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ABSTRACT 

The main aim of this present note is to establish three new Hermite-Hadamard type integral inequalities for r-convex 
functions. The three new Hermite-Hadamard type integral inequalities for r-convex functions improve the result of 
original one by Hölder’s integral inequality, Stolarsky mean and convexity of function. 
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1. Introduction 

The inequalities 
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which discovered by C. Hermite and Hadamard for all 
convex functions    : , ,f a b     are known in 
the literature as Hermite-Hadamard inequalities. 

We note that Hermite-Hadamard inequalities may be 
regarded as a refinement of the concept of convexity and 
they follows easily from Jenson’s inequality. Hermite- 
Hadamard inequalities for convex functions has received 
renewed attention in recent years and a remarkable vari- 
ety of refinements and generalizations have been found 
in [1-6]. 

Let    ,p qf x g x  be integrable functions on  
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then the well known Hölder’s integral inequality is given 
as 
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The following definition is well known in the litera-
ture. 

Definition 1.1. Suppose  

   : , ,f I       . 

If following inequality holds 

        1 1f tx t y tf x t f y           (1.3) 

for any , and 0,x y I t 1    , then we say f is convex 
function on I . 

In [1], C. E. M. Pearce, J. Pecaric and V. Simic intro- 
duced the definition of -convex function and studied 
the inequalities of Hermite-Hadamard type for -con- 
vex functions. 

r
r

Definition 1.2. ([1]) A function  

    : , 0, 0,f a b      

is said to be -convex function on r  ,a b , if 
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holds for any  , ,x y a b  and  0,1t . 

We have that 0-convex functions are simply log-con- 
vex functions and 1-convex functions are ordinary con-
vex functions. 

The integral power mean pM  (see [2]) of a positive 
function f  on  ,a b  is a functional given by 
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The Stolarsky mean  , ; ,E a b r s  (see [7]) of two po- 
sitive numbers  is given by ,a b  
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In [2], following theorem is given. 
Theorem 1.1. ([2]) Let  f x  be a positive -con- 

vex function on 
r

 ,a b  and    : 0,1 ,G     is 
defined by 
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Then 
(i)  G t  is monotonically increasing on  0,1

 , f b r

; 

(ii) .         0 , 1 ; ,pG M f G E f a p  r

In [4], following theorems are given. 
Theorem 1.2. ([3]) Let    : , 0,f a b   be -convex 

function on 
r

,a b with . Then the following ine-
quality holds for  

a b
,0 1 r
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Theorem 1.3. ([3]) Let   , 0,f g a b  ， ：   be - 
convex and 2 -convex functions respectively on  
with 
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a b  Then the following inequality holds for 

1 20 ,r r 2  , 
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Theorem 1.4. ([3]) Let   : , 0,f g a b  ，   be -  1r

convex and 2 -convex functions respectively on r  ,a b  
with  Then the following inequality holds a b
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2. Main Results 

In this paper we obtain some new Hermite-Hadamard 
type integral inequalities for -convex functions and 
improve the results of Theorems 1.2-1.4. 

r

The following are extensions of Hermite-Hadamard 
type inequality: 

Theorem 2.1. Let     , 0, 0,f a b    ：
]a b a b

  be r - 
convex function on [ ,  with ,  , r  . 
Then 

      1
d , ; ,

b

a
f x x E f a f b r r

b a
1 . 

     (2.1) 
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Proof. Let  1 , 0 1x ta t b t     , then 
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If    f a f b , by the -convexity of r f , we have 

      1f ta t b f a f b     

for any  So the conclusion is valid. 0 t 1.
If    f a f b , we have to discuss three cases as 

following: 
Case 1. If , we have 1r  

        
11 11 1f ta t b tf a t f b

         

for any 0 t 1.   Hence, we obtain 
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Case 2. If 0r  , we have 

      11 t tf ta t b f a f b    

for any 0 t 1.   Hence, we obtain 
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Case 3. If we have 0, 1,r r  

        
1

1 1
rr rf ta t b tf a t f b        

for any  Hence, we get 0 t 1.

           
   



    

1 1
11 1

0 0
1 d 1 d

1

, ; , 1 .

r r
rr r

r r

f a f br
f ta t b t tf a t f b t

r f a f b

E f a f b r r

 
         

 

 
 

 
The proof of Theorem 2.1 is complete. 
Corollary 2.1.1. If  in Theorem 2.1, we have 1r 
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Theorem 2.2. Let 

    , : , 0, 0,f g a b      

be -convex and -convex functions respectively on 1r 2r

 ,a b  with a b ，  1 2, ,r r    . Then the follow-

ing inequality holds 
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for any  and ,p q  1 1 1p q  . 

Proof. Let  1 , 0 1x ta t b t     , then we have 
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By the Hölder’s integral inequality and Theorem 2.1, we have 
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which is similar to 1 2  and 1 2 . By the 
Hölder’s integral inequality, Theorem 2.1 and 1 -con- 
vexity and -convexity of functions 
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If    f a f b  or    g a g b , by Theorem 2.1 
we obtain the conclusion, which the proof of Theorem 
2.2 is completed. 

Corollary 2.2.1. Under the conditions of Theorem 2.2,  

if 
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In particular, if , then we have 1 2 2r r 
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If    f a f b ,    g a g b , we have 
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Corollary 2.2.2. Under conditions of Theorem 2.2, if 
   f x g x  and 1r r2  then we have 
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Theorem 2.3. Let      , : , 0, 0, ,f g a b      
 , ,fg L a b   ,1 2,r r      and  ,p qf x g x  be 

-convex and -convex functions respectively on 1r 2r

 ,a b  with .a b  Then the following inequality holds 
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Proof. Let  1 , 0 1x ta t b t     , then we have 
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By the Hölder’s integral inequality, Theorem 2.1 and 
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This completed the proof of Theorem 2.3. 
Corollary 2.3.1. Under the conditions of Theorem 2.3,  
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In particular, if        ,f a f b g a g b  , we have 
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In this paper, we obtained three new Hermite-Ha- 
damard type integral inequalities for -convex functions, 
which improved the results of Theorems 1.2-1.4 by Höl- 
der’s integral inequality, Stolarsky mean and convexity 
of function. The special case of new Hermite-Hadamard 
type integral inequalities is classical Hermite-Hadamard 
type integral inequality. So it improved the classical one. 
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