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ABSTRACT 

In this paper we introduce methods for approxi- 
mating local standard time in the Northern He- 
misphere using Polaris and the Big Dipper as 
well as alternative reference stars, and describe 
in detail how to construct a device we call a dip- 
perclock to facilitate this process. An alternative 
method which does not require a dipperclock is 
also discussed. Ways of constructing dipper- 
clocks which glow in the dark are presented. 
The accuracy of dipperclocks is examined, both 
theoretically and through field testing. A java 
program is provided for creating dipperclocks 
customized to a particular year-long time period 
and place to get improved accuracy. Basic as-
tronomical definitions and justifications of the 
results are provided. We also discuss the use of 
dipperclocks to find longitude and latitude. 
 
Keywords: Polaris; Big Dipper; Time; Longitude; 
Latitude 

1. INTRODUCTION 

The North Star Polaris and the Big Dipper can be 
thought of as a giant clock in the sky, with the imaginary 
hour hand of the clock extending from Polaris through 
the pointer stars in the bowl of the Big Dipper (see Fig-
ure 1). One needs to imagine a 24-hour clockface cen-
tered at Polaris which runs counterclockwise, is perpen-
dicular to your line of sight to Polaris, and has midnight 
at the top and noon at the bottom. The time indicated in 
the picture appears to be about 10:30 a.m., before ad-
justing for the date, which we will do in Appendix 8. 

Since the earth rotates clockwise on its axis when 
viewed from below the solar system, the Big Dipper, 
which provides the hour hand for our clock, appears to 
rotate counterclockwise about Polaris. References [1-7] 
rely on the use of imaginary 24 or 12-hour clockfaces 
that the reader must envision in the sky to estimate the 
sidereal time. To get local standard time, a mathematical 
calculation involving the date is needed in [2-4,6,7]. We 
describe a similar “equinox estimation method” in Ap- 
pendix 8. Reference [1] uses a mechanical translator to 
do the calculation. References [8-12] discuss mechanical 
devices for telling time by the Big Dipper and other stars. 
We note that our dipperclock1 differs from the devices 
we have found in the literature in various ways, includ-
ing the following: 1) The dipperclock has no parts which 
move relative to one another; thus it is simpler and easier 
to make than the other devices we have found in the lit-
erature. As shown in Figure 2, the dipperclock consists 
of a single disk with a hole in the center; 2) The dipper- 
clock can be made in glow-in-the-dark versions, which 
are easier to read in dark areas. In Figure 2, the numbers 
 

 

1Patent pending. 
2Stars by Stellarium (developed by Fabien Chéreau, Matthew Gates, 
Nigel Kerr, Diego Marcos, Bogdan Marinov, Timothy Reaves, Alex-
ander Wolf, Guillaume Chéreau, and Barry Gerdes). Hour hand by 
photoshop. Figure 1. The celestial clock2. 
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Figure 2. The generic dipperclock. 
 
and letters, the concentric circles, and the hash marks can 
be made to glow in the dark; 3) Custom dipperclocks can 
be generated using the free java program which we are 
supplying; 4) This paper supplies proofs for the claims 
we make about the dipperclock. Some of the proofs are 
quite intricate because the clookface, which is the outer 
ring in Figure 2, rotates when the date changes. 

In Section 3 we discuss a correction based on the 
user’s longitude that can improve the accuracy of the 
dipperclock. In Section 4 we show how a dipperclock 
can be used as a longitude finder if the Universal Time 
(see Appendix 1) and date are known, and can be used to 
find the latitude in the Northern Hemisphere as well. In 
Section 5 we discuss glow-in-the-dark dipperclocks. 

We relegate many of the details of our work to the 
following 12 Appendices: 

Appendix 1: A list of basic astronomical definitions. 
Appendix 2: Justification of the geographic correction. 
Appendix 3: Justification of the method of using a dip- 

perclock to find longitude. 
Appendix 4: Using different stars as the tip of the hour 

hand. 
Appendix 5: Discussion of a free java program to gen-

erate dipperclocks. 
Appendix 6: Construction of glow-in-the-dark dipper-

clocks. 
Appendix 7: Field testing. 
Appendix 8: Finding the time without a dipperclock 

(the equinox estimation method). 
Appendix 9: Discussion of the mathematical founda-

tions required for Appendices 10 - 12. 
Appendix 10: Discussion of how the various numbers 

and hash marks are placed around the dipperclock. 
Appendix 11: Accuracy of the dipperclock. (Bottom 

line: Under typical assumptions, theoretical error < 13 
minutes for a generic dipperclock assuming a geographic 
correction is done; theoretical error < 5 minutes for a 
custom dipperclock.) 

Appendix 12: Accuracy of the equinox estimation 
method. (Bottom line: Under typical assumptions, theo-
retical error < 16 minutes assuming a geographic correc-

tion is done.) 

2. THE DIPPERCLOCK 

Figure 2 is a diagram of our generic dipperclock (By a 
generic dipperclock we mean a dipperclock which as-
sumes the previous autumnal equinox to be midnight in 
Universal Time on September 22, ignores leap years, and 
does not have a built-in geographic correction; such a 
dipperclock can be used at any time.) In the diagram, the 
letters and numbers in the outer ring represent local 
standard time, with the M representing midnight, the 
numbers 1 through 11 running counterclockwise from M 
representing a.m. times, the N representing noon, and the 
numbers 1 through 11 running counterclockwise from N 
representing p.m. times. Each letter in the inner ring 
represents the first day of a month, with the months run-
ning clockwise; for example, the F in the inner ring 
represents February 1, the M in the inner ring adjacent to 
the F represents March 1, etc. When the dipperclock is 
used (as described in more detail below) the user rotates 
the dipperclock so that the current date is at the bottom 
of the inner ring, positions the dipperclock so that Polaris 
is centered in the center of the central hole of the dipper-
clock, and reads the local standard time indicated in the 
outer ring by the “pointer stars” in the bowl of the Big 
Dipper. 

This diagram can also be obtained by going to the 
URL in [13]. To make a working version, either copy 
Figure 2 onto a stiff piece of paper or print the diagram 
from [13]. Then, cut away the part inside the inner ring 
and the part outside the outer ring, leaving a doughnut- 
shaped object consisting of two rings containing letters, 
numbers and hash marks. The numbers in the outer ring 
represent local standard time, with M denoting midnight 
and N denoting noon. The letters in the inner ring repre-
sent the first days of months at midnight. For example, F 
represents February 1 at midnight. 

Recommended viewing procedure: 
1) If you are using a glow-in-the-dark dipperclock 

(Section 5), expose it to light before using it. 
2) Locate the Big Dipper (see Figure 1 or Figure 3). 
3) Locate the North Star Polaris by drawing an imagi-

nary line through the “pointer stars” in the bowl of the 
Big Dipper farthest from the handle. 

4) Hold your dipperclock with today’s date in the inner 
ring directly below the center. 

5) Center Polaris in the hole. 
6) Move your dipperclock back and forth along the 

line from your eye to Polaris, keeping it perpendicular to 
this line, until the pointer stars are close to the outer ring. 

Then read the standard time at the point on the outer 
ring closest to the pointer stars. 

7) If you are on daylight savings time, add one hour. 
Example 1 
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Figure 3. Illustration for example 
13. 

 
Suppose that on August 17 we view Polaris and the 

Big Dipper using a 203 mm (8 inch) glow-in-the-dark 
dipperclock (Section 5) and what we see is as shown in 
Figure 3 above. Note that the dipperclock has been ro-
tated so that August 17 in the inner ring is at the bottom 
of the dipperclock. The pointer stars in the bowl of the 
Big Dipper give a reading of about 11:50 p.m. local 
standard time, which is about 12:50 a.m. local daylight 
time. 

3. GEOGRAPHIC CORRECTION 

Your location within your time zone could cause an 
error of a half hour or more in the time read from your 
dipperclock. To fix this problem, let 

GC = the geographic correction (in minutes); 
LST = your local standard time (in hours); 
UT = the Universal Time (in hours) (see Appendix 1); 
L = your longitude (in degrees). 
Then 

  GC 4 15 LST UT L              (1) 

This formula is justified in Appendix 2. 
Note that LST – UT is constant throughout your time 

zone. In any time zone, we call the line of longitude of 
15 × (LST – UT) degrees the centerline of the time zone, 
even though it might not be in the center. West longitude 
is taken to be negative, and east longitude is taken to be 
positive. We see from Eq.1 that the geographic correc- 
tion is zero if you are located on the centerline of your 
time zone. 

As an example, we will consider the geographic cor-
rection for Chicago, Illinois, which is located in the U.S. 
Central Time Zone at west longitude 87.63˚ (see [14]). 
LST – UT = –6, which follows from the fact that Central 
Standard Time is 6 hours behind UT, or one can get UT 
from [15] (or http://www.usno.navy.mil) and compute 
LST – UT directly. From Eq.1, we have 

    
 

GC 4 15 6 87.63

4 90 87.63

9.48 minutes

9 min 29 sec

     

   

 

 

 

so we must subtract about 9 minutes from our time esti-
mate for Chicago. 

4. USING A DIPPERCLOCK AS A  
LONGITUDE AND LATITUDE FINDER 

Given the date, time zone, and longitude, we have 
shown how one can use a dipperclock to find the local 
standard time (LST). If instead the Universal Time and 
date are known, one can then use a dipperclock to find 
the longitude. If we let DT (in hours) = the local standard 
time estimate found by the dipperclock without a geo-
graphic correction, it is shown in Appendix 3 that your 
longitude in degrees is given by 

 L DT UT 15               (2) 

In the Northern Hemisphere, it is also possible to use 
Polaris to find your north latitude (which equals the an-
gle of elevation of Polaris above the northern horizon 
[2]), and therefore completely specify your location. To 
use your dipperclock to approximately find this angle, 
hold the dipperclock vertically with the central hole be-
side your left eye and the M in the outer ring lined up 
with the northernmost point on your horizon, then read 
the nearest position on the outer ring to Polaris and mul-
tiply this value by 15. 

If the errors in the time indicated by a dipperclock, 
which we discuss at length in Appendix 11, amount to m 
minutes (i.e. m/60 hours), then by Eq.2, they will cause 
an error of m/4 degrees in the estimate of the longitude. 

Although we have not covered celestial navigation in 
any depth in this paper, the interested reader can find 
much more information about it in [16,17]. 

Example 2 
Question: Suppose a dipperclock constructed with no 

geographic correction says that the local standard time is 
9:27 p.m., and at the time this reading is taken the Uni-
versal Time is 05:37 (i.e. 5:37 a.m.). Suppose also that 
when the dipperclock is held vertically with the central 
hole beside your left eye and the M in the outer ring 
lined up with the northernmost point on your horizon, 
Polaris is near the 2.5 in the outer ring. Where are you? 

Answer: By Eq.2, 

 L 8 :10 1

1
8 15

6

122.5

5  

    
 

  

 

3Stars by Stellarium (developed by Fabien Chéreau, Matthew Gates, 
Nigel Kerr, Diego Marcos, Bogdan Marinov, Timothy Reaves, Alex-
ander Wolf, Guillaume Chéreau, and Barry Gerdes). Combining of 
stars and DSLR photo of letter-size glowing dipperclock, and bright-
ness enhancement of dipperclock photo, by photoshop. 
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Figure 4. 76 mm (3 inch) dip-
perclock4. 

 
that is, the west longitude is 122.5˚. Your latitude is 
about 2.5 × 15 = 37.5˚. Checking a map or [14] shows 
that you are in or near San Francisco, California (which 
has west longitude 122.4˚ and latitude 37.8˚). 

5. GLOW-IN-THE-DARK  
DIPPERCLOCKS 

In a very dark area that is otherwise ideal for night sky 
viewing, it may be difficult to see the numbers on the 
dipperclock. We have used phosphorescent paper or paint 
to deal with this problem. The construction of glow-in- 
the-dark dipperclocks is discussed in Appendix 6. A 
phosphorescent paint dipperclock is shown in Figure 4.  
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APPENDIX 1: A LIST OF BASIC  
ASTRONOMICAL DEFINITIONS 

In this section we give a few definitions from As-
tronomy along with some discussion of some of them. 
These definitions can also be found in [2,5] and many 
other places. 

a) In Astronomy, the sphere of the sky surrounding the 
earth is called the CELESTIAL SPHERE, where the 
center of the earth is also the center of the celestial 
sphere. We give distant stars fixed positions on the ce-
lestial sphere called declination (D) and right ascension 
(RA), which are similar to latitude and longitude on an 
earth map. 

b) A GREAT CIRCLE on the celestial sphere is a cir-
cle formed by cutting the celestial sphere with a plane 
that contains the center of the earth. These are the largest 
possible circles on the sphere. 

c) The CELESTIAL EQUATOR is the great circle 
formed by cutting the celestial sphere with the plane that 
contains the center of the earth and is perpendicular to 
earth’s rotation axis. 

d) The NORTH (SOUTH) CELESTIAL POLE is the 
point where the northern (southern) portion of the earth’s 
axis meets the celestial sphere. The north celestial pole is 
close to Polaris; the south celestial pole is close to the 
Southern Cross. 

e) RIGHT ASCENSION: We lay out a distance scale 
on the celestial equator by dividing it into 24 one-hour 
intervals by means of points which are numbered 0 to 23, 
moving clockwise as viewed from below the solar sys-
tem. The zero point is located in the constellation Pisces. 
For any object or point on the celestial sphere other than 
a celestial pole, there is one and only one great circle 
that contains the celestial poles and this object or point. 
The RIGHT ASCENSION of the object or point is de-
fined relative to the closest point where this great circle 
intersects the celestial equator. 

f) UNIVERSAL TIME (UT) is approximately stan-
dard time at the Royal Observatory in Greenwich, Eng-
land, and was formerly known as GREENWICH MEAN 
TIME (GMT). UT is 5 hours ahead of standard time in 
the U.S. Eastern time zone (EST). There is also COOR-
DINATED UNIVERSAL TIME (UTC) which is meas-
ured by atomic clocks but which is kept within 0.9 sec-
onds of UT by the addition of an occasional “leap sec-
ond”. For the purposes of this paper we will treat UTC 
and UT as being the same. 

g) The ZENITH is the highest point in the sky, di-
rectly overhead. 

h) One’s MERIDIAN is the part of a great circle that 
starts at the north celestial pole, passes through one’s 
zenith, and ends at the southernmost point on one’s ho-
rizon. 

i) One’s SIDEREAL TIME is the right ascension of 

whatever is on one’s meridian at the time. 
j) AUTUMNAL EQUINOX: Between summer and 

fall, we reach a point in our orbit about the sun when the 
plane which contains the earth’s equator hits the center 
of the sun. As a result, the day and night that occur clos-
est to this point are of roughly equal length. This is 
called the autumnal equinox. (Equinox = equi (equal) + 
nox (night)). A table of autumnal equinoxes for the years 
2000-2020 is given in [15] in UT. From [15] we see for 
instance that the autumnal equinox for 2010 was 3:09 
UT September 23, or September 22 at 10:09 p.m. (EST) 
or 11:09 p.m. (EDT). 

APPENDIX 2: JUSTIFICATION OF THE 
GEOGRAPHIC CORRECTION 

We wish to justify Eq.1 in Section 3, which is re- 
peated here as 

  GC 4 15 LST UT L         (A1) 

where 
GC = the geographic correction (in minutes); 
LST = your local standard time (in hours); 
UT = the Universal Time (in hours) (see Appendix 1); 
L = your longitude (in degrees). 
Using Eq.A1 is equivalent to the pair of statements 

(A1a) and (A1b) below: 
If you are east of the centerline, then for every degree 

of longitude you are east of the centerline, subtract 4 
minutes from your time estimate (A1a); and 

If you are west of the centerline, then for every degree 
of longitude you are west of the centerline, add 4 min-
utes to your time estimate (A1b). 

This equivalence follows from the facts that the abso-
lute value of 15 × (LST – UT) – L is just the number of 
degrees of longitude between your location and your 
centerline, with 15 × (LST – UT) – L being negative if 
you are east of your centerline and being positive if you 
are west of your centerline. 

Now it remains only to show that statements (A1a) 
and (A1b) give a valid time correction. Suppose you are 
one degree of longitude east of your centerline. Instead 
of thinking of moving one degree east from the center-
line, equivalently think of the earth suddenly turning one 
degree clockwise (as viewed from below) with you on it. 
This will make the Big Dipper appear to rotate one de-
gree counterclockwise. Since there are 360 degrees in a 
full circle, this rotation will be 1 360  of a full circle, so 
regardless of what 24-hour clockface you are using, the 
hour hand will advance (1 360 ) × 24 hours, which is 
(1 360 ) × (24 × 60) minutes, which is 4 minutes. Since 
you are still in the same time zone, your local standard 
time has not changed, so to compensate you will need to 
subtract 4 minutes from your time estimate. The argu-
ment for the case where you are west of the centerline is 
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similar. 

APPENDIX 3: JUSTIFICATION OF THE 
METHOD OF USING A DIPPERCLOCK 
TO FIND LONGITUDE 

In this appendix we wish to verify the equation 

 L DT UT 1   5            (A2) 

where 
L = your longitude (in degrees); 
DT = the local standard time estimate found by the 

dipperclock without a geographic correction (in hours); 
UT = the Universal Time (in hours) (see Appendix 1). 
Since GC is what we add to DT to get LST, we have 

     LST DT in minutes GC in minutes   

so from Eq.A1, 

   
   

LST DT in minutes

60 LST UT in hours 4 L



    
 

Converting the left side to hours, we get 

  
  

60 LST DT in hours

60 LST UT in hours 4 L

 

    


 

Dividing by 60, we get 

       LST DT in hours LST UT in hours L 15     

Canceling LST, we get 

   DT in hours UT in hours L 15     

Transposing terms, we get 

  L 15 DT UT in hours    

Finally, multiplying by 15, we get 

   L DT UT in hours 15    

which is what we wanted to show. 

APPENDIX 4: USING DIFFERENT 
STARS AS THE TIP OF THE HOUR 
HAND 

Until now we have used the pointer stars in the bowl 
of the Big Dipper as the tip of the celestial hour hand 
because the Big Dipper is familiar to most people and is 
easy to find. Other bright stars that are close to Polaris 
can also be used as the tip of the celestial hour hand, 
however. We simply need to utilize their right ascension 
(RA) rather than the right ascension of the bowl stars of 
the Big Dipper (for which RA = 11 hours). The equinox 
estimation method also works, if we replace the 11 in the 
adjustment term with the RA of the new star (see Ap-
pendix 8). 

One reasonable choice for the tip of the hour hand is 
Kocab (aka β UMi). In Figure 1, Kocab is the brightest 
star left of and a little below Polaris. Kocab was also 
mentioned in [7], and is the brightest star in the bowl of 
the Little Dipper. Kocab has the advantage that it is 
closer to Polaris than the pointer stars in the Big Dipper 
are, so it may be visible when the pointer stars are 
blocked by trees, for instance. For Kocab, we have RA = 
14 hours 50.7 minutes = 14.845 hours. 

Another reasonable choice would be γ Cas, which is 
the middle star in the W of Cassiopeia. γ Cas has the 
advantage that it is on the opposite side of Polaris from 
the Big Dipper, so it will be high in the sky when the Big 
Dipper may be too low to be visible. For γ Cas we have 
RA = 56.7 minutes = 0.945 hours. 

If a different tip star is desired, find its RA and use the 
java program in Appendix 5 to construct an appropriate 
dipperclock, or use the equinox estimation method pre-
sented in Appendix 8 with RA in place of 11. The RAs 
of many other good candidates can be found in Table 2 
of [5]. 

It is also possible to use a dipperclock constructed for 
the Big Dipper with the new tip star; just take a reading 
with the new tip star and add RA – 11 hours. This pro-
cedure will be justified in Appendix 10. For example, if 
RA = 17 hours then you can take a reading with the new 
tip star and add 6 hours. 

APPENDIX 5: DISCUSSION OF A FREE 
JAVA PROGRAM TO GENERATE  
DIPPERCLOCKS 

We have written a standalone java program which will 
generate a dipperclock according to one’s specifications 
and put it in a png file of one’s choosing. We are pro-
viding the source code for this program free in the text 
file dipperclock.java, which you can download from [18]. 
This file was created using the Mac text editor Text- 
Wrangler. 

To compile and run this program, you will need to 
have JDK (Java Development Kit) installed. Note that 
JRE (Java Runtime Environment) is not sufficient. JDK 
should already be present on Macs running OS 10.5 or 
higher; for PCs it can be downloaded for free from [19] 
(the leftmost of the four download icons in [19] should 
work well). 

To launch the program, open a command window. On 
a Mac, use the Terminal program; on a Windows com-
puter, use the cmd program; and with Linux, use Kon-
sole, gterm, or xterm. 

After creating a folder called javawork in your home 
directory and saving dipperclock.java there, type the fol- 
lowing three commands in the command window: 

cd javawork; 
javac dipperclock.java; 
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java dipperclock. 
One should not need the command window again ex-

cept to show error messages, if there are any. For further 
information, see Sections 2.6.1 and 2.6.2 of [20]. The 
program should now execute the following series of 
dialog boxes: 

1) Tip Stars: You will be asked whether you want to 
use the pointer stars in the bowl of the Big Dipper as the 
tip of the dipperclock’s hour hand. If you say no, you 
will then be asked to give the right ascension of the al-
ternative star(s) you would like to use instead. 

2) Year-Pair: You will be asked for the first year of the 
year-pair. The reason for the term year-pair is that a dip-
perclock involves parts of two consecutive calendar 
years, namely from the autumnal equinox of the first 
year to the autumnal equinox of the second year. If you 
give any negative number, you will get a generic dipper-
clock. 

3) LST – UT: You will be asked for the difference 
between your local standard time (LST) and Universal 
Time (UT). Note that this difference might not be an 
integer; for example, Newfoundland is 3 1/2 hours be-
hind UT, so LST – UT = –3.5 in Newfoundland. Our 
methods still work in such cases. If you are doing a ge-
neric dipperclock with no geographic correction, then 
LST – UT will not be needed by the program, so you can 
select anything. 

4) GC: You will be asked whether you want to do a 
geographic correction (GC), and if so, you will be asked 
for your longitude (which can be found using [14]). 

5) Size: You will be asked to specify the size of your 
dipperclock. 

6) Color: You will be asked to specify the color pat- 
tern of your dipperclock. You can choose white on black 
or black on white, or you can independently choose the 
color of the background, the three circles, the dates and 
their hash marks, and the times and their hash marks. In 
each case your choices are black, white, red, blue, green, 
and yellow.  

7) Confirm: The program will give a summary of your 
choices, and ask you if you are satisfied; if not, you will 
be taken through steps 1 - 7 again. 

8) Storage: The program will ask where you would 
like to save the .png file containing your dipperclock. 

If you choose, you may change the source code for 
this program. Additionally, you may find some of the 
subroutines to be useful independently; for example, 
FindAEUT and Isleap can be used to estimate the au-
tumnal equinox for a given year in Universal Time. See 
the comments (preceded by // or bracketed by /* */) in 
dipperclock.java for more information. 

Finally, we knew nothing about java when we started 
writing this paper; we learned enough java to write the 
program mainly by studying Professor David Eck’s fine 

online textbook [20]. 

APPENDIX 6: CONSTRUCTION OF 
GLOW-IN-THE-DARK DIPPERCLOCKS 

In this appendix we describe our methods for making 
various kinds of glow-in-the-dark dipperclocks. One ap- 
proach is to use an inkjet printer to print the dipperclock 
on glow-in-the-dark photo paper instead of ordinary pa- 
per. Reference [21] is an ad for a brand of glow-in-the- 
dark photo paper that has worked well for us in making 
letter size (203 mm across) glowing dipperclocks. Lami-
nation for durability and stiffness would be a good idea. 
Pocket size (51 mm or 76 mm) dipperclocks can also be 
made this way, but a brighter option for pocket size dip-
perclocks is to use glow paint rather than glow paper as 
follows: 

1) Print a white-on-black dipperclock, then copy it 
onto a transparency appropriate for your copier. We have 
used a laser copier for this. 

2) Paint the back of the dipperclock with glow-in-the- 
dark paint. We have found that two or three coats typi-
cally works best. For the outer ring, we recommend the 
“ultra green V10” from [22]; according to the seller, this 
is the brightest glow paint available. For the inner ring, 
especially for the 51 mm dipperclock, we recommend 
“pure blue”; the ultra green V10 may be bright enough, 
when used in the inner ring, to blank out your central 
vision and make Polaris difficult to see. We recommend 
only water-based paint for safety reasons. 

3) Cut away the transparency outside the dipperclock. 
4) For durability and to keep little kids away from the 

glow paint, which can be hazardous if ingested, we re- 
commend lamination. If you cannot see Polaris through 
the central hole, you can cut away the laminating mate- 
rial and transparency in the central hole. 

APPENDIX 7: FIELD TESTING 

We field tested our methods in and near Decatur, Illi-
nois. Decatur is in the US Central time zone, with west 
longitude of 88.95˚ according to [14], so according to 
Eq.1, the geographic correction for Decatur is 

    
 

GC 4 15 6 88.95

4 1.05

4.2 minutes

     

  

 

 

so we subtract about 4 minutes from our dipperclock 
time estimate. 

Below, we summarize the results of our field tests 
Test 1 (6/17/10) 
Using a generic dipperclock, we estimated the time to 

be 9:30 p.m. CST, i.e. 10:30 p.m. CDT. Subtracting the 4 
minute geographic correction (GC) gave 10:26 p.m. 
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CDT. The actual time was about 10:22 p.m. CDT, so we 
were off by 4 minutes. 

Test 2 (5/29/11) 
Glow-in-the-dark dipperclocks, customized to Decatur, 

Illinois: 
These tests were conducted with a full-size glow pa-

per dipperclock (203 mm across) and a pocket-size tran- 
sparency-glow paint dipperclock (51 mm across), with 
built-in geographic correction. We found that passing a 
small flashlight over each dipperclock for a few seconds 
charged them sufficiently for clear readings, and they 
remained sufficiently bright for the full hour duration of 
the test. 

Full size glow paper dipperclock: This dipperclock 
was very easy to use, and gave consistently accurate 
readings, with errors ranging from a half hour to zero. 

Pocket size painted transparency dipperclock: This 
was brighter than the glow paper dipperclock, but the 
numbers and letters were somewhat more difficult to 
read due to the small size. The accuracy was not quite as 
good as the accuracy with the full size glow paper dip- 
perclock.  

Test 3 (7/28/11) 
Using a generic pocket-size Big Dipper dipperclock 

with a different tip star: At 10:11 p.m. CDT the pointer 
stars of the Big Dipper were behind trees, so we used the 
handle star next to the bowl, ε UMa (aka Alioth), which 
has RA = 12 hours 54.1 minutes. This star gave a read- 
ing of about 7:30 p.m. CST, or 8:30 p.m. CDT. Here RA – 
11 = 1 hour 54.1 minutes, so adding this to the reading 
as discussed at the end of Appendix 4 and doing the geo- 
graphic correction we got about 8:30 + 1:54 – 0:04 = 
10:20 p.m. CDT, so we were off by 9 minutes. 

Test 4 (10/24/12) 
Finding the time, longitude, and latitude using a ge-

neric letter-size Big Dipper dipperclock: At about 8:30 
p.m. CDT we used γ Cas, the middle star of the W of 
Cassiopeia, which has right ascension 56.7 minutes, as 
the tip star. We got a reading of about 6:00 a.m. CST, i.e. 
about 7:00 a.m. CDT, on the outer ring of the dipper-
clock. Here RA – 11 = –10 hours 3.3 minutes. Adding 
this to our reading and doing the geographic correction 
we got about 7:00 a.m. – 10:3.3 – 0:04 = 8:53 p.m. CDT 
so we were off by about 23 minutes. 

We also used Capella, aka α Aur, as the tip star and 
attempted to estimate our longitude as in Section 4. Ca- 
pella has right ascension 5 hours 16.7 minutes, so RA – 
11 = –5 hours 43.3 minutes. Our time reading from the 
dipperclock was about 1:30 a.m., so converting this to 
DT, the time indicated by the pointer stars in the bowl of 
the Big Dipper, gives DT = 1:30 – 5:43.3 = –4:13 (ap-
proximately). Universal Time is 5 hours ahead of CDT, 
so we had UT = 20:30 + 5:00 = 25:30 = 1:30. From Eq.2 
we get 

 
 

L DT UT 15

4 :13 1: 30 15

43
5 15

60

85.75

  

   

    
 

 

 

Thus the error in the longitude approximation is – 
85.75 – (–88.95) = 3.2 degrees. 

Finally, we estimated the latitude by the method in 
section 4. When the dipperclock was held vertically with 
the hole beside the left eye and the M in the outer ring 
lined up with the northern point on the horizon, Polaris 
appeared to be close to 2 3/4 in the outer ring. Multiply-
ing by 15 gives 41.25 degrees as our estimate of the 
latitude. From [14] we have that the latitude of Decatur 
is 39.84 degrees, so we were off by about 1.4 degrees. 

In general, our tests of various dipperclocks were sat-
isfactory, with time errors usually less than 15 minutes. 

APPENDIX 8: FINDING THE TIME  
WITHOUT A DIPPERCLOCK (THE 
EQUINOX ESTIMATION METHOD) 

The equinox estimation method presented in this sec-
tion involves computing an adjustment term based on the 
current date and adding this to a sidereal time estimate 
read from the Big Dipper. 

First take the adjustment term to be 11 hours on Sep-
tember 22, the approximate date of the autumnal equi-
nox. Subtract 2 hours for each month that has passed 
since September, and add/subtract 4 minutes for each 
day before/after the 22nd of the current month. 

Look at Polaris and the Big Dipper, and imagine the 
outer ring of a dipperclock centered at Polaris and per-
pendicular to your line of sight to Polaris with the M at 
the top of the ring. Estimate the time on the imaginary 
outer ring at which the hour hand points, add the ad-
justment term, and add the geographic correction (if de-
sired) to get your estimate of the local standard time. 

As noted in [7], it is easy to get a little distortion in the 
time estimate, especially around 6 a.m. and 6 p.m. This 
occurs when the clockface is incorrectly imagined to be 
vertical, due to the fact that the hour hand lies in a plane 
which contains the axis of the earth, and a vertical 
clockface is not perpendicular to the axis of the earth. 
Imagining the clockface to be perpendicular to your line 
of sight to Polaris fixes this problem. The problem does 
not come up when using a dipperclock correctly since 
the dipperclock provides a properly tilted clockface. 

Example 3 
Suppose that on July 25 the stars are shown as in 

Figure 1 of section 1, with the clockface and hour hand 
seen only in our imagination. We compute the adjust-
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ment term as 11 hours – 10 × 2 hours – 3 × 4 minutes = 
–9:12. Adding this to the reading of 10:30 a.m. gives 
1:18 a.m. local standard time, or 2:18 a.m. local daylight 
time. Actually, a careful measurement of Figure 1 gives 
a reading of about 10:45 a.m. instead of 10:30 a.m., giv-
ing a discrepancy of about 15 minutes in our results, but 
we do not have the luxury of doing such measurements 
in the field. This illustrates the effects of observational 
error; other types of error will be discussed in Appendi- 
ces 11 and 12. 

We now describe two field tests using the equinox es-
timation method in Decatur, Illinois. As shown in Ap-
pendix 7, the geographic correction for Decatur is about 
–4 minutes. 

Test 1 (6/17/10), equinox adjustment method 
The adjustment for the equinox estimation method for 

6/17/10 using the Big Dipper is 

A 11 hours 9 2 hours 5 4 minutes

6 hours 40 minutes

    

 
 

Given our reading of the imaginary clockface of 5:00 
a.m. CDT, we had an estimated CDT of 

CDT 5 : 00 A GC

5 : 00 6 : 40 0 : 04

1: 44 22 :16,

  
  
  

 

which was 10:16 p.m. CDT. The actual time was 10:22 
p.m. CDT, so the error was 6 minutes. 

Test 2 (12/05/10), equinox adjustment method with γ 
Cas 

On 12/05/10, we carried out an equinox estimation 
method exercise using γ Cas as the tip of the hour hand. 
Using the right ascension of γ Cas, namely about 57 
minutes, in place of the 11 hours in the equinox estima-
tion adjustment, we found the adjustment to be 

A 57 minutes 3 2 hours 17 4 minutes

3 hours 55 minutes

    

 
 

Given our reading of the imaginary clockface of 10:30 
p.m. (=22:30 in 24-hour time), we had an estimated CST 
of 

CST 22 : 30 3 : 55 0 : 04 18 : 31 6 : 31 p.m.      

 The actual time was 6:40 p.m. CST, so we were off 
by 9 minutes. 

APPENDIX 9: DISCUSSION OF THE 
MATHEMATICAL FOUNDATIONS  
REQUIRED FOR APPENDICES 10-12 

In this section, we assume we are located on the cen-
terline of a time zone, so by Section 3, the geographic 
correction is 0. The only clockface we will be using in 
this section will be the 24-hour counterclockwise clock-

face with M at the top. 
After introducing some basic notation, we derive the 

relationship between local standard time and time read 
from a star at the tip of the hour hand on the dipperclock, 
along with the number of days (including fractional days) 
since the last autumnal equinox (Eq.A5), which provides 
the foundation for the rest of our work. 

a) We introduce the following notation: 
RA = the right ascension of the star(s) we are using as 

the tip of the hour hand; for the pointer stars in the bowl 
of the Big Dipper, RA = 11 hours. 

LST = the local standard time. 
RAT = the 24-hour time read from the star(s) at the tip 

of the hour hand when using a 24-hour counterclockwise 
clockface with M at the top. 

b) Now we determine how long it takes the earth to 
complete one rotation on its axis. Imagine looking down 
on the solar system, with the earth revolving counter-
clockwise around the sun and rotating counterclockwise 
on its axis. Each 24 hours the earth makes one complete 
rotation, plus a little more, in order to keep the same face 
toward the sun at the same time each day. Over the 
course of one complete revolution around the sun, these 
little extra fractions of a rotation add up to one complete 
rotation. Since when viewed from below the earth is 
rotating toward the east (i.e. clockwise) it appears to us 
that the Big Dipper is rotating counterclockwise, and if 
we look at the Big Dipper again at the same time the 
next night, it will appear to have rotated a little counter-
clockwise from where it was the first night. To be pre-
cise, the earth makes one complete revolution around the 
sun in about 365.2422 24-hour days [5, p. 500], so the 
time for one revolution is 365.2422 × 24 hours. During 
this time the earth will make 365.2422 rotations on its 
axis plus one more. Thus the time for one rotation is 
 365.2422 24 hours 366.2422 , which is about 23 
hours 56 minutes 4 seconds. Therefore, the solar day of 
24 hours is about 3 minutes 56 seconds longer than the 
actual time it takes the earth to rotate once about its axis, 
relative to distant stars that we are not orbiting. This 
(approximately) 23 hours and 56 minute rotation period 
is called the sidereal day. 

c) Now let’s suppose that we look at the star(s) at the 
tip of the dipperclock’s hour hand at the same LST on 
two consecutive nights. The second night, the tip stars 
will have returned to the same position after a sidereal 
day, but since we will be looking at them after a full so-
lar day, they will be offset slightly from their position the 
previous night. 

A little algebra shows that the time beyond one com-
plete rotation of the earth until 24 hours is reached is 
(1 366.2422 ) × 24 hours, and this is 1 365.2422  of the 
time for one complete rotation. 

Thus during our 24-hour period, the celestial hour 
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hand will make one complete rotation, plus 1 365.2422  
of a rotation. The complete rotation leaves RAT un-
changed, and the 1 365.2422  of a rotation increases 
RAT by (1 365.2422 ) × 24 hours. Thus at the end of a 
24-hour period, RAT will be greater by (1 365.2422 ) × 
24 hours than it was at the beginning of the 24-hour pe-
riod. LST will be the same at the end of the 24-hour pe-
riod as at the beginning, so over our 24-hour period, 

  
RAT LST increases by

1 365.2422 24 hours per night ,



      (A3) 

which is about 3 minutes 56 seconds. 
Now we need a starting point in order to map RAT 

into LST and complete our time conversion equation. 
We use the autumnal equinox (AE) as that starting point, 
at which 

LST RAT RA               (A4) 

because at the AE, 1) LST = the sidereal time [23] = the 
right ascension of whatever happens to be crossing the 
meridian at the time, and 2) the right ascension of what-
ever is crossing the meridian is always RAT + RA. 

2) is true because it is true when the tip star(s) are di-
rectly above Polaris (they are crossing the meridian, and 
they have right ascension RA, but the 24-hour time read 
from the tip star(s) is RAT = 0), and as time marches on 
from there both sides of the equation advance at the 
same rate, so the equation remains true. 

From Eq.A3 it follows that over a period of d days, 
LST – RAT will decrease by ( 24 365.2422 ) × d hours. 
Combining this result with Eq.A4 gives the complete 
time conversion equation: 

 LST RAT RA 24 hours 365.2422 d       (A5) 

or 

  LST RAT RA 3 min 56 sec d approximately      

(A6) 

where d = the number of days (including fractional days) 
since the last autumnal equinox. Note that when d = 
365.2422, then we are (approximately) at the next au-
tumnal equinox since the earth has returned to the same 
place in its orbit, the final term in Eq.A5 becomes 24 
hours, and Eq.A5 becomes Eq.A4 again, as expected. 
Eq.A5 was also proved in a different form in [2] for the 
case of the Big Dipper, where RA = 11. 

APPENDIX 10: DISCUSSION OF HOW 
THE VARIOUS NUMBERS AND HASH 
MARKS ARE PLACED AROUND THE 
DIPPERCLOCK 

To construct a dipperclock diagram you first draw 
three concentric circles to form two rings. You then need 
24 hash marks on the outermost concentric circle, 15 

degrees apart. The top hash mark is labeled (inside the 
outer ring) with the letter M standing for midnight, the 
next 11 hashmarks are labeled counterclockwise 1 
through 11 for a.m. times, the next hashmark is labeled 
N for noon, and the remaining 11 hash marks are labeled 
counterclockwise 1 through 11 for p.m. times. Shorter 
hash marks are inserted between these to mark the half 
hours. In describing the location of these hash marks we 
will use the usual mathematical convention of measuring 
angles from the positive x-axis, with counterclockwise 
angles being positive and clockwise angles being nega-
tive. Thus the location of the M hash mark is described 
by the angle 90 degrees. 

We need 12 more hash marks on the inner and middle 
concentric circles, labeled clockwise with the first letters 
of the months in the inner ring. Placing these hash marks 
and letters correctly is much more involved than placing 
the hash marks and numbers in the outer ring. We will 
now derive the formulas for computing the position an-
gles for these hash marks and letters for a dipperclock 
with given tip star(s), year-pair, time zone, and longitude 
(if a geographic correction is to be done). 

From the given information we compute the follow-
ing: 

RA = the right ascension of the star(s) used as the tip 
of the hour hand; if we are using the pointer stars in the 
bowl of the Big Dipper, then RA = 11 hours. 

AE = an estimate of the autumnal equinox in local 
standard time for the first year of the year-pair, given in 
date (in September) + fractional day form. 

LEAP = 1 if the second year of the year-pair is a leap 
year, and LEAP = 0 otherwise. 

LONG = 0 if no geographic correction is to be done, 
and otherwise LONG = your longitude – the longitude of 
the centerline of your time zone, given in degrees + frac-
tional degree form. 

We now a) derive an equation which gives the posi-
tion angle for the dates and their hash marks; b) show 
how to construct a dipperclock table; c) determine the 
dipperclock table for the generic dipperclock in Figure 2 
of this paper; and d) justify the claim from the end of 
Appendix 4. 

a) For now we will continue to assume we are located 
on the centerline of our time zone, so there is no geo-
graphic correction to be done. Referring to Eq.A5, we 
know that the date in the inner ring corresponding to d 
value  RA 24 365.2422  must go at the bottom of 
the dipperclock when the M in the outer ring is at the top, 
because plugging this d value into Eq.A5 gives LST = 
RAT at that time. Thus at that time the correct clockface 
to use is the one with the M in the outer ring at the top, 
and with the given d value opposite the M as described; 
holding the dipperclock with this d value at the bottom 
gives that clockface. 
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Next we claim that to get from the position in the in-
ner ring of the dipperclock corresponding to any d value 
to the position of d + 1 we must move ( 360 365.2422 ) 
degrees clockwise in the inner ring. To see this, suppose 
we look at the tip star(s) at the date and time corre-
sponding to d, so we will be holding the dipperclock 
with d at the bottom. If we look at the tip stars again 24 
hours later, so that d + 1 will be at the bottom, then by 
earlier work in part c) of Appendix 9, the celestial hour 
hand will be advanced by 1 365.2422  of a rotation 
compared to where it was at the beginning of the 
24-hour period. 1 365.2422  of a 360-degree rotation is 
( 360 365.2422 ) degrees. LST will be the same at the 
end of the 24-hour period as at the beginning of the pe-
riod, so we will need to have rotated the dipperclock 
counterclockwise ( 360 365.2422 ) degrees to keep the 
celestial hour hand pointing at the same time in the outer 
ring, so the d + 1 position will be ( 360 365.2422 ) de-
grees clockwise from the d position, as claimed. By 
proportionality, getting from position d1 to position d2 
(with 0 ≤ d1 ≤ d2 ≤ 365.2422) requires moving (d2 – d1) × 
( 360 365.2422 ) degrees clockwise on the dipperclock. 

By the definition of d, when d = 0, we are at the last 
autumnal equinox, and by the first claim in subsection 
(a), when d =  RA 24 365.2422  we are at the bot-
tom of the dipperclock (with the M in the outer ring at 
the top), so the distance moved clockwise around the 
dipperclock from d = 0 to d =  RA 24 365.2422  is  

    RA 24 365.2422 0 360 365.2422   

degrees, which equals (360/24)RA degrees = 15RA de-
grees. Thus we have the remarkable fact that whatever 
date and time we are using for the last autumnal equinox, 
it corresponds to a point on the dipperclock that is 15RA 
degrees counterclockwise from the bottom of the dip-
perclock. If we move from the positive x-axis to the au-
tumnal equinox position on the dipperclock instead of 
from the bottom of the dipperclock we are moving 90˚ 
less, so the autumnal equinox has position angle 15RA – 
90˚. 

Now consider the location (i.e. position angle) θ of 
midnight of the first day of a month following the value 
we are using for the autumnal equinox. Let d be the 
number of days plus fractional day that this time is past 
the autumnal equinox. Then by the work at the end of 
the second paragraph above Eq.A6 with d1 = the au-
tumnal equinox, d2 = midnight of the first day of the 
month, so d = d2 – d1, getting to location d2 from the 
autumnal equinox on the dipperclock requires a clock-
wise move of d × (360/365.2422) degrees. Clockwise is 
the negative direction, so we are changing the position 
angle by –d × (360/365.2422) degrees, so 

 15RA 90 360 365.2422 d      degrees (A7) 

In deriving Εq.Α7 we made the assumption that no 
geographic correction was done, so LONG = 0. Now 
suppose a geographic correction is to be built into the 
dipperclock, where LONG = L – 15 × (LST – UT) (us-
ing the notation of sections 3 and 4). The final result is 
then 

 15RA 90 360 365.2422 d LONG degrees       

(A8) 

Let’s justify this for the case where you are one degree 
of longitude east of the centerline of your time zone. 
(The argument for other cases is similar.) Then LONG = 
1. Statement (A1a) in Appendix 2 tells us to subtract 4 
minutes from your time estimate, but this can be accom-
plished by rotating the dipperclock one degree counter-
clockwise. To compensate for this rotation, the dates and 
hash marks in the inner ring need to be rotated one de-
gree clockwise, so the same date will be at the bottom. 
This can be done by subtracting one degree from each of 
the locations in Eq.A7 and Eq.A8 does precisely that. 

b) Now we are ready to construct a dipperclock table. 
The table is a 12 × 3 matrix. 

The first column of the table contains the numeric in-
dicators of the months in the order 10.0, 11.0, 12.0, 1.0, 
2.0, ···, 9.0. 

Each entry in the second column contains the number 
d of days plus fractional day (at midnight) that the first 
day of the month in column 1 is past the value being 
used for the autumnal equinox. 

Each entry in the third column contains the position 
angle θ given by Εq.Α8 using the d value to the left. 

To compute the first element in the second column, 
first convert October 1 at midnight to (imaginary) Sep-
tember 31 at midnight, or September 32.0, so we get 
32.0 – AE. Since there are 31 days from October 1 to 
November 1, the second element in the second column = 
the first element in the second column + 31.0. We con-
tinue down the second column this way, except the sixth 
element in the second column = the fifth element in the 
second column + 28 + LEAP to allow for a possible leap 
day in the second year of the year-pair. Finally, the ele-
ments in the third column are computed from Eq.A8 
with the d values taken from the second column. 

c) For the generic dipperclock shown in Figure 2 of 
this paper, we used RA = 11, AE = September 22 at 
midnight LST, LEAP = 0, LONG = 0. Table 1 below is 
the table corresponding to these choices that provided 
the position angles for Figure 2. 

d) In Appendix 4 we claimed that it is possible to use 
a dipperclock constructed for the Big Dipper with a new 
tip star with right ascension RA; just take a reading with 
the new tip star and add RA – 11 hours. To see this, 
suppose RA > 11; the case RA < 11 is similar. Consider a 
new dipperclock constructed for the new tip star. Re- 
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Table 1. Inner ring locations for the generic dipperclock (Fig-
ure 2). 

month d θ 

10.0 9.0 66.1 

11.0 40.0 35.6 

12.0 70.0 6.0 

1.0 101.0 –24.6 

2.0 132.0 –55.1 

3.0 160.0 –82.7 

4.0 191.0 –113.3 

5.0 221.0 –142.8 

6.0 252.0 –173.4 

7.0 282.0 –203 

8.0 313.0 –233.5 

9.0 344.0 –264.1 

 
placing RA by 11 in Eq.A8 and subtracting from the 
original Eq.A8, the updated position angles (θ’) for the 
new dipperclock are 

 15 RA 11 degrees,            (A9) 

where θ represents the position angles found for a dip-
perclock based on the Big Dipper. Since the position 
angle for the d value formerly at the bottom of the dip-
perclock has increased by 15 × (RA – 11) degrees, re-
turning this d value to the bottom of the new dipperclock 
rotates the new dipperclock 15 × (RA – 11) degrees 
clockwise with respect to the actual Big Dipper dipper-
clock. This is a clockwise rotation of  15 RA 11 360   
of a complete circle, or  RA 11 24  of a complete 
circle, or RA – 11 hours on the outer ring. The new tip 
star is pointing at the correct time on the new dipper-
clock, but due to the rotation this correct time is RA – 11 
hours counterclockwise from where the new tip star is 
pointing on the actual Big Dipper dipperclock. Thus the 
time pointed at by the new tip star on the actual Big 
Dipper dipperclock is RA – 11 hours too early, so we 
need to add RA – 11 hours to get the correct time. 

APPENDIX 11: ACCURACY OF THE  
DIPPERCLOCK 

In this section we assume that the correct geographic 
correction from section 3 has been done. We consider 
the following possible sources of error: a) error in Εq.A5; 
b) error due to using an inaccurate value for the autum-
nal equinox; c) error in using a dipperclock constructed 
with the second year being a non-leap year to estimate 
times with the second year being a leap year (or vice 
versa); d) error due to necessarily thinking of the dates in 
the inner ring as being discrete; and e) observational 

error.  
a) Eq.A5 is quite accurate in terms of its theoretical 

error (by which we mean the error in the equation itself, 
irrespective of observational errors). This is because the 
only major sources of error in Eq.A5 are rounding and 
to a much lesser extent, effects like the precession cycle 
of earth’s rotation axis, which has a period of approxi-
mately 26,000 years. See [5] for further discussions of 
this and other small sources of error. Consequently, we 
can say very conservatively that Eq.A5 is accurate to 
less than one minute. 

b) We note from Eq.A6 that an error of one day in d 
results in a less than 4 minute discrepancy in our esti-
mate of LST. For the generic dipperclock, we use a de-
fault value of midnight on September 22 (LST) for the 
autumnal equinox (AE), as a characteristic average. For 
instance, according to [15], for the years 2000 to 2020 
the maximum that an autumnal equinox falls short of 
midnight September 22 is 10 hours 29 minutes (for 2020) 
and the maximum in those years that an autumnal equi-
nox goes beyond midnight September 22 is 10 hours 47 
minutes (for 2003). Thus, in any year-pair with first year 
between 2000 and 2020, the discrepancy between the 
autumnal equinox (UT) and midnight September 22 (UT) 
is less than 12 hours. There is also a maximum 12 hour 
discrepancy in converting the UT autumnal equinox we 
have been discussing to the autumnal equinox for your 
time zone, which is what appears in Eq.A5, giving a 
discrepancy of your autumnal equinox from midnight 
September 22 of less than 24 hours, which equals one 
day. Multiplying this by 4 minutes, we can conserva-
tively say that using midnight September 22 LST as our 
value for the autumnal equinox should cause an error in 
our estimate of the current local standard time of less 
than 4 minutes. 

c) Whether or not the second year is a leap year will 
make a difference of 1 in d for the months March ···, 
September, and this difference can also affect our esti-
mated time by less than 4 minutes for these months. Re-
call that our generic dipperclock was constructed under 
the assumption that the second year is not a leap year.  

d) Think of a dipperclock in use. As time progresses, 
the hour hand of the clock rotates continuously counter-
clockwise. The clockface rotates also, but not continu-
ously, due to changes in the date at the bottom of the 
inner ring. For example, from 12:01 a.m. August 7 to 
11:59 p.m. August 7, the clockface does not rotate, but 
from 11:59 p.m. August 7 to 12:01 a.m. August 8, the 
clockface rotates because the date at the bottom of the 
inner ring changes by one day. This corresponds to a less 
than one day change in the d value at the bottom of the 
dipperclock when compared to the continuous and uni-
form rotation situation, which causes a change of less 
than 4 minutes in the time read from the dipperclock. 
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This source of error would not be present if the dip-
perclock rotated continuously and uniformly, but for that 
to happen the point at the bottom of the inner ring would 
have to involve the time of day as well as the month and 
day, and we do not know the time of day, since that is 
what we are trying to find by using the dipperclock! Also, 
even if we knew the time of day, very few humans could 
place the date at the bottom of the dipperclock accu-
rately enough for the time of day to make a difference. 

Thus, the total theoretical error for the generic dipper-
clock will be less than 1 + 4 + 4 + 4 minutes, or 13 min-
utes, at least when the first year of the year-pair is be-
tween 2000 and 2020. For a custom dipperclock there is 
no error for the autumnal equinox or leap years, so the 
theoretical error will be less than 1 + 4 minutes, or 5 
minutes. 

Remark: Comparison of theoretical maximum error to 
actual error for the 2010-2011 year-pair: From [15], the 
autumnal equinox for 2010 occurs on September 23 at 
3:09 in UT, which is September 22 at 21:09 (or 9:09 
p.m.) CST in the US Central time zone. The difference 
between this AE value and the default value of Septem-
ber 22 at midnight used for the generic dipperclock is 2 
hours 51 minutes = 0.12 days, which corresponds to a 
discrepancy of less than 0.48 min = 29 sec in Eq.A5. 
Since the 4-minute leap year error does not come into 
play for this year-pair, the actual theoretical error esti-
mate for our generic dipperclock in 2010-2011 is only 
about 5 1/2 minutes instead of 13 minutes. This explic-
itly illustrates that our theoretical maximum tends to be 
very conservative. 

e) There are four main kinds of observational error 
one can introduce when using a dipperclock: 1) not 
holding the dipperclock with the current date exactly on 
the bottom; 2) not having Polaris at the center; 3) not 
holding the dipperclock perpendicular to the line of sight 
direction to Polaris; and 4) not reading exactly where the 
hour hand is pointing. From our testing, observational 
error seems to be the largest source of error in using a 
dipperclock. 

APPENDIX 12: ACCURACY OF THE 
EQUINOX ESTIMATION METHOD 

In this section we assume that the proper geographic 
correction from Section 3 has been done. 

Here we analyze the equinox estimation method when 
we are using the pointer stars in the bowl of the Big 
Dipper as the tip of the hour hand (so RA = 11), and we 
are using our default autumnal equinox value of mid-
night September 22 LST. 

The equinox estimation method has the possibility of 
errors in Eq.A5 itself (less than 1 minute) and errors due 
to an inaccurate choice for the autumnal equinox (less 
than 4 minutes for year-pairs with first year in the range 

2000-2020) as we saw in Appendix 11. 
However, there is an additional source of potential 

theoretical error; namely, the equinox estimation method 
of approximating the terms 11 – ( 24 hours 365.2422 )× 
d in Eq.A5 by using our adjustment procedure. We will 
now estimate this error. To do this we first suppose the 
second year is not a leap year and compute Table 2 be-
low with the following five columns: 

The first column contains the dates 9/22, 9/30, 10/1, 
10/31, 11/1 … 8/31, 9/1, and 9/22, all at midnight. The 
second column contains the value of d, which is the 
number of days (including fractional days) since Sep-
tember 22 at midnight. The third column contains the 
time adjustment for the equinox estimation method. The 
fourth column contains the correct adjustment from 
Eq.A5, namely 11 – ( 24 hours 365.2422 ) × d, and the 
fifth column is obtained by subtracting the fourth col-
umn from the third column. 

In Table 2, all times are rounded to the nearest minute. 
The largest absolute value of elements shown in column 
5 is 7 minutes. There can be no larger absolute value of 
 
Table 2. Maximum theoretical error due to equinox estimation 
computation. 

9/22 0 11 11 0 

9/30 8 10:28 10:28 0 

10/1 9 10:24 10:25 –:01 

10/31 39 8:24 8:26 –:02 

11/1 40 8:24 8:22 :02 

11/30 69 6:28 6:28 0 

12/1 70 6:24 6:24 0 

12/31 100 4:24 4:26 –:02 

1/1 101 4:24 4:22 :02 

1/31 131 2:24 2:24 0 

2/1 132 2:24 2:20 :04 

2/28 159 :36 :33 :03 

3/1 160 :24 :29 –:05 

3/31 190 –1:36 –1:29 –:07 

4/1 191 –1:36 –1:33 –:03 

4/30 220 –3:32 –3:27 –:05 

5/1 221 –3:36 –3:31 –:05 

5/31 251 –5:36 –5:30 –:06 

6/1 252 –5:36 –5:34 –:02 

6/30 281 –7:32 –7:28 –:04 

7/1 282 –7:36 –7:32 –:04 

7/31 312 –9:36 –9:30 –:06 

8/1 313 –9:36 –9:34 –:02 

8/31 343 –11:36 –11:32 –:04 

9/1 344 –11:36 –11:36 0 

9/22 365 –　　 –12:59 –:01 
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an element in column 5 for any integer d since as we 
move from d to d + 1, staying within one month, column 
3 decreases by 4 minutes while column 4 decreases by a 
lesser amount (namely by 24 365.2422  hours, or about 
3.94 minutes), so even with rounding, column 5 is 
non-increasing for integer values of d within any one 
month. Thus, the largest absolute value of any number in 
column 5 for integer d will occur on the first or last day 
of that month, and so will already be in Table 2. We note 
that the average absolute value of the numbers in column 
5 is 0.70 26 , or about 0.03, which is less than half of 
the maximum absolute value. 

OPEN ACCESS 

For non-integer d values, there is another possible ef-
fect. For example, suppose we put in another line in Ta-
ble 2 for 1:00 a.m. on March 31. Column 3 will still be 
at –1:36 since we will be in March 31, but we will have 
d = 189 + 1 24 , and computing column 4 gives –1:25. 
Thus, the value in column 5 is –:11, which is the worst 
case scenario. 

Although Table 2 was constructed for the second year 
being a non-leap year, one can also construct another 
table for the second year being a leap year. In that table, 
the error behavior is actually better. Thus, we conclude 
that the maximum theoretical error in our time estimate 
via the equinox estimation method is 11 minutes. Putting 

this together with our previous estimates, we find that 
the theoretical error in the equinox estimation method 
under the assumptions given in the second paragraph of 
this section, with first year of the year-pair between 2000 
and 2020, is less than 16 minutes (1 + 4 + 11). 

This is a conservative estimate. For one thing, our 
equinox estimation method implicitly uses September 22 
at midnight as its value for the autumnal equinox, just as 
our generic dipperclock does, so the Remark near the 
end of Appendix 11 applies and indicates that the error 
due to an inaccurate choice of the value for the autumnal 
equinox is typically much less than 4 minutes. The 11 
minute estimate in the previous paragraph is also 
unlikely to be achieved, so the 16 minute maximum 
theoretical error estimate is far larger than what you are 
likely to find in practice. 

Using this method, the observational error will be 
even more extreme than for a dipperclock because we 
will be employing an imagined clock face instead of a 
dipperclock for our time estimate, and this is a consid-
erable disadvantage. The field tests given in appendices 
7 and 8 offer some insights into the characteristic total 
errors we encountered when using both the equinox es-
timation method as well as generic and customized dip-
perclocks. 

 
 
 


