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ABSTRACT 

An investigation has been made on an unsteady Couette flow of a viscous incompressible fluid through a porous me- 
dium in a rotating system. The solution of the governing equations has been obtained by the use of Laplace transform 
technique. It is found that the primary velocity decreases and the magnitude of the secondary velocity increases with an 
increase in rotation parameter. The fluid velocity components are decelerated by an increase of Reynolds number. An 
increase in porosity parameter leads to increase the primary velocity and the magnitude of the secondary velocity. It is 
also found that the solution for small time converges more rapidly than the general solution. The asymptotic behavior of 
the solution is analyzed for small as well as large values of rotation parameter and Reynolds number. It is observed that 
a thin boundary layer is formed near the moving plate of the channel and the thicknesses of the boundary layer increases 
with an increase in porosity parameter.  
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Layer 

1. Introduction 

The flow between two parallel plates is a classical prob- 
lem that has many applications in accelerators, aerody- 
namic heating, electrostatic precipitation, polymer tech- 
nology, petroleum industry, purification of crude oil, 
fluid droplets and sprays. Such a flow model is of great 
interest, not only for its theoretical significance, but also 
for its wide applications to geophysics and engineering. 
A lot of research work concerning the flow between two 
parallel plates studied in a rotating system have appeared, 
for example, Batchelor [1], Ganapathy [3], Gupta [4] and 
Mazumder [5]. The flows through porous medium are 
very much prevalent in nature and therefore, the study of 
such flows has become of principal interest in many sci- 
entific and engineering applications. This type of flows 
has shown their great importance in petroleum engineer- 
ing to study the movements of natural gas, oil and water 
through the oil reservoirs; in chemical engineering for 
the filtration and water purification processes. Further, to 
study the underground water resources and seepage of 
water in river beds one need the knowledge of the fluid 
flow through porous medium. Therefore, there are num- 
ber of practical uses of the fluid flow through porous 
media. Rotation has an immense importance in various 
phenomena such as in cosmical fluid dynamics, meteor-  

ology, geophysical fluid dynamics, gaseous and nuclear 
reactors and many engineering applications, that is why, 
the study of Couette flow through porous medium in a 
rotating system enhances an interest to the researchers 
due to its applications in the aforesaid area. Such a study 
has a greater importance in the design of turbines and 
turbo mechanics, in estimating the flight path of rotating 
wheels and spin-stabilized missiles. A large number of 
investigations has been made on the flow through a po- 
rous medium in a rotating system. In general, most of 
solutions for unsteady flows of viscous fluids are in a 
series form. These series may be rapidly convergent for 
large values of the time but slowly convergent for small 
values of the time or vice versa. Sometimes, it can be 
difficult to obtain the solution for small values of the 
time but it can be easy to obtain it for large values of the 
time and the opposite can also be true. Vidyanidhi and 
Nigam [6] studied the channel flow between rotating 
parallel plates under constant pressure gradient. Jana and 
Dutta [7] studied the steady Couette flow of a viscous 
incompressible fluid between two infinite parallel plates, 
one stationary and the other moving with uniform veloc- 
ity, in a rotating frame of reference. Singh and Sharma [8] 
have presented the three dimensional Couette flow 
through porous media. A periodic solution of oscillatory 
Couette flow through a porous medium in rotating sys-  
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tem has been obtained by Singh et al. [9]. Guria et al. [10] 
have described the unsteady Couette flow in a rotating 
system. Das et al. [10] have studied the unsteady Couette 
flow with an oscillatory velocity of one of the plates in a 
rotating system. The unsteady MHD Couette flow in a 
rotating system has been investigated by Das et al. [12]. 
Attia [13] has studied the effect of porosity on unsteady 
Couette flow with heat transfer in the presence of uni- 
form suction and injection. Israel-Cookey et al. [14] have 
presented the MHD oscillatory Couette flow of a radiat- 
ing viscous fluid in a porous medium with periodic wall 
temperature. The unsteady hydromagnetic Couette flow 
through a porous medium in a rotating system have been 
presented Prasad and Kumar [15]. Das et al. [16] have 
studied the Couette flow through porous medium in a 
rotating system. 

In the present paper, we have studied the unsteady 
Couette flow between two infinite horizontal parallel 
plates in a porous medium in a rotating system when one 
of the plate moving with uniform velocity and the other 
one held at rest. The fluid and plates are in a state of rigid 
body rotation with uniform angular velocity  . The 
solutions for the velocity distributions as well as shear 
stresses have been obtained for small time as well as for 
large time by the Laplace transform technique. It is found 
that the primary velocity 1  decreases and the magni- 
tude of the secondary velocity 1  increases with an in- 
crease in rotation parameter 

u
v
2K . The primary velocity 

1  and the magnitude of the secondary velocity 1  
decrease with an increase in Reynolds number Re. An 
increase in porosity parameter 

u v

  leads to increase in 
the values of both the primary velocity 1  and the mag-
nitude of the secondary velocity 1 . It is also found that 
the solution for small time converges more rapidly than 
the general solution. For the steady state solution, the 
asymptotic behavior of the solution is analysed for small 
as well as large values of rotation parameter 

u
v

2K  and 
Reynolds number Re. It is observed that a thin boundary 
layer is formed near the stationary plate and the thick- 
nesses of the boundary layer increases with an increase in 
porosity parameter  . 

2. Mathematical Formulation and Its  
Solution 

Consider the unsteady flow of a viscous incompressible 
fluid between two infinite parallel porous plates embed- 
ded in a porous medium. The plates are separated by a 
distance h. The fluid and channel rotate in unison about 
an axis normal to the planes of the plates with a uniform 
angular velocity  . Choose a Cartesian co-ordinate 
system with x-axis along the lower stationary plate in the 
direction of the flow, the y-axis is normal to the plates 
and the z-axis perpendicular to xy-plane (see Figure 1). 
Flow within the channel is induced due to the motion of 

the upper plate at y h  parallel to itself in x-direction 
with a uniform velocity 0 . Initially, at time u 0t  , the 
fluid as well as the plates of the channel are assumed to 
be at rest. At time  the upper plate at 0t  y h  starts 
moving with uniform velocity 0  along x-direction in 
its own plane while the lower plate at  is kept 
fixed. The velocity components are  relative to 
a frame of reference rotating with the fluid. Since plates 
of the channel are infinitely long along x and y directions, 
all physical quantities will be functions of z and t only. 

u
0


y 

 , ,u v w

The equation of continuity gives 0
v

y




 which on inte-  

gration yields 0constantv v   , where  for suc-
tion and 

0v 0
0 0v   for the blowing at the plate. 

The x-, y- and z-components of Navier-Stokes equa- 
tion are  

2

0

u

y2
2 ,

k

u u

t y
v w u

 
  


 

 
 

        (1) 

0

1
0

p
v

y k








  ,              (2) 

2

0 2

w w w
v u

t y y

  
    

  
2 ,

k
w        (3) 

where   and   are respectively the fluid density, the 
kinematic viscosity and k   the permeability of the po- 
rous medium. 

The initial and boundary conditions are  

0

0

0 0

0, , for 0 ,

0, ,  at 0 for

, 0, ,  at f

u w v v y h t

u w v v y t

u u w v v y h

0

0,

or t

,

0.

     

    





     

    (4) 

Introducing the non-dimensional variables  

1 1 2
0 0

, , ,
y u v t

h
u w

h u u

              (5) 

 

 

Figure 1. Geometry of the problem. 
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Equations ( Taking the Laplace transform, Equation (8) becomes  1) and (3) become  
2

21 1 1
1 12 2

1
Re 2 ,

u u u
K w u

   


   
  

      (6) 
  2

2
2 2

d d 1
Re 2i 0,

dd

q q
s K q

 
      
 

    (12) 

2
21 1 1

1 12 2

1
Re 2 ,

w w w
K u w

   
  

   
  

where        (7) 

where 

 
0

, e sq q d . 


               (13) 
2

2 h
K




  is the rotation parameter and  

0Re
v h


  

The boundary conditions for  ,q s   are  

the Reynolds number and 
2

2 0
2

k u



  the po- 

rosity param
(6) and (7), we have  

eter. 
Combing Equations 

    1
0, 0 and 1, .q s q s

s
          (14) 

The solution of Equation (12) subject to the boundary 
conditions (14) is  2 1q q q2

2 2
Re 2i ,K q q

   
   

  
      (8) 

where  

  

   1
Re 1

21 sinh
,

sinh

s a
q s

s s a
e ,







     (15) 

1 1i and i 1q u w    .             (9) 

The initial and boundary conditions for  ,q    are  
where  

2
2

2

Re 1
=

4
a


  ,0 0 for 0 1 andq         (10) 0,     

       (11)    0, 0 and 0, 1 for 0.q q  

2i .K

 

           (16) 

The inverse Laplace’s transform of Equation (15) is  

   
 

 
 

 
2 1

Re 1
2

22 2
1

sinh i 2 π 1 e
, s π e

sinh i π i

n
n

n

n
q n

n

 

in
  

  
   

 



  
 

   
                    (17) 

where  

 

1
1 2

2 22 2
22 2 2 4

2

1 Re 1 Re 1
π i , , 4

4 42
n n K    

 2 .


 
                


 
      

 

             (18) 

On separating into a real and imaginary parts, we get  

         
   

 
 

    

2

2 2 2 2

1 S S C  Re 1
2

1 2 2 2 2 2 2 2 21

π2 2 2 2

π 1 sin π
e 2

π 4

π cos 2 2 sin 2 e ,

n

n

n

C n n
u

S C n

n



  

 
     

    





  

 
   


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


              (19) 
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 
 

    

2

2 2 2 2

1
Re 1

2
1 2 2 2 2 2 2 2 21

π2 2 2 2

π 1 sin π
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π 4

2 cos 2 π sin 2 e ,

n

n

n

C S S C n n
w
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n


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    
    

    





  

  
 

   


     




 


             (20) 

 

here  w

   
   

sinh cos , cosh sin ,

sinh cos , cosh sin .

C

S C

S      

     

 

 
(21) 

The solution given by Equations (19) and (20) exists 
fo

for the suction at the plates).  

r [17], for small time, the 
oundary conditions (14) is 

r both Re < 0 (corresponding to 0 0v   for the blow- 
ing at the plates) and Re > 0 (corres ing to 0 0v   

Solutions for Small Time 

pond

Following Carslaw and Jaega
solution of (12) subject to the b
obtained by Laplace transform technique in the following 
form  
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     
2

2
1 12i Re 1 1

,
nK

n
q

  22
2

0 0

2 2

2
2 1 2 1

e e 2i 4

erfc erfc
2 2

Re
erfc erfc

8 2 2

k n

n n

n n

c d
j j

c d
cj dj

 K 
         



 


 

 

 

 

  
 

          
    

         
    



(22) 

where  
,2 1 , 2 1c m d m        

   1erfc erfc ,n n

x
j x j d 

  


 

       0erfc erfc d , erfc .
x

j x j x x    erfc

The solution (22) can be written as  

     
1

2

0

i 4 ,

0,2,4,6, ,

n
n

r
k

K T

r




 






 
 

  

(2
where  

2
2

12i Re 1
2

2

1
, e e 2

K

q
 

 
   

   

3) 

0

2
1 1

erfc erfc
2 2

Re
erfc erfc ,

4 2 2

0,2,4,6,

r r
r

k

T


 


r r

c d
j j

c d
cj dj

r

 


 



 

        
    

     

   

    
 

(24) 

On separating into a real and imaginary parts, we get 
the velocity distributions for the primary and the secon-
da





ry flow as  

      2
1

Re 1 2 22
1 eu , cos 2 , sin 2 e ,P K Q K







        

 (25) 


      2
1

Re 1 2 22
1 e , cos 2 , sin 2w Q K P K e ,



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

   
(26) 
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K
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 


 

   





     
 

 
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 

 
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



4T

 (27) 

Equations (25) and (26) describe the fluid velocities 
for small time. 

3. Results and Discussion 

To study the effects of rotation, Reynolds number and 
porosity parameter on the velocity distributions we have 
presented the non-dimensional velocity components 1  
and 1  against 

u
w   in Figures 2-6 for several values of 

the rotation parameter 2K , Reynolds number Re, poros- 
ity parameter   and time  . It is seen from Figure 2 
that the primary velocity 1  decreases and the magni- 
tude of the secondary velocity 1  increases with an 
increase in rotation number 

u
w

2K . Figure 3 reveals that 
both the primary velocity 1  and the magnitude of the 
secondary velocity 1  decreases with increase in Rey- 
nolds number Re. It is observed from Figure 4 that both 
the primary velocity 1  and the magnitude of the sec- 
ondary velocity 1  increase with an increase in porosity 
parameter 

u
w

u
w

 . The presence of porous medium produces 
a resisting force in the flow field. So, the resistance in the  

 

 

Figure 2. Velocities u1 and w1 for different K2 when Re = 2, σ = 0.1 and τ = 0.2. 
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Fi .  
 

gure 3. Velocities u1 and w1 for different Re only when K2 = 2, σ = 0.1 and τ = 0.2

 

Figure 4. Velocities u1 and w1 for different σ when K2 = 2, Re = 2 and τ = 0.2.  
 
flow field decreases as the porosity parameter   in- 
creases. This indicates that porosity of the me  has 
an accelerating influence on the flow field. Thus we can 
control the velocity field by introducing porous m m 
in a rotating system. It is observed from Figure 5 at 
both the primary velocity and the magnitude  the 
secondary velocity  eases with an n 
times 

dium

ediu
 th

 of
 increase i

 1u  
incr 1w

 . For small values of time, we have dr e 
velocity omponents on using the solution 
give quations nd the general s n 
given by Equations (19) and (20) in Figures 6 and 7. It is 
seen that the solution for small time given by Equations 
(25) and (26) converges more rapidly than the general 
solution given by (19) and (20). Hence, we conclude that 
for small times, the numerical values of the velocity 
components can be evaluated from Equations (25) and 

(26) instead of Equations (19) and (20). 
The non-dimensional shear stresses at the stationary 

plate 

awn th

olutio
 c

n by E
 1u

(25)
 and 

d (2
1w  

6) a an

 0   due to the primary and the secondary 
flows n by  are give

 
 

    

 

22 2

0

π i2 21

2
22 2

1

i

i 2 π 1 e
e

sinh i π i

x y

nn
Re

n

q

n

n



  

 


 
   



  




 
    

 
        


 

(28) 

On separating into a real and imaginary parts, we get 
the shear stress components due to the primary and 
secondary flows at the stationary plate 0   as   
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ime τ when K2 = 2, Re = 2 and σ = 0.1.  Figure 5. Velocities u1 and w1 for differe
 

nt t

 

Figure 6. σ = 0.1.  Velocity u1 for general solution and solution for small time when K2 = 2, Re = 2 and 
 

 

Figure 7. Velocity w1 for general solution and solution for small time when K2 = 2, Re = 2 and σ = 0.1. 
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On separating into a real and imaginary parts, we get 
the shear stress components due to the primary and 
second s as  
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For small time, the numerical values of the shear stress 
components calculated from Equations (29), (30), (33) 
and (34) are given in Tables 1 and 2 for several values of 
Re and

3

5Y 

5

  . It is observed that for small time the shear 
stresses calculated from Equations (33) and (34) give 
better result than that calculated from Equations (29) and 
(30). Hence, we conclude for small times shear stress 
components should be evaluated from Equation
(34) instead of Equations (29) and (30). 

We shall now discuss the asymptotic behavior of the 
(25) and (26) for small and large values of 

s (33) and 

solutions 2K  
dy and Re, when the motion is in steady state. In the stea

state     , Equation (17) becomes  
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Case 1): When 2 1K   and . 
When Re is large and 

Re 1
2K  

s bou
r th

is of small order of mag- 
nitude, the flow become ndary layer type. For the 
boundary layer flow nea e upper plate 1  , intro- 
ducing the boundary layer coordinate 1   , we ob- 
tain the velocity distributions from (36) as  

Re

2
1 e cosu

 
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Figure 8. Shear stresses τx and τy for different K2 when σ = 0.1 and τ = 0.2.  
 

 

Figure 9. Shear stresses τx and τy for different σ when K2 = 2 and τ = 0.2.  
 

 

Figure 10. Shear stresses τx and τy for different τ when K2 = 2 and σ = 0.1. 
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Table 1. Shear stress 10τx due to primary flow when K2 = 2 and σ = 0.1.  

General solution Solution for small times 
Re\  

0.04 0.05 0.06 0.04 0.05 0.06 

1 0.00217 0.00359 0.00443 0.03107 0.02736 0.01407 

2 0.00129 0.00212 0.00261 0.10398 0.09122 0.04630 

3 0.00075 0.00123 0.00150 0.26266 0.22920 0.11421 

4 0.00043 0.00070 0.00085 0.59325 0.51417 0.25021 

 
Table 2. Shear stress −102τy due to secondary flow when K2 = 2 and σ = 0.1. 

General solution Solution for small times 
Re\  

0.04 0.05 0.06 0.04 0.05 0.06 

1 0.00579 0.01111 0.01502 0.01037 0.02393 0.02489 

2 0.07952 

3 0.00199 0.00378 0.00507 0.08480 0.19675 0.19852 

4 0.00114 0.00214 0.00285 0.18683 0.43526 0.44202 

0.00342 0.00654 0.00882 0.03423 0.07917 
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2
1 e sinw
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        (39) 

It is evident from Equations (37) and (38) that there 
exists a single-deck boundary layer of thickness of order  

1
Re

2
O 

     
   

 near the moving plate of the channel  

where   is given by (39). The thickness of this bound- 
ary layer decreases with
ter 

 an increase in porosity parame- 
  since   decreases with increase in  . 

Case 2): When 2 1K   and 
In this case, the velocity distribut ned 

from the Equations (36) as  

1Re . 
ions are obtai
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Equations (40) and (41) sho at there e a single-
decker boundary layer of thick of orde



w th xists  
ness r  

1
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2
O 

     
   

 adjacent ovin of th

channel where

to the m g plate e  

   is given by (42). The thicknesses of 
the layer decreases with an increase in Reynolds number 
Re while it increases with increase in porosity parameter 
 . 

4. Conclusion 

The unsteady Couette flow of a viscous incompressible 
fluid through a porous medium in a rotating system has 
been investigated. It is found that the primary velocity 
decreases and the magnitude of the secondary velocity 
increases with an increase in rotation parameter. The 
fluid velocity components decrease with a  increase in 

 the porosity of the me- 
econdary velocities in- 

crease. That is, the porosity of the medium has an accel- 
erating influenc urn, it can control 
he veloc ield by ucing po  medium in a 

. It is also ound th lution for 
all tim erges  general solu- 
n. Fo  state, ptoti ior of the so- 

tion i ed fo as well as large values of 
n ter and lds num t is observed 

at a t ndary  form  the moving 
plate of the channel and the thicknesses of the layer in- 

 parameter. 
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