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ABSTRACT 

In this article we present a lattice attack done on a NTRU-like scheme introduced by Verkhovsky in [1]. We show 
how, based on the relation between the public and private key, we can construct an attack which allows any passive 
adversary to decrypt the encrypted messages. We explain, step by step, how an attacker can construct an equivalent 
private key and guess what the original plaintext was. Our attack is efficient and provides good experimental re-
sults. 
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1. Introduction 

Lattice-based cryptography has become a research topic 
more and more studied nowadays. It may offer a good 
alternative to cryptographic schemes based on classical 
number-theory problems (e.g. discrete logarithm, factori- 
zation) that are easily solved on quantum computers. 

Lattices have proven to provide securely hard prob-
lems on which we can build cryptographic schemes but 
also good tools for cryptanalysis. There are several lattice 
attacks [2,3] done on NTRU [4]. The main tool of these 
attacks is the LLL algorithm [5]. In order to overcome 
this, there are variants of NTRU which base their secu-
rity on lattice hard problems [6]. 

In this article we present a lattice attack done on a 
NTRU-like scheme introduced by Verkhovsky in [1]. 

Based on the relation between the public and private 
key, we construct an attack which allows any passive 
adversary to decrypt the encrypted messages. Moreover, 
our attack is efficient and provides good experimental 
results. 

2. Preliminaries 

We present in this section the essential background in 
lattices and Gaussian integers and the algorithms we use 
in our attack. 

Notation. We use small letters and capital letters,  
and , to denote vectors and matrices, respectively. 
Capital letters like  are also used for Gaussian inte-
gers. In order to avoid confusion, we use the Gaussian 
integers in the following form 1 2 . We denote 
by 

b
B

R

R r r i  
,a b the inner product of two vectors  and . a b

2.1. Background 

Given n linearly independent vectors 1 2 , a 
lattice  is the set of all linear combinations of bi’s 
with integral coefficients:  

, , , m
nb b b  

L

     1 2, , , .n i iL b b b L B x b x   i  

We say that 1 2  is the basis  of the lattice 
,  is the rank and  is the dimension of the lattice 
. If 

, , , nb b b
m

B
L
L

n
n m , then the lattice is called a full-rank lattice. 

We define the norm, a , of a vector 

 1 2, , , m
ma a a a  

 
to be the Euclidean norm. 

The orthogonal lattice L  of  is the set of vectors 
orthogonal with all the vectors from : 

L
L

 , 0,m .L a a b b      L  

It makes sense to speak about orthogonal lattice only 
for non full-rank lattices, where . The lattice n m L  
has dimension  and rank m . m n

One important tool in cryptanalysis, LLL algorithm [5] 
was published in 1982 and since then couple of schemes 
were broken [7-9] by using it. Several improvements that 
reduce its complexity appeared in [10,11]. Given a basis 
of a lattice , the aim of the LLL algorithm is to provide 
a LLL reduced basis where the first vector gives an ap-
proximation of the shortest non-zero vector of , 

L

L
 1 L . It is possible to apply the LLL algorithm for the 

orthogonal lattice L (See Algorithm 2.1). 
The notation  mp b

mb
 denotes the last  compo-

nents of , with 
m

b n . By we denote the trans- TB
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Algorithm 2.1. LLL algorithm for [12]. L

Input: Lattice basis .  1 2, , , m

nb b b  

Output: A LLL reduced basis for L .  

1. Select     1 2 1 4

1
2

nm m n m n
i

i
c b

    


  . 

2. Construct matrix . 
,

T

m m

cB
B

I


 
 
 
 

3. Run LLL algorithm on the lattice spanned by B  to obtain the 

LLL reduced basis   1, , .ma a

4.Output      1 , , .m m mp a p a   n

 
pose of matrix  .B

2.2. Gaussian Integers 

Gaussian integers are represented by the set  

   2
1 2 1 2, ,i r r i r r i       1 . 

The norm of a Gaussian integer , denoted by R  N R , 
is defined as . The units of   2

1 2N R r r  2  i  are 
. 1, i 

For division in  i  with unique remainder we need 
the following definition: 

Definition 1([1]). Given two Gaussian integers, 

1 2A a a i    and , we say that 1 2R r r i   A  is a 
primary residue modulo if the following 4 inequalities 
are satisfied: 

R

 1 2 2 10 r a r a N R     1  

 1 1 2 20 r a r a N R     1.

a

 

All primary residues modulo R re located inside the 
square with vertices 

 
 , ,O R i with sides 

equal to 
, 1R i R

 
and 

.N R  
This definition allows us to have the following theo-

rem: 
Theorem 1. For any two Gaussian integers  ,A R i , 

with 0R  , there exists unique  ,B C  i  such that 
A R C   B  and is a primary residue modulo . B R

We denote . Note that modB A R A R C B    is 
not the Euclidean division. 

For completeness, we provide in this section all the 
definitions used in the formalization of the scheme for 
which we construct an attack. 

Definition 2. Primes inR  i can be expressed by one 
of the following forms:  
 1 20, 0  and 2r  is a prime number of the form 

4 3n   with   
r r 

0,n n .
 1 20, 0  and 1r  is a prime number of the form 

4 3n   with   
r r 

0,n n .
 0, 0 and 1 2  r r    N R is a prime number. 

 
Theorem 2. A prime number  of 1 2R r r i    i  

is an irreducible element. Every irreducible element A  
has a unique prime representative  (i.e., R 1A R  is 
an unit). 

Two Gaussian integers,  ,A R i , 0A   and 0R  , 
are relatively prime if they have no prime factors in 
common. The greatest (in the sense of the norm) com-
mon divisor of any two elements of  i  is unique up 
to a unit factor. The Euclid algorithm (using Euclidean 
division) always returns a greatest (in the sense of norm) 
common divisor. A multiplicative inverse of  modulo 

, with 
R

n n , exists if and only if  and n  N R

n

 R

 are 
relatively prime. 

3. Double Moduli Cryptosystem 

The cryptosystem introduced by Verkhovsky in [1], for 
which we construct an attack, is described in this section. 
We assume an a priori agreed large integer . Apart 
from the value , which is an integer, all the other pa-
rameters and inputs are Gaussian integers. 

n

3.1. Encryption/Decryption Algorithms 

Algorithm 3.1 presents the steps followed by a partici-
pant with the aim of obtaining its public and private keys. 
The private key consists of two parts, P  an , wh  
are relatively prime. Here, P  is invertible modulo n . 
The public key, U , is obtaine by multiplying R  with 
the inverse of P  modulo n . 

d

 

ich

d

Before encrypting a message 1 2M m m 

R

i

R

 with 
the public key , one has to pre-condition the plaintext 
so that it is a primary residue modulo , where  is 
part of the private key. Since  is not known to the 
sender, a threshold is imposed so that the inequalities 
from Definition 1 hold. The pre-conditioned plaintext 

 must be selected such that the upper bound of the 
real and imaginary parts is 

U

R

W
6n . The algorithms of 

pre-conditioning and recovery of a plaintext are de-
scribed afterwards. 

Algorithm 3.2 shows how to encrypt a pre-condi- 
tioned plaintext W . Besides the public key U , the 
sender chooses periodically a new value  

 1 2S s s i    i . 

After hiding the value of the public key, by multiply-
ing it with , the ciphertext is obtained by adding this 
new value to the plaintext. 

S

After receiving the ciphertext and provided that it has 
the correct private keys, the receiver is able to decrypt 
the message by following the steps from Algorithm 3.3. 
After the first step of the algorithm the receiver will 
compute  as D PW RS . In the second step, he is able 
to compute  as the inverse of  modulo , as  
and  were chosen such that they are relatively prime. 
Finally, in the last step, the pre-conditioned plaintext is 

Q P R P
R
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Algorithm 3.1. Key generation. 

Input: Large integer . n

Output: Public key ; Private key: U i     , .P R i     

Constraints: 2 1 1 2: 0 , 6 ,| | 2 3;P i p p n p p n        

2 1 2 1 1 2: 0 , , 6 ,| | 2 3.R i r r r r n r r n         

1. Choose uniformly ,P R i   

 
 such that the constraints are 

respected and  1 2,gcd p r r 1 2, 1,p gcd 1 , 

P and R are relatively prime, P  and  are relatively prime. n

2. Compute 1 mod .F P n  

3.  mod .U F R n 

 
Algorithm 3.2. Encryption. 

Input: Pre-conditioned plaintext , integer . W i    n

Public key: . U i   

Output: Encryption .  C i   

Constraints: 1 2 1 2: 0 ,0 , 6S i s s s s n       ;  

2 1 1 2: 0 ,0 , 6.W i w w w w n        

1. Select uniformly  such that the constraints are 

respected. 
1 2S s s i  

2.   mod .C W SU n 

 
Algorithm 3.3. Decryption. 

Input: Encryption , large integer . C i    n

Private key:  , .P R i     

Output: Pre-conditioned plaintext .W i     

1. mod .D PC n  

2. Compute  1 mod .Q P R
3.  mod .W QD R

 
obtained. Afterwards, the receiver will run the algorithm 
of plaintext recovery, algorithm illustrated later. 

3.2. Plaintext Pre-Conditioning 

As aforementioned, the plaintext is pre-conditioned be-
fore being encrypted. Similarly, a plaintext recovery al-
gorithm is necessary in order to obtain the original mes-
sage after decryption. These two transformations are il-
lustrated in Algorithms 3.4 and 3.5. As  must be a 
primary residue modulo  the sender must ensure that 
the original plaintext 

W
,R

M  is split into blocks of appro-
priate sizes. 

4. Using LLL to Break the Scheme 

This section presents our lattice attack. We prove that the 
double moduli scheme is insecure as any passive adver-
sary that observes the encrypted messages can decrypt 
them with a non-negligible probability. 

Algorithm 3.4. Plaintext pre-conditioning. 

Input: Message .M i      

Output: Pre-conditioned plaintext . W i   

1. . 1 1 2   w m m 

2. if  1 2,m m

     then   2 1 2 ;w m m 

     else 2 2 1  1.w m m       

 
Algorithm 3.5. Plaintext recovery. 

Input: Pre-conditioned plaintext   W i   

Output: Message .M i     

1. if  1 2 mod2w w   

     then  1 1 2 2 1 1 2,   ;m w w m w m     

     else  1 1 2 1 2m w w    

         2 1 1 1 2 1 2. m w m w w      

4.1. Lattice Attack 

An attacker is a probabilistic algorithm which runs in 
polynomial time. From Algorithm 3.1 an attacker can 
observe the following relation between ,  and  
namely 

P R U
 modP U R n  . Using this relation he is 

able to obtain an equivalent private key. This equivalent 
key is not necessary the private key  ,P R , but can be 
used to decrypt correctly the encrypted message. We 
write the aforementioned relation for the imaginary and 
real parts and separate the known parts from those un-
known. We obtain the following equation: 

1

2

1 2 1

2 1 2

1

2

1 0 0 0

0 1 0 0

p

p

u u n r

u u n r

k

k

 
 
 
      
           
 
  
 

 

With the design constraints of the scheme where both 
components of the private key are of size n  and the 
public key is of size , both  and  should be of 
size 

n 1k 2k
n .  

Vectors 

 1 1 2, , 1,0, ,0v u u n     

and  

 2 2 1, ,0, 1,0,v u u n    

are linearly independent and are also orthogonal. They 
form the basis, , of a lattice B  1 2,L v v  of dimen-
sion and rank . Vector 6 2  1 1 2, ,o p p

L .L

1 2 1 2  
from the above relation is orthogonal to both vectors and 
belongs to the orthogonal lattice  of  We can run 

, , ,r r k k
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Algorithm 2.1 to obtain a reduced basis  of B L . 
The four vectors from B  should be small in the 

sense that their norm should be at most  
1

4det L  [12]. 
As 1  and 2v  are orthogonal, the determinant of  
can be easily computed as 

v L

  2 2 2 2n 2 2
1 2

2

det 1 1

3 1

L v v n n n n n

n

         

  
 

Thus, the vectors of the reduced basis of L  should  

have norm at most  
1

2 43 1n   which is of order .n   

Comparing this value with the norm of the vector 1  
which is also of order 

o
n  indicates that 1o  may not 

be the shortest vector from L  Nevertheless, using the 
vectors from  we can find an equivalent key B  ,P R   
that decrypts correctly the ciphertext . C

With the results we have so far, we can design a de-
cryption strategy for an attacker illustrated in Algorithm 
4.1. Algorithm 4.2 follows. 

The following lemma proves that the experiment 
works correctly: given the ciphertext  and the public 
key, the attacker is able to obtain an equivalent private 

C

 
Algorithm 4.1. Decrypting C with an equivalent private key 
(P′, R′). 

Input: Encryption   .C i   

Public key: , . U i    n

Output: Equivalent private key  ,P R  , pre-conditioned plain-

text  .W

1. Set the basis of lattice L to be 1 2( , )B v v where,  

   0 .,1 1 2 2 2 1, , 1,0, ,  0 ,  , ,0, 1,v u u n v u u n       

2. Run the LLL algorithm to obtain the reduced basis,  

 1 2 3 4' ', ', ', ' ,B v v v v   of the orthogonal lattice .L  

3. With  1 2 1 2 1 2, , , , , ,j j j j j j
jv p p r r k k  construct  

1 2
j j

jP p p i    and 1 2
j j

jR r r i   , with   1 4j  .

4. If  ,j jP R  such that jP  and jR  are relatively prime, 

 1 4,j 

then jP P   and jR R   

Run Algorithm 4.2 with input C and private key  ', ' .P R  

else Fail. 
 

Algorithm 4.2. New decryption procedure. 

Input: Encryption , large integer . .C i    n

Private key:  , .P R i       

Output: Pre-conditioned plaintext .W i     

1. mod .D P C n   

2. Compute  1 mod .Q P R  

3. For all 13 possible values for x i     such that   5N x  , 

compute   modW Q D xn    .R

key and to decrypt correctly . C
Lemma 1. The new decryption algorithm works cor-

rectly for an equivalent key  ,P R  , given that P  and 
R  are relatively prime.  

Proof. Let  modC W SU n   be the encrypted 
message. Algorithm 4.1 constructs the private key 
 ,P R  . From the way we obtained , we have L

 mo  d nP U R . 
Then, 

  
 
 
 

mod

mod

mod

mod

.

D P C n

P W SU n

P W P SU n

P W R S n

P W R S xn

 

  

  

  

   

 

We can bound the value of x  from equality 
 D P W R S x   n   . 

     
      

    

 

2

2 2 2

max ,

4 max ,

4 13
2 3 1 .

3 3

N x n N D N P W R S

N D N P N R

N S N W

n
n n n

    

   



    

 

So,   5N x   which gives us  possibilities for 13 x . 
Using the last equality and computing , 
we obtain that 

1 modQ P   R

 
 

mod

mod

mod .

Q D xn R

Q P W R S R

W R

   

    



  

By knowing the values of ,Q x  and , we can find 
the value of 

n
modW R . Having, with high probability, 

   N W N R , we can guess the original precondi- 
tioned plaintext by trying all four values that are inside 
the circle   ,C O N R  with origin  and radius O

 N R . Given moW d R , one may obtain the other 
three values by adding to it  or , iR R ,  R iR . 

If we analyze the complexity of Algorithm 4.1, we 
easily see that each step is completed in polynomial time. 
By running Algorithm 4.1, an adversary is able to de-
crypt any message with a high probability. Thus, the 
scheme is not secure (i.e. not even one-way encryption 
secure). 

4.2. Experimental Results 

The experiments were done on an INTEL Q9550  
GHz processor, running a 32-bit version of Windows 7. 

2.83

The implementation of the scheme and of the attack 
was done in the PARI-GP environment. The structure of 
the scheme was respected as it is described in Algo-  
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