulation of Viscous 
Boundary Conditions 

The viscous boundary conditions, Equations (4) and (5), 
correspond to a situation in which the convex boundary 
is supported on infinitesimal dashpots oriented normal 
and tangential to the boundary. Hence the variational for- 
mulation can be used to apply the viscous boundary to a 
finite element model. 

T T Td d d
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where  
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3.4. Numerical Example 

To investigate the efficiency of the paraxial and the mo- 
dified viscous boundary conditions, the displacements 
between Models (a) and (b) in Figure 8 are compared 
each other. Model (a), of which boundaries are fixed and 
which is extensive enough to prevent the boundary re- 
flections reaching the interior zone, is horizontally about 
four times and vertically about two times larger than 
Model (b) including the paraxial and viscous boundary 
conditions at the boundaries. In all the models, the elastic 
regions are discretized with nine-noded elements which 
employ quadratic isoparametric interpolation functions, 
where 10,000 elements are used in Model (a) and 676 
elements in Model (b). The used elastic moduli, Young’s 
modulus E and Poisson ratio v, and mass density ρ are 
presented in Table 3. 

Figure 9 reports the horizontal and vertical displace- 
ments recorded at A and C in Models (a) and (b), where 
“Lysmer”, “White”, and “This study” indicate the vis- 
cous boundaries proposed by Lysmer-Kuhlemeyer (1969) 
[7], White et al. (1977) [8], and this study respectively. 
And “Paraxial 1” denotes the paraxial boundary condi- 
tions, Equation (2). “Reference” and “free” are respec- 
tively referred to the solutions in Model (a) and Model (b) 
where traction free condition is applied. 
 

 

Figure 8. Numerical models. 
 

Table 3. Elastic moduli and mass density. 

 2kgf mE  v  3kg m  

209E9 0.3 7.800 
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Figure 9. Horizontal and vertical displacements at A and C in Models (a) and (b). 
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Wave reflections caused by a free boundary are clearly 

seen in Figure 9, while the viscous and paraxial bounda- 
ries largely succeed in eliminating these reflections. Aslo, 
since the waves induced by a dynamic load in Figure 8 
are absorbed firstly at the boundary along which the par- 
axial and viscous boundaries are applied and the residual 
echoes propagate into the interior region. Figure 9 also 
shows that, in the case of the vertical displacements, the 
paraxial boundary is slightly more accurate, and demon- 
strates how well the finite element model, Equation (10), 
induced from the proposed functional, Equation (9), si- 
mulates the infinite domain.  

4. Conclusions 

In this study, studies on applying the paraxial boundary 
conditions to finite element analysis and improving the 
capacity of viscous boundary conditions were implemen- 
ted, and the following results could be obtained:  

1) Using the penalty functional modified in this study, 
the functional for elasticity with the paraxial boundary 
conditions can be obtained, and this makes the finite 
element formulation of the paraxial boundary conditions 
possible. 

2) Moreover, since, solving the finite element models 
derived from the obtained functional, any special nume- 
rical scheme and interpolation function are not required, 
this method can be applied to any other local absorbing 
boundary conditions.  

3) Using the concept of energy ratio between the tran- 
smitted energy of the reflected waves and the transmitted 
energy of the incident wave per unit of time through a 
unit area of the wave front of compressional and shear 
waves, the efficiency of the viscous boundary conditions 

for the compressional and the shear waves can be im- 
proved for an arbitrary angle of incidence and materials. 
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