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ABSTRACT 

In this paper, a user friendly algorithm based on the variational iteration method (VIM) is proposed to solve singular 
integral equations with generalized Abel’s kernel. It is observed that an approximate solutions yn(x) converges to the 
exact solution irrespective of the initial choice y0(x). Illustrative numerical examples are given to demonstrate the effi-
ciency and simplicity of the method in solving these types of singular integral equations. 
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1. Introduction 

The real world problems in scientific fields such as solid 
state physics, plasma physics, fluid mechanics, chemical 
kinetics and mathematical biology are nonlinear in gen- 
eral when formulated as partial differential equations or 
integral equations. In the last two decades, many power- 
ful techniques have been proposed to solve the singular 
integral equations and differential equation by using VIM 
[1-15]. 

The generalized Abel’s integral equation of the second 
kind is given by  
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The closed form solution (2) is not very useful in 
many cases where it is difficult to evaluate the integral 
appearing in (2). So, it is desirable to have numerical 
solution for the generalized Abel’s integral Equation (1). 

In the present paper, we have proposed an algorithm 
based on the variational iteration method to solve the 

generalized Abel’s integral Equation (1). It is observed 
that the choice of the initial approximation  0y x  has a 
small effect on the efficiency of the method. The appro- 
ximate solutions  ny x  will always converge to the 
exact solution. 

2. Basic Idea of Variational Iteration 
Method 

Variational Iteration method was first proposed by He 
[2-6] and has been successfully used by many research- 
ers to solve various linear and nonlinear models [7-15]. 
The idea of the method is based on constructing a correc- 
tion functional by a general Lagrange multiplier and the 
multiplier is chosen in such a way that its correction so- 
lution is improved with respect to the initial approxima- 
tion or to the trial function. 

Now, to illustrate the basic concept of the variational 
iteration method, we consider the following general non- 
linear system: 

     ,L y x N y x f x              (4) 

where L is a linear operator, N is a nonlinear operator and 
 f x  is a known analytic function. The basic character 

of the method is to construct a correction functional for 
the system, which reads 
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where   is a general Lagrange multiplier, which can be 
identified optimally via variational theory, n  is the nth 
approximate solution, and n  is considered as a re- 
stricted variation, i.e. namely 

y
y

0.ny  Successive ap- 
proximations,  1 ,ny x

0

 will be obtained by applying 
the obtained  Lagrange multiplier and a properly chosen 
initial approximation . y x  

3. Variational Iteration Method of Solution 

We consider the following iteration formula for Equation 
(1) in the following form 
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where  ny x


 is the nth approximate solution of (1) and 

0 y x  is an appropriately chosen initial guess. The 
value of   is found to be −1. 

4. Numerical Examples 

The simplicity and accuracy of the proposed method are 
illustrated by the following numerical examples by com-  

puting the absolute error       ,n nE x y x y x   where 

 y x  is the exact solution and  ny x  is the nth appro- 
ximate solution of the problem. The absolute error 

 has evaluated with examples 1 and 2 for value of 
 and also the absolute error has calculated with 

examples 3 and 4 for different values of 

nE x
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Example 1. Consider the following generalized Abel’s 
integral equation of second kind 
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   Fresnely x C x  solve the above integral equation by 
taking 4 different choices of the initial guess  0 .y x  It is 
observed that the method always converges to the exact 
solution. 

Case 1a. Taking the initial guess  0 .y x  as  
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the various approximate solutions   ,ny x  obtained from 
Equation (6), are given as 
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Case 1c. Taking a different value of the initial guess 
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Case 1d. In this case, we are taking the initial guess 
 0 cosy x x  
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Figures 1-4 show the errors between the exact solution 
 y x  and the approximate solutions  20y x  for the 

different initials choices of  0y x  fo ove four 

paper, the variational iteration method has been 
 a user friendly algorithm 

nder the variations of initial guess 

r the ab
cases. 

5. Conclusion 

In this 
successfully used to obtain
which is stable u

 0y x  to solve the generalized Abel’s integral equations. 
The variational iteration method yields solutions in the 
forms of a convergent series with easily calculable terms. 
 

 

Figure 1. The absolute error E(x) for example 1 (case a). 
 

 

 

Figure 3. The absolute error E(x) for example 1 (case c). 
 

 

Figure 4. The absolute error for E(x) example 1 (case d). 
 
It is shown that the variational iteration method is a 
promising tool for such types of singular integral equa-
tions. 
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