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ABSTRACT 

This paper proposes a stochastic model to study the evolution of normal and excess weight population between 24 - 65 
years old in the region of Valencia (Spain). An approximate solution process of the random model is obtained by taking 
advantage of Wiener-Hermite expansion together with a perturbation method (WHEP). The random model takes as 
starting point a classical deterministic SIS—type epidemiological model in order to improve it in several ways. Firstly, 
the stochastic model enhances the deterministic one because it considers uncertainty in its formulation, what it is con- 
sidered more realistic in dealing with a complex problem as obesity is. Secondly, WHEP approach provides valuable 
information such as average and variance functions of the approximate solution stochastic process to random model. 
This fact is remarkable because other techniques only provide predictions in some a priori chosen points. As a conse- 
quence, we can compute and predict the expectation and the variance of normal and excess weight population in the 
region of Valencia for any time. This information is of paramount value to both doctors and health authorities to set 
optimal investment policies and strategies. 
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1. Introduction 

In the physical, engineering, economical or epidemiol- 
ogical sciences, random differential equations arise in a 
quite natural manner in the description of models. In fact, 
numerous phenomena of interest in these areas, which 
are very important for scientific and technological pro- 
gress, have been traditionally formulated through mathe- 
matical models based on ordinary or partial differential 
equations, where the data (initial conditions, source term 
and/or coefficients) are expressed by means of numerical 
values or deterministic functions. Nevertheless, scientists 
really set these data from measurements, which always 
are subject to error. Depending on the quality of these 
measurements (which frequently can take a lot of time 
and high cost), the results obtained from the model may 
be satisfactory. In addition to measurement errors, we 
should consider the random character of complex exter- 
nal factors that can affect the system, such as pressure, 
temperature and humidity in Meteorology; the composi- 
tion of the land in Seismology; investor tendency and 
economical policy of countries and companies in Finance; 
the environmental and genetical factors in Epidemiology;  

etc. These circumstances make more advisable to con- 
sider the data as random magnitudes. The consideration 
of these facts leads to the reformulation of the traditional 
deterministic models, which, in order to improve them, 
should be replaced by random models. 

However, even recognizing the necessity of consider- 
ing a random approach in the formulation of such models, 
often it is very difficult, if not impossible, to establish a 
suitable way to model uncertainty due to the complexity 
involved in the specific problem under study. Based on 
the central limit theorem, a popular and successful way 
to model randomness is through a Gaussian process hav- 
ing additional mathematical properties such as white 
noise does. White noise is a stationary Gaussian stochas- 
tic process with mean value zero and a constant spectral 
density on the entire real axis. Interesting contributions in 
the modeling of applied problems in different fields us- 
ing white noise can be found in [1-6], for instance. 

In this paper we are interested in forecasting the evolu- 
tion of excess and normal weight population in the region 
of Valencia (Spain) by means of a random model that 
involves white noise. Due to the lack of statistical data 
about the problem under study, this stochastic model  *Corresponding author. 
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takes advantage of certain information obtained from a 
deterministic SIS-type epidemic model. In fact, as we 
will see, the random model takes as starting point useful 
conclusions provided by the classical deterministic ap- 
proach. In this way, the random model improves the de- 
terministic one because it considers uncertainty in its 
formulation, what it is considered more realistic. In addi- 
tion, this approach provides valuable information such as 
average and variance functions of the approximate solu- 
tion stochastic process. 

As it is shown in Section 2, this epidemiological 
model can be described as a particular case of the fol- 
lowing random differential equation  

            
 

2

0

,

0, 0 ,
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 


    (1) 

where coefficients ,  and initial condition  a t  b t 0x  
are deterministic,   is a small parameter and  
    n t n t   is a white noise process, which intensity 

is modulated by parameter  . By  , we denote a 
random outcome of a probability space  , 
where  is a sample space,  is a σ-algebra asso- 
ciate to  and,  is a probability measure. 

, ,  P




P

As we will see throughout the subsequent development, 
the method used to obtain the approximate solution to 
Equation (1) is based on the so-called Wiener-Hermite 
expansion (WHE). WHE constitutes a powerful tech- 
nique to represent any stochastic process in terms of the 
so-called Wiener-Hermite polynomials as well as certain 
deterministic kernels to be calculated. Interesting contri- 
butions where this technique have been used successfully 
to solve other class of random differential equations can 
be found in references [7-10] and other contained therein. 

The article is organized as follows. In Section 2 we 
establish a random model of type (1) in order to study 
excess weight population aged between 24 - 65 years old 
in the region of Valencia (Spain). The stochastic model 
arises in a natural way by introducing uncertainty in the 
corresponding deterministic SIS-type epidemiological 
model. In Section 3 we first summarize the main results 
about the WHE method and then, we apply it to derive a 
coupled integro-differential system that is satisfied by the 
involved kernels. This section concludes with the app- 
lication of the perturbation technique to conduct the re- 
solution of such a system. Section 4 is devoted to solve 
the random SIS-type epidemiological model presented in 
Section 2 by taking advantage of development given in 
Section 3. Conclusions are discussed in Section 5. 

2. Motivating the Mathematical Model 

Some mathematical models to deal with the evolution 
over time of excess weight populations have been re- 
cently developed [11,12]. In [12] it is presented a deter-  

ministic differential mathematical model to predict the 
future evolution of the 3 - 5 years old infant excess 
weight population in the region of Valencia (Spain) over 
a finite time. In [11] the study is developed for the whole 
population and an asymptotic behavior analysis is pre- 
sented. Both papers consider obesity as a health concern 
that spreads by social peer pressure and social contact 
through unhealthy lifestyle habits [11-13]. These con- 
tributions are based on epidemiological models [14]. 
Although more complex deterministic models to study 
excess weight population have been proposed [12,15,16], 
in this paper we want, in a first step, to explore by means 
of a simple but representative type-model, the ability of 
Wiener-Hermite expansion to provide a suitable app- 
roach to deal with such a class of models that include 
uncertainty in their formulation. It could permit the 
extension to this approach more sophisticated models in 
future works. 

In order to motivate the statement of the random 
model, we first take the corresponding SIS-epidemiolo- 
gical deterministic one as starting point. Hereinafter, we 
concentrate on population aged between 24 - 65 in the 
region of Valencia (Spain). In this study, we consider 
that population is partitioned into two subpopulations, 

 N t  and  O t , that denote the proportion of normal 
and excess weight individuals at time , respectively. 
Without loss of generality, we assume that the whole 
population is normalized to unit, i.e., 

t

    1N t O t   
for all time . Following an analogous reasoning as it is 
given in [11,12], the model can be represented by the 
following two-state dynamical coupled nonlinear system: 

t
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     


     
  (2.1) 

with initial conditions  0N  and . Time invariant 
parameters for system (2.1) are: 

 0O

  , average stay time in the system of 24 - 65 years 
old adults. 

  , rate at which an excess weight individual moves 
to normal weight subpopulation.  

  , transmission rate due to social pressure to adopt 
an unhealthy lifestyle (TV, friends, family, job). 

 0N , proportion of normal weight population coming 
from the 23 years old age group. 

 0O , proportion of excess weight population coming 
from the 23 years old age group. 

System (2.1) can be interpreted as a SIS-type com- 
partmental model which dynamic of transits between 
subpopulations is depicted in Figure 1. 

Since     1N t O t  , system (2.1) can be simplified 
to only one nonlinear differential equation involving as 
unique unknown the percentage of normal weight people  
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Figure 1. Flow diagram of the deterministic model for the 
dynamic of obesity prevalence in the population. 
 

      2
,N t A BN t C N t        (2.2) 

for a given initial condition  0N , being 0A N   , 
B       , C  . 

Following an analogous methodology as in [12,15,16], 
parameter   is estimated by fitting the model with data 
from the Health Survey of the Region of Valencia 2000 
and 2005 [17,18]. The other parameters are estimated 
using the same Health Survey and [19]. Table 1 collects 
these values where time variable t is measured in weeks. 

However, note that the aforementioned deterministic 
model does not take into account nor the inherent errors 
in the measured data provided by the Health Survey nei- 
ther inherent complexity of obesity such as individual 
behavior, geographical conditions, genetic aspects, health 
advertising campaigns, etc. When data are available to 
inform us about the best choice for data distribution, the 
parameter assignment is easily made. However, in the 
lack of data of this sort of information on the distribution 
for a specific parameter or, even more, for the random-
ness affecting a complex problem as obesity is, the 
specification of such information is very difficult, if not 
impossible, to get. White noise stochastic process has 
demonstrated to be a powerful tool to model properly 
general uncertainty [20,21]. In this paper, based on this 
consideration, we propose to modify the obesity model 
(2.1), considering that the dynamic of normal weight 
subpopulation is described by the random differential 
equation: 

        2
,N t A BN t C N t n t        (2.3) 

where     n t n t   is a white noise process, which 
intensity is given by parameter  . This model is just a 
particular case of (1), where coefficients are now 
assumed to be time-independent. Notice that in the real 
problem we are interested to apply the random model, 
from Table 1, it is plausible to assume that C   is a 
small parameter. 

The previous exposition leads us to face several new 
problems that need to be answered. Firstly, we now have 
to solve the random differential Equation (2.3) or the 
more general, (1). Secondly, taking the deterministic 
model as a starting point, we have to fit parameter   in 
order to provide a complete description of obesity model 
through random approach. This motivates the next sec- 
tion which is devoted to obtain an approximate solution  

Table 1. Initial conditions and parameter values for the SIS 
model (2.1). 

 0N  0O       
0N  0O  

0.522 0.488 0.00085 0.000035 0.000469 0.704 0.296

 
stochastic process to random differential Equation (1). In 
Section 4, we apply these results to specify an approxi- 
mate solution of obesity model. 

3. Applying the Wiener-Hermite Expansion 
(WHE) Together with the Perturbation 
Method to Approximate the General 
Nonlinear Stochastic Solution 

To approximate the solution stochastic process of model 
(1), a truncation of the Wiener-Hermite expansion (WHE) 
together with the perturbation method is employed. This 
technique, denoted by WHEP, was firstly introduced in 
[22]. WHE is based on the Wiener-Hermite (WH) poly- 
nomials. These polynomials constitute a complete set of 
statistically orthogonal random processes which was 
introduced in [23] (see also [24]). The first few terms of 
the Wiener-Hermite polynomials are: 
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where  n t  denotes a white noise process which, by 
definition, is centered at the origin and its correlation is 
the Dirac delta function: 

       1 2 1 2E 0, En t n t n t t t       
 0

.    (3.1) 

More generally, taking H  and  1  H t  as starting 
values, WH polynomials, denoted by  

     1, ,i i
i H H t t  , can be defined recurrently as 

follows:  
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where for each  and , subindex set 2i  1, , 1j i  
 1, , ii i  2  is extracted from the original subindex set  

 1, 2, , i
i j

 keeping their order and excluding numbers  
  and i . 
Taking advantage of property (3.1), one can demon- 

strate that WH polynomials satisfy: 
   0E 1, E 0, 1,iH H    i          (3.2) 
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as well as they are statistically orthogonal: 

   E 0,i j .H H i  j             (3.3) 

As a consequence of the completeness of the WH set 
[23,24], any arbitrary stochastic process, say  
   ;x t x t  ,  , can be expanded in terms of a 

WH polynomials set and this expansion converges to the 
original stochastic process, i.e.,  

             
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

      (3.4) 

where      0 0x x t , 1
     ; , ,i i

i x x t t t  ,  are 
called the (deterministic) kernels of the WHE of 

1i 
 x t . 

The first two terms of the right-hand side define the 
Gaussian representation of  x t

 
 (being the zeroth-order  

term just its mean or average, i.e.,  0  E x t x t   ),  

while the second and higher-order terms correspond to 
the non-Gaussian part. The variance of  x t  can be 
expressed as follows: 

      
    2

2
1

1 1

2
2

1 2 1 2

Var ; d

2 ; , d d

x t x t t t

x t t t t t

  

 



 




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   (3.5) 

The basic method to obtain an approximate solution 
stochastic process of model (1) by taking advantage of 
WHE technique is, in a first step, to consider a truncation 
of the infinite expansion (3.4) for  x t . Let  be the 
order of such a truncation. This entails that we need to 
compute  deterministic kernels 

N

, 01N    ,1, ,ix i N

2

  
to get an approximation based on (3.4). This can be made 
by deriving  integro-differential equations for the 
dynamics of the unknown kernel functions. This set of 
deterministic equations is established by taking advan- 
tage of the stochastic orthogonality properties of WH 
polynomials. Henceforth, we take , so we are 
going to compute the first non-Gaussian approximation 
of 

1N 

N 

 x t . Therefore, to be precise, three integro-diffe- 
rential equations for    0x t ,  1  1;x t t  and  

  2 ; , 1 2x t t t  need to be established. 
In order to derive the first equation, we just follow 

previous procedure: we substitute the corresponding 
truncated WHE of  x t  obtained from (3.4) in the 
model (1). Next we take the expectation operator over 
the resulting expression and then we apply properties 
(3.1)-(3.3) together with  
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1 2 1E 2 ,H t H t t t         (3.6) 
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This leads to 
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The initial condition has been derived by setting 0t   
in (3.4), then applying the expectation operator and 
finally taking advantage of property (3.2). 

Now, we address to establish a second (deterministic) 
differential equation for   1

1; x t t . For that, we firstly 
multiply the corresponding truncated WHE (3.4) of 
 x t  by    1

5H t . Then we take the expectation ope- 
rator and, we again apply above properties together with  
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In this case, one gets 
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(3.9) 

In this case, the initial condition has been established 
multiplying by    1

3H t  the truncated WHE (3.4), then 
we set 0t   and take the expectation operator, and 
finally, we apply properties (3.2) and (3.6). 

The initial value problem that has been established in 
order to compute the kernel   2

1 2; , x t t t  is given by  
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(3.10) 

To obtain this equation, firstly we have multiplied the 
corresponding truncated WHE (3.4) of  x t  by  

  2
5 6, H t t . Next we have taken the expectation ope- 

rator and then we have applied previous properties toge- 
ther with 
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The initial condition has been established multiplying 
by   2

3 4, H t t
0

 the truncated WHE (3.4), then we set 
 and take the expectation operator, and finally, we 

apply properties (3.2) and (3.7). 
t 

As 0   is assumed to be a frank small parameter, a 
reliable technique to solve nonlinear coupled deter- 
ministic problems (3.8)-(3.10) is the perturbation method 
[22]. We represent the deterministic kernels by means of 
their first approximations as follows:  

           
           
           

0 0 0
0 1

1 1 1
1 0 1 1 1

2 2 2
1 2 0 1 2 1 1 2

,

; ; ;

; , ; , ; ,

x t x t x t

x t t x t t x t t

x t t t x t t t x t t t







 

 

 

 

Now, we substitute these representations in Equations 
(3.8)-(3.10) and we neglect those powers of   which 
exponents are greater than 1. Hence we obtain the 
follow-ing initial value problems:  

           
   

0 0
0

0
0 0

,

0 ,

0x t a t b t x t

x x

  


 


    (3.11) 
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 






 



 

(3.12) 
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(3.16) 

4. Solving the Random SIS-Type 
Epidemiological Model 

In this section we focus on the solution of random SIS- 
type epidemiological model given by (2.3) which is a 
particular case of (1.1). Therefore, hereinafter we will 
assume that coefficients involved in (3.11)-(3.16) are 
timeindependent, i.e.,  a t a , . In this case, 
we can obtain directly the solution of initial value pro- 
blems (3.11)-(3.16). In fact, we firstly compute the 
solution to (3.11), (3.13) and (3.15): 

 b t b

   0
0 0 e ,bta a

x t x
b b

    
 
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e if
;

0 if
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

,

,
 

   2
0 1 2 1 2; , = 0, , 0.x t t t t t   

From these expressions, we then obtain the solution of 
(3.12), (3.14) and (3.16), although due to its cumbersome 
representation we do not explicit    2

1x t  here.  
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Taking into account that  

             0 0 0
0 1E x t x t x t x t     , one gets the fol-  

lowing approximation of the mean of  x t  which de- 
pends on parameters , , a b  , 0x : 
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 (4.1) 

In order to compute an approximation of the expecta- 
tion function of the solution stochastic process to SIS- 
type epidemiological model, we identify coefficients: 

0 0.000365176a A N    
  0.00135b B         

,  
4

0.00085C
, 

     and the initial condition  
 0 . These numerical values have been computed 

from Table 1. Note that in the context of our problem, 
the only available data are 

0x N

 0 0.522N 

2005

260t 

 and  
, that correspond to the percentage of 

normal weight people aged between 24 - 65 in the region 
of Valencia (Spain). These percentages have been ob- 
tained from the Health Surveys of the Region of Valencia 
of the years  and , respectively. Note that 
time variable t is measured in weeks. While  

 has been used as initial condition, we can 
take advantage of information in  together with 
(4.1) to fit the intensity 

 260 0N 

 0 0.522N 

.49

2000

  of the white noise. Indeed, 
we impose that the only available value of the stochastic 
process  N t N t    representing the percentage 
of normal weight population at  coincides with 
the (approximate) expectation: 

260t 

E 260;0.000365176, 0.001354, ,0.522 0.49,x     

which solution is 0.0155689  . From expression (4.1), 
we can now obtain a full approximation of the expecta- 
tion function of the percentage of the normal weight 
population. On the left side of Figure 2, we represent 
this approximation over the weekly interval [0,780] that 
corresponds to the yearly interval [2000, 2015]. 

Notice the proposed method leads to an approximation 
of the expectation that is also a function (see (4.1)) and 
this point constitutes one of the most relevant contribu- 
tion of the mixed random-deterministic model. In fact, 
alternative approaches based on the deterministic model 
(2.1) or equivalently (2.2) using Monte Carlo methods as 
Latin Hypercube Sampling [25] only provide predictions 
in specific time points, while using (4.1), we can obtain 
an approximation to the expectation in any time. 

To complete the stochastic approach, we now address 
the computation of an approximation of the variance 
function. Since , by perturbation method 
and (3.5), neglecting terms of 

   2
0 1 2; , 0x t t t 

  with power greater 
than 1, one gets  

              
22

1 1 1
0 1 0 1 1 1Var ; 2 ; ; d .

 
 

 

Figure 2. Wiener-Hermite approximation of the expectation 
(left) and variance (right) of the normal weight population 
model (1) with a = 0.000365176, b = −0.001354, λ = 
0.0155689 and x0 = 0.522 between years 2000 and 2015 
(corresponding to the interval [0, 780]). 
 
On the right side of Figure 2, we plot  

   0Var Var ; , , ,x t x t a b x      . Although from a prac-  

tical view-point is not realistic to enlarge the time inter- 
val beyond 201  (that corresponds to 78  weeks), 
we have checked that expectation stabilizes over time, 
and as a consequence the variance does. 

5 0

5. Conclusion 

1x t x t t x t t x t t




      t



 

In this paper a Wiener-Hermite random technique to- 
gether with a perturbation method has been developed 
and applied to a two-state dynamical system to study the 
evolution (transmission dynamics) of excess and normal 
weight of adults between 24 - 65 years old in the Spanish 
region of Valencia, and we have obtained an approxima- 
tion of the expectation and variance functions. Both app- 
roximations are also functions and this fact is remarkable 
because other techniques only provides predictions in 
some a priori chosen time-points. As a consequence, we 
can compute and predict the expectation and the variance 
of normal weight population in the region of Valencia for 
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any time point. We point out that the main aim of this 
paper is to show the promising potentiality of mixed 
Wiener-Hermite and perturbation methods to deal with 
models based on stochastic differential Equation (2.3). 
Once more data will be available a study of the error 
would be advisable including the consideration of diffe- 
rent number of terms when applying perturbation tech- 
nique. Our approach reveals, as other sources do, that 
normal weight population is decreasing gradually, and it 
is a health concern worrying doctors and local govern- 
ment. Finally, this paper is an example about how models 
can be a useful tools to experiment with health concerns. 
Using these type of approaches, health policy members 
are able to simulate different scenarios and analyze the 
effect of the change in health policies. 
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