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ABSTRACT 

In this paper, the left and right inverse eigenpairs problem of orthogonal matrices and its optimal approximation solu- 
tion are considered. Based on the special properties of eigenvalue and the special relations of left and right eigenpairs 
for orthogonal matrices, we find the equivalent problem, and derive the necessary and sufficient conditions for the 
solvability of the problem and its general solutions. With the properties of continuous function in bounded closed set, 
the optimal approximate solution is obtained. In addition, an algorithm to obtain the optimal approximation and nu- 
merical example are provided. 
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1. Introduction 

In this paper, we use the following notation. Let n mC   
denote the set of all complex matrices, n m nR m  de- 
note the set of  real matrices, and nm 1n nRR  . 

    T , ,   ,,A r A N A AR A tr  and A  be the transpose, 
rank, kernel space, value space, trace and the Moore- 
Penrose generalized inverse of a matrix A , respectively. 

nI is the identity matrix of size .  denotes the 
set of all  orthogonal matrices, i.e. 

n n nOR
n n n nA OR   

satisfies T T
nA A A

,

A
n m

I .  

For A B R  ,  T ,A B t r B A  denotes the  

inner product of matrices A  and . The induced ma-
trix norm is called Frobenius norm, i.e.  

B

  
11

T 22,A A A tr A A  , 

then  is a Hilbert inner product space. n mR 

The left and right inverse eigenpairs problem is a spe- 
cial inverse eigenvalue problem. That is, for given partial 
left and right eigenpairs (eigenvalue and corresponding 
eigenvector) 

   , , 1, , ; , , 1, ,j j i iy j l x i h     

of matrix A , and a special matrix set n nS C  , while 
 find ,h n l n A S such that 

T T

, 1, ,

, 1, ,
i i i

j j j

This problem, which usually arise in perturbation ana- 
lysis of matrix eigenvalue and in recursive matters, have 
profound application background [1-3]. For different ma- 
trix sets , it leads to different left and right inverse ei- 
genpairs problems, such as, Zhang’s [4], Li’s [5-7], Li- 
ang’s [8] have considered, respectively, the left and right 
inverse eigenpairs problem of real matrices, skew-centro- 
symmetric matrices, generalized centrosymmetric matri-
ces, symmetrizable matrices and generalized reflexive 
and anti-reflexive matrices, and the explicit expressions 
of the solutions have been obtained. 

S

Orthogonal matrices have profound applications, such 
as in matrix singular value decomposition, in matrix 
norm, in perturbation analysis of matrix eigenvalue, and 
so on. However, the left and right inverse eigenpairs pro- 
blem of orthogonal matrices have not been concerned 
with. In this paper, we will discuss this problem. The or- 
thogonal matrix set  is a bounded closed set, while 
those matrix sets in [4-8] are subspace. The left and right 
inverse eigenpairs problems and it’s optimal approxima- 
tion problems for bounded closed set are a new class of 
left and right inverse eigenpairs problems. 

S

In this paper, we suppose that  

   , , 1, , ; , , 1, ,j j i iy j l x i h    , 

be the left and right eigenpairs of A , respectively. If let  

   
   

1 1

1 1

, , , diag , ,

, , , diag , ,

n h h h
h h

n l l l
l l

X x x C C

Y y y C C
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then the problems studied in this paper can be described 
as follows. 

Problem I Giving  

 
 

1

1

, diag , ,

, diag , ,

n h h h
h

n l l l
l

X C

Y C C

 

 





   

   





C 


 

find n nA OR   such that 

T T

,

.

AX X

Y A Y

 
  

 

Problem II Giving n nA R   , finding ˆ
EA S  such 

that 

ˆ min
EA SA A A 

    A , 

where ES  is the solution set of Problem I. 
This paper is organized as follows. In Section 2, we 

first study the special properties of eigenvalue of or- 
thogonal matrices. Then with these properties, we find 
the equivalent problem of Problem I and obtain the solv- 
ability conditions and the general solutions of Problem I. 
In Section 3, we first prove that the approximation solu- 
tion of Problem II exist and can be obtained by applying 
the properties of continuous function in bounded closed 
set. Then we obtain the approximation solution of Prob-
lem II. Finally, the algorithm and example to obtain the 
approximation solution are given. 

2. Solvability Conditions of Problem I 

First, we discuss the properties of orthogonal matrices. 
Lemma 1 [9] If n nA R  , then there is a matrix 

, and a block upper triangular matrix  
 such that 

n nQ OR 
n nR R 

TQ AQ R , 

where each diagonal block of  is  block or 
 block, and every 1  block correspond a real 

eigenvalue of 

R 1 1
2 2 1

A , every  block correspond a pair 
of conjugate imaginary eigenvalue of 

22
A . 

From the definition of orthogonal matrices and Lemma 
1, it is easy to obtain the following lemma. 

Lemma 2 If n nA OR  , then there is a matrix 
, and a block diagonal matrix n nQ OR  n nR R   such 

that 
TQ AQ R , 

where each diagonal block of  is  block or 
 block, and every  block is (1) or , every 
 block can be denoted as follows. 

R 1 1
2 2
2 2

1 1  1

cos sin
, 180 ,

sin cos
k k

 


 
 

Z   
 . 

From Lemma 2, it is easy to obtain the following con-
clusions. 

1) n nR OR  . 
2) If n nA OR  , then the module of eigenvalue of A  

is 1. Namely, the eigenvalues of A  distribute on the 
unit circle. 

3) If n nA OR  , then the imaginary eigenvalue of A  
can be denoted as follows. 

cos i sin , 180 ,k k   Z   , 

where  denote the imaginary unit, i.e. i 2i 1  . If 
cos i sin     is an imaginary eigenvalue of A , 
iu v  is a corresponding eigenvector of  , where 

. It is clear that ,n v nu R R  cos i sin     is also 
an imaginary eigenvalue of A , and iu v  is a 
corresponding eigenvector of  . This gives 

   
cos sin

sin cos
A u v u v

 
 

 
   

. 

Lemma 3 Let n nA OR  , if  , x  is a right eigen- 
pairs of A , then  1, x  is a left eigenpairs of A . 

Proof If  , x  is a right eigenpairs of A , then we 
have 

T T,Ax x A Ax A   x , 

Combining T T
nA A AA I  , we have T 1A x x . 

Therefore,  1, x  is a left eigenpairs of A . 
According to Lemma 2 and its conclusions, in Lemma 

3, if 1   , then 1 1   ; if cos i sin    , and 
the eigenvector corresponding to   is , then iu v

1 cos isin     . 

Combining T 1A x  x , we have 

   T cos sin

sin cos
A u v u v

 
 

 
  

 
 

According to the analysis before, in Problem I, we can 
suppose as follows. 

 
 

1 1

1 1

2
1 2

1 2

2 2

T

, , , , , ,

diag , , , ,

cos sin
,

sin cos

180 , , 1, ,

, , .

n
t t h t t j

t t h t t

j j
j

j j

j

h h

X X X X X X R

B B I I

B OR

k k Z j t

Y X OR

 
 




 

 





 

  

 
   
  

    









   (2.1) 

Let the svd of X  in Problem I as follows. 

 

 
 

T
T T1

1 2 1 1T
2

1 1

1

0 0
,

0 0 0 0

, , ,

diag , , ,

0, 1, , , .

n n h h n r h r

r

i

V
X U V U U U

V
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Denote 

11 12T T

21 22

, , ,ij i j

A A
U AU A U AU i j

A A

 
  
 

1,2.

1, 2.

  (2.3) 

11 12T T

21 22

, , ,ij i jV V V V i j
  

        
  (2.4) 

Theorem 1 If  are given by (2.1) and the 
svd of 

, , ,X Y  
X  is given by (2.2), then Problem I has a solu- 

tion n nA OR   if and only if 

 

T T

T

, ,X X X X X X X X X X

X X

 



      

 
     (2.5) 

Moreover, the general solution can be expressed as 
   

   
T

2 2

T
2

, ,n r n rA X X U PU P OR

R U N X

      


      (2.6) 

Proof (2.1) implies that Problem I has a solution 
n nA OR   if and only if matrix equations ,AX X   

TA X X   has a solution n nA OR  . 
Necessity: If matrix equations T,AX X  A X X   

has a solution n nA OR 
T T

, then it is easy to obtain that 
T TX A AX   X X . This implies that 

T TX X X X   .            (2.7) 

Combining (2.2) and T,AX X A X X    , we have 

T T

T T

0 0
,

0 0 0 0

0 0
.

0 0 0 0

AU V U V

A U V U V

     
     

    


             
T

  



0,

 

i.e. 

T

T T T

0 0
,

0 0 0 0

0 0
.

0 0 0 0

UAU V V

U A U V V

     
     

    


             

 

According to (2.3) and (2.4), we have 

11 12 11 12

21 22 21 22

T T
11 1211 12

T T
21 2221 22

0 0
,

0 0 0 0

0 0
.

0 0 0 0

A A

A A

A A

A A

       
             


                       

 

This gives 

11 11 12 21

T T
11 11 12

, 0,

, 0.

A A

A A

      

    
 

i.e. 

T 1 T 1 1 T T
11 1 1 1 1 1 1

T
1 2 21 12

, ,

0, 0, 0.

A V V V V V V

V V A A

            

   
 

T
1 2 0V V   gives 

.X X X X                   (2.8) 

T 1 1 T T
1 1 1 1V V V V         gives 

 TTX X X X    .            (2.9) 

Combining (2.7), (2.8) and (2.9), we obtain (2.5). 
Sufficiency: Give  and let    

0
n r n rP OR   

T 1
T1 1

0
0

0

0

V V
A U U

P

   
 

 





1

.      (2.10) 

If let T
11 1 1A V V     , then from T TX X X X   , 

it is easy to obtain 
T T

11 11 11 11 rA A A A I  .         (2.11) 

Combining (2.10) and (2.11), it is easy to obtain 
T T

0 0 0 0 nA A A A I  , i.e. 0
n nA OR  . Combining (2.2), 

(2.8) and (2.10), it is easy to obtain 0A X X  . Com- 
bining (2.2), (2.9) and (2.10), it is easy to obtain 

T T
0A X X  . So, 0A  is a solution of Problem I. It is 

clear that for any    n r n rRP O    ,  
T 1

T1 1

T
2 2

0

0

V V
A U U

P

X X U PU





   
  

 
  

 

is the general solution of Problem I. 

3. The Solution of Problem II 

According to (2.6), it is easy to prove that if Problem I 
has a solution n nA OR  , then the solution set ES  is a 
nonempty bounded closed set, and Frobinus norm is the 
continuous function of matrix. According to the proper- 
ties of continuous function in bounded closed set (There 
exist the minimal value and the maximal value for con- 
tinuous function in bounded closed set), we can claim 
that for any given n nA R  , there exists the optimal 
approximation for Problem II. Moreover, we can obtain 
the optimal approximation solution of Problem II. 

Lemma 4 If giving ,n hX R n h  , let the svd of X  
is given by (2.2), n hOR   denotes the column orthogonal 
matrix set (It is easy to see that if , then n  h nOR n  is 
a subset of ORn n ). Then the solution set of the 
following problem 

min n hK OR
X K 
  

is 

     T0

0
n r h rrI

E X U V M OR
M

        
   

.   (3.1) 
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Proof Let , combining (2.2), we 

have 

11 12T

21 22

K K
U KV

K K


 
 




2
2 T

2

11 12

21 22

2 2 2

11 12 21 22

0

0 0

0

0 0

.

X K U V K

K K

K K

K K K K

 
   

 

   
    
   

      2

 

This implies minX K   if and only if 

11 12 21 22min, min, min, min,K K K K       

combining n hK OR  , we have 

   
11 12 21 22, 0, 0, n r h r

rK I K K K OR       . 

This gives the conclusion. 
Theorem 2 Giving n nA R   , if , , ,X Y   are given 

by (2.1), and satisfy the conditions of Theorem 1, then 
there exist solutions for Problem II. Moreover, solutions 
can be expressed as follows. 

T T
2 2 2 2, .A X X U PU P E U A U         (3.2) 

Proof According to Theorem 1, EA S  we have 
2 2T

2 2

2
T 1

T1 1

2
T 1

T 1 1

0

0

0
.

0

A A A X X U PU

V V
A U U

P

V V
U A U

P

  







    

   
   

 

   
  

 

 

Let 

T T11 12

21 22

, , ,ij i j

A A
U A U A U A U i j

A A

 
  

 

 
  
 

1,2.  

Hence, we have 
2

T 1
2 11 1 1 12

21 22

2 2T 1
11 1 1 12

2 2

21 22 .

A V V A
A A

A A

A V V A

A A P

 


 

 

 

   
   

 

    

  



  

This implies that 

min
EA S A A

    

if and only if  

    22min n r n rP OR
A P  


 
 . 

From Lemma 4, it is easy to prove that the solution of 

problem  

    22min n r n rP OR
A P  


 
  

is  T
22 2 2 .P E A U A U    This gives the conclusion. 

4. Algorithm 

1) Give A , and according to (2.1), input , , ,X Y  . 
2) Compute the svd of X . 
3) Compute T T, , , ,X X X X X X X X     T ,X  

T T, ,X X X X X X X    , if (2.5) holds, then go to 4; 
otherwise stop. 

4) Compute the svd of . T
2 2U A U

5) Give a matrix M  which satisfies T
n rM M I  , 

and compute  TE U2 A U 2

6) According to (3.2) calculate 
 according to (3.1). 

Â . 
Example  8, 5n h l    

According to (2.1), input , , ,X Y   as follows. 

0.6269 0 0.0517 0.1481 0

0.0826 0.4354 0.3680 0.1739 0

0.0747 0.2439 0.5914 0 0

0.1657 0.1401 0.0376 0.0941 0.4412

0.0256 0.0107 0.0713 0.5529 0.4828

0.1659 0.3668 0.0120 0.2793 0.3220

0.1833 0.0315 0.0626 0.2180 0.397

X Y 

 



    

 
 0

0.0730 0.3094 0.0399 0.0877 0.5577

 
 
 
 
 
 
 
 
 
 
    

 

T

0.7115 0.7027 0 0 0

0.7027 0.7115 0 0 0

Λ Γ 0 0 0.2670 0.9637 0

0 0 0.9637 0.2670 0

0 0 0 0

  
  
   
 
 
 
 1

 

4.7 3.5 3.9 2.3 2.6 1.9 3.6 5.1

2.9 2.8 0.8 2.8 1.7 4.5 7.3 6.9

1.3 1.6 1.2 1.6 2.5 2.1 9.5 2.9

9.6 2.1 1.5 2.5 2.8 0.7 2.1 7.5

1.5 1.4 7.5 0.1 0.5 3.5 1.5 1.6

2.7 1.8 9.6 0.2 1.9 6.9 3.8 3.1

1.7 3.2 1.7 2.1 2.3 1.4 1.9 7.6

8.1 5.5 2.2 7.3

A 

   



  

   
 

 
4.3 2 2.6 1.5

 
 
 
 
 
 
 
 
 
 
  
 

 

Compute the svd of X  and Compute T ,X X
,

 
T T , T, , , , TX X X X X X X X X X XX X X      

ˆ

  , 
it is clear that (2.5) holds. Using the software “MAT- 
LAB”, we can obtain the solution A  of Problem II as 
follows.  

Copyright © 2012 SciRes.                                                                                  AM 



F. L. LI 

Copyright © 2012 SciRes.                                                                                  AM 

1976 



 
0.4918 0.1887 0.3249 0.5601 0.0580 0.2089 0.3528 0.3628

0.0076 0.1584 0.0800 0.1126 0.3338 0.5430 0.6329 0.3860

0.1653 0.4241 0.1155 0.1948 0.7162 0.1305 0.0860 0.4518

0.0256 0.3581 0.3853 0.6559 0.1731 0.2005 0.

     
   
 

     4625 0.0911

0.0043 0.3183 0.7367 0.0260 0.4331 0.0564 0.3168 0.2534

0.7586 0.0182 0.3543 0.2512 0.2566 0.1943 0.1691 0.3214

0.0430 0.7270 0.1162 0.3012 0.1036 0.2061 0.2753 0.4863

0.3907 0.0308 0.2110 0.2254 0.2793 0.721

 
 

    
 

.

7 0.2217 0.3210

 
 
 
 
 
 
 
 
 
 
   

 

 
5. Conclusions 
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