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ABSTRACT 

In this communication, we consider and study a generalized two parameters entropy of order statistics and derive 
bounds for it. The generalized residual entropy using order statistics has also been discussed. 
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1. Introduction 

Suppose 1 2, , , nX X X  are  independent and iden-
tically distributed observations from a distribution X

n
F , 

where XF  is differentiable with a density Xf  which is 
positive in an interval and zero elsewhere. The order sta-
tistics of the sample is defined by the arrangement of 

1 2, , , nX X 
2:

X
, , ,

 from the smallest to largest denoted as 

1: :n n n nX X X
:i n

. Then the p.d.f. of the  order sta- 
tistics 

thi
X , is given by 

     

   

1

:

1

, 1

1 ,

i

i n X

n i

X X

f y F y
B i n i

F y f y





   

   


       (1) 

for details refer to [1]. 
Order statistics has been studied by statisticians for 

some time and has been applied to problems of statistical 
estimation [2], reliability analysis, image coding [3] etc. 
Some information theoretic aspects of order statistics 
have been discussed in the literature. Wong and Chen [4] 
showed that the difference between average entropy of 
order statistics and the entropy of a data distribution is a 
constant. Park [5] showed some recurrence relations for 
entropy of order statistics. Information properties of or- 
der statistics based on Shannon entropy [6] and Kull- 
back-Leibler [7] measure using probability integral 
transformation have been studied by Ebrahimi et al. [8]. 
Arghami and Abbasnejad [9] studied Renyi entropy pro- 
perties based on order statistics. The Renyi [10] entropy 
is a single parameter entropy. We consider a generalized 
two parameter, the Verma entropy [11], and study it in 
context with order statistics. Verma entropy plays a vital 
role as a measure of complexity and uncertainty in dif- 
ferent areas such as physics, electronics and engineering 
to describe many chaotic systems. Considering the im- 
portance of this entropy measure, it will be worthwhile to 

study it in case of order statistics. The rest of the article is 
organized as follows: 

In Section 2, we express generalized entropy of  
order statistics in terms of generalized entropy of  
order statistics of uniform distribution and study some of 
its properties. Section 3 provides bounds for entropy of 
order statistics. In Section 4, we derive an expression for 
residual generalized entropy of order statistics using re- 
sidual generalized entropy for uniform distribution. 

thi
thi

2. Generalized Entropy of Order Statistics 

Let X  be a random variable having an absolutely con- 
tinuous cdf  F x  and pdf  f x , then Verma [11] 
entropy of the random variable X  with parameters 

,   is defined as: 

   1

0

1
log d , 1,

, 1 ,

H X f x x  
 

 
    

    


   

 
   (2) 

where 

     
01

1
log d ,lim

1
H X H X f x x 

 
 




  

   

is the Renyi entropy, and 

     
01, 1

log d ,lim H X f x f x


 



 
  x  

is the Shannon entropy . 
We use the probability integral transformation of the 

random variable  U F X

, n

 where the distribution of U 
is the standard uniform distribution. If 1 2  are 
the order statistics of a random sample 1 2  
from uniform distribution, then it is easy to see using (1) 
that i

, , , nV V V
, ,U U , nU

, 1, 2,V i  
i

 has beta distribution with parame- 
ters  and  1n i  . Using probability integral trans- 
formation, entropy (2) of the random variable X  can be 
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represented as 

    1 2 1

0

1
log d .H X f F  

  
   

 

Next, we prove the following result: 

u u      (3) 
Theorem 2.1 The generalized entropy of :i nX  can be 

expressed as 

 

     2 1
:

1
log ,

ii n i g iH X H V E f F Z   
   

       
                        (4) 

 
where  iH V

  denotes the entropy of the beta distribu-
tion with parameters i  and   , 1n i   

igE X  de- 
notes expectation of X  over ig  and i iZ g

 1 1i  
 is the 

beta density with parameters    and  

  1 1n i     . 
Proof: Since  : , 1, 2, ,i i nV F X i n    which im- 

plies  i
1

:i nX F  V . Thus, from (3) we have 1  
 

   
   

           

   
   

   
       

  
   

1
1 11 1 2 1

: 0

1

0

11 1
log log 1 d

1

1 1 21 1 1
log log

1 1 1 1 1 1

1 1 21
log

1 1 1

n ii
i n i i i

n
iH X v v

i n i

nn

i n i i n

n

i

 
    

    

  
       

 
   

 
         

          
f F v v

i

         
     

                   

    


      



    
           11 1 1 1

1 1

1 d .
n ii

i i i i

n i

z z f F z z
    

 
       

 
 

     

 

    (5) 

 
It is easy to see that the entropy (2) for the beta distribution with parameters  and  (that is, the  

order statistics of uniform distribution) is given by 
i  1n i   thi

            1 1
log , 1 log 1 1 1, 1 1 .iH V B i n i B i n i


     
   

  
              

        (6) 

 
Using (6) in (5), the desired result (4) follows. 
In particular, by taking 1 and 1   , (4) reduces 

to 

      1
: log ,

ii n i g iH X H V E f F Z      

a result derived by Ebrahimi et al. [8]. 
Remark: In reliability engineering   -out- 

of-  systems are very important kind of structures. A 
-out-of-  system functions iff atleast  

1n k 
n

n k
n k




1 
1 

n
 components out of  components function. 

If 1 2

n
, , , nX X X  denote the independent lifetimes of 

the components of such system, then the lifetime of the  

system is equal to the order statistic :k nX . The special 
case of 1k   and , that is for sample minima and 
maxima correspond to series and parallel systems respec- 
tively. In the following example, we calculate entropy (4) 
for sample maxima and minima for an exponential dis- 
tribution. 

n

Example 2.1 Let X  be a random variable having the 
exponential distribution with pdf  

  e , 0, 0xf x x  .    

Here,    1 1 log 1F z   z    and the expectation 
term is given by 

 

           
      

22 1 2 2
1 1 1, 1 1

1 .
1 1 1, 1 1i ig i g i

B i n i
E f F Z E Z

B i n i

          
 

   
                               

 

 

For , from (6), we have 1i 

 

    

1

1

1 log log 1 1 1 .

H V

n n


  

   

 


        

Hence, using (4) 


 

   
 1:

log 12
lognH X n



   
   

   
     

, 

which confirms that the sample minimum has an expo-
nential distribution with parameter n , since 

Copyright © 2012 SciRes.                                                                                  AM 



R. THAPLIYAL, H. C. TANEJA 1979

   log 12
log ,H X



   
   

   
     

 

where X  is an exponential variate with parameter  . 
Also 

   1:

2
log .nH X H X 

  n
 
 

  
    

 

Hence, the difference between the generalized entropy 
of first order statistics i.e. the sample minimum and the 
generalized entropy of parent distribution is independent 
of parameter  , but it depends upon sample size . 
Similarly, for sample maximum, we have 

n

 

       

:

1
log log

1
log 1 , 1 1 1 .

n nH X n

B n




    2 
   

   
 

      
         

    


 



 

It can be seen easily that the difference between 
 and  :n nH X

  H X
  is 

      

 

which is also independent of parameter  . 

3. Bounds for the Generalized Entropy of 
Order Statistics 

In this section, we find the bounds for generalized en-
tropy for order statistics (4) in terms of entropy (2). We 
prove the following result. 

Theorem 3.1 For any random variable X  with 
 H X

  
: , 1, 2,i n

, the entropy of the  order statistics thi
,X i n   is bounded above as 

   : .i n iH X C H X
   

             (7) 

where 

  1
log ,i iC H V B

  
 

    
i  

and, bounded below as 



1
log

1
log 1 , 1 1 1

log 1

n

B

 
 

   
 

 
 

  
  

    


 




 

 

:

2
log ,

i n

i

H X

H V M







 
 

  
   

    (8) 

n    
where,  M f m   , and  is the mode of the dis-
tribution and 

m
f  is pdf of the random variable X . 

Proof: The mode of the beta distribution ig  is 

1
i

i
m

n i





. Thus, 

 

   

      
      1 11 1 11

1 .
1 1 1, 1 1

i i i i

n ii
i i

g z B g m

m m
B i n i

  

   
      

 

 
       

 

For 1, 1       , from (4) 

           

  

   

2 1 2 1
:

2 1

1

1 1
log d log d

1 1
log log d

1 1 1
log log d log .

i n i i i

i

i i

H X H V g z f F z z B f F z

B f f z z

B f x x B H X

     
 

 

  


   

   

     

     

  

 

    
 

  
 

     
  

 





z

 

which gives (7). 
From (4) we can write 

       2
:

1 2
log d log .i n i i iH X H V g v M v H V M    

  
 

   
     

          
  

 
Example 3.1 For the uniform distribution over the in- 

terval  ,a b  we have 

   2
log ,H X b


 
 

  
   

and from (6), 

   

      

1

1

1 log log 1 1 1 .

nH V H V

n n

 
   

   

 
    

         

 
a  
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and 

1

1
log .nC C n

 
 

  
    

 

Hence, using (7) we get 

   1:

1 2
log log .nH X n


   
   

      
          

b a  

Further, for uniform distribution over the interval  

 ,a b , 
1

M
b a




. Using (8) we get 

 

         1:

1 2
1 log log 1 1 1 log .nH X n n


    

   
                 

b a  

 

Thus, for uniform distribution, we have 
 

       

   1:

1 2
1 log log 1 1 1 log

1 2
log log .n

n n

H X n b a


    
   

   
   

                
      

           

b a



 

 

We can check that the bounds for  are 
same as that of . 

 :n nH X


 1:nH X


Example 3.2 For the exponential distribution with pa- 
rameter  , we have M   and 

 
  log 11

log .H X


    
   

   
     

 

Thus, as calculated in Example 2.1 

 

 

1:

2
log

log 1
.

nH X n


  
 

 
 

  
   

 




 

Using Theorem 3.1 
 

     

   
1:

1 2
1 log log 1 1 1 log

log 11 2
log log .n

n n

H X n


     
   

     
     

                     
       

            

 

 

Here we observe that the difference between upper  

bound and  is  1:nH X
  1

log n
 

 
  

, which is an  

increasing function of n. Thus, for the exponential dis- 
tribution upper bound is not useful when sample size is 
large. 

4. The Generalized Residual Entropy of 
Order Statistics 

In reliability theory and survival analysis, X  usually 
denotes a duration such as the lifetime. The residual life- 
time of the system when it is still operating at time , 
given by 

t
t X X t X t    has the probability density  

   
 

; ,
f x

f x t x t
F t

  0 , where    1F t F t   0 . 

Ebrahimi [12] proposed the entropy of the residual life- 
time tX  as 

   
 

 
 

; log d , 0.
t

f x f x
H X t x t

F t F t


           (9) 

Obviously, when 0t  , it reduces to Shannon en- 
tropy. 

The generalized residual entropy of the type  ,   
is defined as 

   
 

1

1

1
; log

t

f x
d ,H X t x

F t

 

   

 


 
       (10) 

where 1 , 1       . When , it reduces to (2). 0t 
We note that the density function and survival function 

of :i nX  (refer to [13]), denoted by  :i nf x  and 
 : , 1, 2,3, ,i nF x i n  , respectively are 

         1

:

1
1 ,

, 1

i n i

i nf x f x F x
B i n i

 
        

f x (11) 

where 

   1 11

0
, 1 d , 0, 0,

baB a b x x x a b
       (12) 

and 

     
 :

, 1
,

, 1

F x

i n

B i n i
F x

B i n i

 


 
         (13) 
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where 

   1 11, 1 d ,0
ba

x x
B a b u u u x

   1.



     (14) 

 ,B a b  and  ,xB a b



 are known as the beta and in- 
complete beta functions respectively. In the next lemma,  

we derive an expression for  ;iH V t
  for the dynamic  

version of  iH V
  as given by (6). 

Lemma 4.1 Let i  be the  order statistics based 
on a random sample of size  from uniform dis- 
tribution on 

V thi
n

 0,1 . Then 
 

         1 1
; log 1 1 1, 1 1 log , 1i t tH V t B i n i B i n i


    

   
  

              
.           (15) 

 
Proof: For uniform distribution using (10), we have 

   
 

1
:

1

1
; log i n

i t

f x
dH V t x

F t

 

   

 


 
     (16) 

Putting values from (11) and (13) in (16), we get the 
desired result (15). 

If we put  in (15), we get (6). 0t 

Using this, in the following theorem, we will show that 
the residual entropy of order statistics :i nX  can be rep-
resented in terms of residual entropy of uniform distribu-
tion. 

Theorem 4.1 Let F  be an absolutely continuous 
distribution function with density f . Then, generalized 
residual entropy of the  order statistics can be repre- 
sented as 

thi

 

      2 1
:

1
; ; logi n i iH X t H V F t E f F Y   

   
    ,    

                    (17) 

 
where  

        1 1 1, 1 1i F tY B i n i           .  

Proof: Using the probability integral transformation 

 : , 1, 2,3, ,i i nV F X i n    

and above lemma, the result follows. 
Take  in (17), it reduces to (4). 0t 
Example 4.1 Suppose that X  is exponentially dis-  

tributed random variable with mean 
1


. Then,  

    1 1f F y y    

and we have 

  
 

    

2 1
1

22e
.

1 1 1

t

E f F Y

n n

 

   
   

  

   

 
 


      1

 

For , Theorem 4.1 gives 1i 

   1:

1
; log

2
log .

nH X t

n


  

 

  
 

   


  
  

1

 

Also 

  2 1
; log log H X t


    
   

  
      

1 .  

Hence 

   1:

2
; ; lon g .H X t H X t n 

 
 
 

  
    

 

So, in the exponential case the difference between gen- 
eralized residual entropy of the lifetime of a series sys- 
tem and residual generalized entropy of the lifetime of 
each component is independent of time. 

5. Conclusion 

The two parameters generalized entropy plays a vital role 
as a measure of complexity and uncertainty in different 
areas such as physics, electronics and engineering to de- 
scribe many chaotic systems. Using probability integral 
transformation we have studied the generalized and gen- 
eralized residual entropies based on order statistics. We 
have explored some properties of these entropies for ex- 
ponential distribution. 
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