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ABSTRACT

The main aim of this present note is to establish three new Hermite-Hadamard type integral inequalities for r-convex
functions. The three new Hermite-Hadamard type integral inequalities for r-convex functions improve the result of
original one by Holder’s integral inequality, Stolarsky mean and convexity of function.
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1. Introduction

The inequalities

b b
f(a;bjg bia.[af(t)dtﬁw, (1.1)

which discovered by C. Hermite and Hadamard for all
convex functions f:[a,b] - (—o0,+) are known in
the literature as Hermite-Hadamard inequalities.

We note that Hermite-Hadamard inequalities may be
regarded as a refinement of the concept of convexity and
they follows easily from Jenson’s inequality. Hermite-
Hadamard inequalities for convex functions has received
renewed attention in recent years and a remarkable vari-
ety of refinements and generalizations have been found
in [1-6].

Let f”(x),g’(x) be integrable functions on

[a,b],p,q >0,l+l:1,
P q

then the well known Hdolder’s integral inequality is given
as

[} 7(x)g(x)dx
<[] e )

The following definition is well known in the litera-
ture.
Definition 1.1. Suppose

Ve (1.2)

f:[g(—oo,oo) —)(—oo,oo).

If following inequality holds
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fex+(1=1)y)<tf (x)+(1-1) f(») (1.3)

for any x,yelandte[0,1], then we say f is convex
functionon 1.

In [1], C. E. M. Pearce, J. Pecaric and V. Simic intro-
duced the definition of #»-convex function and studied
the inequalities of Hermite-Hadamard type for r-con-
vex functions.

Definition 1.2. ([1]) A function

[ :[a.b][0.0) > (0.0)
is said to be 7 -convex function on [a,b], if
f(tx+(l—t)y)
(-0 (] itr=0, (4
f(x) 7 (y) if r=0.

holds for any x,y e[a,b] and t€[0,1].

We have that 0-convex functions are simply log-con-
vex functions and 1-convex functions are ordinary con-
vex functions.

The integral power mean M, (see [2]) of a positive
function f on [a,b] isa functional given by

1 I/p
[ Lf”(t)dtj ,p#0,

b-a

M,(f)= (1.5)

exp[ﬁﬁlﬂf(t)dt],p =0.

The Stolarsky mean FE (a,b;r,s) (see [7]) of two po-
sitive numbers a,b is given by
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a —bél
- rs(s
a —b

-r)(b—a)#0

;
e

Ina—Inb

1/r
J R s:O,r(b—a):éO,

E(a,b;r, 1.6
(a r S) (g 1/( 7}7 (1.6)
ef[ﬁj s rzs,r(b—a);tO,
Jab, r=5s=0,a#b,
a, a=>b.
In [2], following theorem is given. vex function on [a,b] and G:[0,1] > (—o0,+0) is
Theorem 1.1. ([2]) Let f(x) be a positive r-con-  defined by
1 Ih[ﬂfr (tb+(l—t)x)+ _xfr (ta+(1—t)x)}p/r dx ! r#0,p#0
b—a’*|b-a —a ’ ’ ’
1 b xX—a b—x P vr
{b L [fb‘“(tb+(1—t)x)fb‘“(ta+(1—t)x)} dx} , r=0,p=0,
G()=4""¢ (1.7)
a b—x yr v
exp{—j [b ; Vi (tb+(l—t)x)+mfr (ta+(1—t)x)} dx} ,r#0,p=0,
x-a box
exp{b ! J.h{f"“’ (tb+(1—t)x)f”“’ (ta+(l—t)x)}dx},r =p=0.
_a a
Then Vr 1
(i) G(t) is monotonically increasing on [0,1]; < (LJ [f’ (a)+f (b)] "
(i) G(0)=M,(f),G(1)=E(f(a),f(b)ir,p+7). rr
In [4], following theorems are given. Theorem 1.3. ([3]) Letf, g: [a,b] - (0,00) be 7-

Theorem 1.2. ([3]) Let /:[a,b] > (0,0) be r -convex
function on [a,b]witha<b. Then the following ine-
quality holds for 0<r <1,

blajbf(x)g(x)dxgé[L

n+2

Theorem 1.4. ([3]) Let f, g:[a,b] > (0,) be -

convex and 7, -convex functions respectively on [a,b]
with a <b Then the following inequality holds

S(fr] s (b)]% [grz (a)+g” (b)]l/”

11
for >1 and —+—=1.
non
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jz/n (" (a)+ 1 ()" %( é

convex and 7, -convex functions respectively on [a,b]
with a<b Then the following inequality holds for
0<n,n<2,

0 2/n
j (5 (a) 2 ()"

r+2

2. Main Results

In this paper we obtain some new Hermite-Hadamard
type integral inequalities for r-convex functions and
improve the results of Theorems 1.2-1.4.

The following are extensions of Hermite-Hadamard
type inequality:

Theorem 2.1. Let f:[a,b]<[0,0) > (0,00) be r-
convex function on [a,b] with a<b,re(—0,+x).
Then

(f(a),f(B)srr+1). 1)
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Proof. Let x=ta+(1-1)b,0<t<1, then

L[ p(x)ae=[L (s (1-0pp)ar

If f(a)=f(b),bythe r-convexity of f,we have
f(ta+(1-2)b)< f(a)=f (D)

forany 0<7<1. So the conclusion is valid.
If f(a)# f(b), we have to discuss three cases as

following:
Case 1. If r=-1, we have

[} (ta+(1-1)b)de <[ 1" (a) /' (b)de

Case 3. If r=0,r #—1,we have

f(ta+(1=2)b) <[ g (a)+(1-1) £ (b)]

forany 0<¢<1. Hence, we get

1

[ f(ta+(1-1)b)di <

The proof of Theorem 2.1 is complete.
Corollary 2.1.1. If =1 in Theorem 2.1, we have

1 b f(a)+ f(b)
Efaf(x)dxﬁf.

Theorem 2.2. Let

2.2)

1969

-1

f(a+(1=2)b)<[¢f ™ (a)+(1-1) /7 (b)]
forany 0<¢<1. Hence, we obtain
_[;f(ta+(1—t)b)dt Sjé[tf’l(a)+(1—t)f’l (b)]’1 dr
_Inf'(a)-In /7' (b)
S a)=17(0)
Case 2. If r=0, we have
f(ta+(1=2)b)< ' (a) £ (D)
forany 0<7<1. Hence, we obtain
__f(a)- /()
Inf(a)-In f(b)

=E(f(a).f(b):=10).

=E(f(a).f(b);0.1).

I/r

f.g:[a,b] =[0,00) = (0,)

be 7 -convex and r,-convex functions respectively on
[a,b] with a<b, #,r, €(—n,+0). Then the follow-
ing inequality holds

1/p /g
I ¢ Kok roF
f(x)g(x)dx< E(fp a), P (b ;—‘,—1+1H X{E[gq a),g? (b ;—2,—2+1H (2.3)
P elo)es< £ 7). P ()0 (@) ().
forany p,g>0 and l+l:1. vexity of functions f,g respectively, we have
p q " 1 1/n
Proof. Let xzta+(1—t)b,0£t£1,thenwehave f(ta+(1—t)b)£[tf (a)+(l—t)f (b)J
[ (x)g(x)dv= [, a1 - p)gfar(1-rp)ar.
—q°a P » Iry
g(ta+(1—t)b)£[tg2(a)+(l—t)g2(b)}
If f(a)#f(b),g(a)#g(b), then
1) when 77, #0, by the 7-convexity and r,-con-  forany 0<7<I. Sowe obtain
! Ibf(x)g(x)dx=Ilf(la+(1—t)b)g(ta+(1—t)b)dt
b—a-¢ 0
A 5 Yn r r Yr
<[ (a)+(1-1) /7 (b)] " [1g" (a) +(1-1) &> (b) ] * dr.
By the Holder’s integral inequality and Theorem 2.1, we have
Copyright © 2012 SciRes. AM
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:pr(a),fp(b);%’%ﬂﬁ/p X[E[gq (a)." (b);%,%ﬂﬂw.

2) when rr =0, we just prove for 7 =0, #0
which is similarto # =, =0 and 5 #0,r, =0. By the
Holder’s integral inequality, Theorem 2.1 and # -con-

vexity and 7, -convexity of functions f,g respectively,

we have
[ (g (x)de
:jlf(m l—t)b) (ta+(1-1)p)dr
<[,/ (@) (01" (@)+(1-1) 8" (5)] " a
S(fof”’(a)fp O (b)ar)
(1 @+ 0-)g> (0)] ™ at)
:[E(f”(a),f”(b);m)]””
.{E(gq(a),gq(b);r_zj_zﬂﬂvq.

q9 9

If f(a)=f(b) or g(a)=g(b), by Theorem 2.1
we obtain the conclusion, which the proof of Theorem
2.2 is completed.

Corollary 2.2.1. Under the conditions of Theorem 2.2,

if %Jrrl:l forany r,r, >0, then we have
1 2

LI (e
< [f” (a);f"‘ (b)}l/" (g,-z (a);grz (b)]l/rz | (2.4)

In particular, if 7 =r, =2, then we have
) B
Efaf(x)g(x)dx
{ﬁ(awz (b)}.(g%awg%b)]
< 5 5 .

If f(a)=f(b), g(a)=g(b),wehave
(x)dx < f(a)g(a)

Copyright © 2012 SciRes.

Corollary 2.2.2. Under conditions of Theorem 2.2, if
f(x)=g(x) and 7 =r, then we have

ﬁjjf(x)g(x)dxﬁEQ(f(a),f(b);rl,Zwl ). 2.5)

In particular, if 7 =r, =0, then we have
L f*(a)+/7(b)
- P S S
b—a'[”f (x) 2
Theorem 23. Let f,g:[a,b]<[0,0)—(0,0),

feellab], r,re(-o0,+x) and f7(x),g’(x) be
r -convex and r, -convex functions respectively on
[a,b] with a<b. Then the following inequality holds

de[E(f”(a),f"(b);r1 +r2+1)J

(2.6)

Teler (@1

1 1
forany p,g>0 and —+—=1.
p q

Proof. Let x=ta+(1-t)b,0<¢<1, then we have

= [\ f(ra+(1-1)b) g (ta+(1- 1))t .

By the Hoélder’s integral inequality, Theorem 2.1 and
1 -convexity and r, -convexity of function
7 (x),g%(x) respectively, we have
e
= j [|ta+{(1-1)p)g
(j S (ra+(1-1)bde )1/,,
( (ta+(1-1)b)dt )
<[ E(/7 (@), 17 (b)snion +1)}
[£(g" (a).g" (b)irsors +1)]”"

This completed the proof of Theorem 2.3.
Corollary 2.3.1. Under the conditions of Theorem 2.3,

(ta+(1-1)pb)dt
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. 1
if p:qzz and ;fl:rzzg,thenwehave

[ () (x)ex

. Jf2<a>+f(a>f(b>+f2(b> 2
3

) COERBHOR0]

3
In particular, if f(a)= f(b),g(a)=g(b),we have

[/ F(9)e(x)dr= 1 (a)g(a)

In this paper, we obtained three new Hermite-Ha-
damard type integral inequalities for r-convex functions,
which improved the results of Theorems 1.2-1.4 by Hol-
der’s integral inequality, Stolarsky mean and convexity
of function. The special case of new Hermite-Hadamard
type integral inequalities is classical Hermite-Hadamard
type integral inequality. So it improved the classical one.
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