
Open Journal of Statistics, 2012, 2, 534-546 
http://dx.doi.org/10.4236/ojs.2012.25069 Published Online December 2012 (http://www.SciRP.org/journal/ojs) 

Copyright © 2012 SciRes.                                                                                  OJS 

Estimators of Linear Regression Model and Prediction 
under Some Assumptions Violation 

Kayode Ayinde1, Emmanuel O. Apata2, Oluwayemisi O. Alaba2 
1Department of Statistics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria 

2Department of Statistics, University of Ibadan, Ibadan, Nigeria 
Email: bayoayinde@yahoo.com 

 
Received August 21, 2012; revised October 23, 2012; accepted November 5, 2012 

ABSTRACT 

The development of many estimators of parameters of linear regression model is traceable to non-validity of the as- 
sumptions under which the model is formulated, especially when applied to real life situation. This notwithstanding, 
regression analysis may aim at prediction. Consequently, this paper examines the performances of the Ordinary Least 
Square (OLS) estimator, Cochrane-Orcutt (COR) estimator, Maximum Likelihood (ML) estimator and the estimators 
based on Principal Component (PC) analysis in prediction of linear regression model under the joint violations of the 
assumption of non-stochastic regressors, independent regressors and error terms. With correlated stochastic normal vari- 
ables as regressors and autocorrelated error terms, Monte-Carlo experiments were conducted and the study further iden- 
tifies the best estimator that can be used for prediction purpose by adopting the goodness of fit statistics of the estima- 
tors. From the results, it is observed that the performances of COR at each level of correlation (multicollinearity) and 
that of ML, especially when the sample size is large, over the levels of autocorrelation have a convex-like pattern while 
that of OLS and PC are concave-like. Also, as the levels of multicollinearity increase, the estimators, except the PC es- 
timators when multicollinearity is negative, rapidly perform better over the levels autocorrelation. The COR and ML 
estimators are generally best for prediction in the presence of multicollinearity and autocorrelated error terms. However, 
at low levels of autocorrelation, the OLS estimator is either best or competes consistently with the best estimator, while 
the PC estimator is either best or competes with the best when multicollinearity level is high  0.8 or 0.49    . 
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1. Introduction 

Linear regression model is probably the most widely 
used statistical technique for solving functional relation- 
ship problems among variables. It helps to explain ob- 
servations of a dependent variable, y, with observed 
values of one or more independent variables, X1, X2,  , 
Xp. In an attempt to explain the dependent variable, pre- 
diction of its values often becomes very essential and 
necessary. Moreover, the linear regression model is for- 
mulated under some basic assumptions. Among these as- 
sumptions are regressors being assumed to be non-sto- 
chastic (fixed in repeated sampling) and independent. 
The error terms also assumed to be independent, have 
constant variance and are also independent of the re- 
gressors. When all these assumptions of the classical 
linear regression model are satisfied, the Ordinary Least 
Square (OLS) estimator given as: 

  11 1ˆ X X X Y


           (1) 

is known to possess some ideal or optimum properties of 
an estimator which include linearity, unbiasedness and 
efficiency [1]. These had been summed together as Best 
Linear Unbiased Estimator (BLUE). However, these 
assumptions are not satisfied in some real life situation. 
Consequently, various methods of estimation of the mo- 
del parameters have been developed. 

The assumption of non-stochastic regressors is not al- 
ways satisfied, especially in business, economic and so- 
cial sciences because their regressors are often gene- 
rated by stochastic process beyond their control. Many 
authors, including Neter and Wasserman [2], Fomby et al. 
[3], Maddala [4] have given situations and instances 
where this assumption may be violated and have also dis- 
cussed its consequences on the OLS estimator when used 
to estimate the model parameters. They emphasized that 
if regressors are stochastic and independent of the error 
terms, the OLS estimator is still unbiased and has mini- 
mum variance even though it is not BLUE. They also 
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pointed out that the traditional hypothesis testing remains 
valid if the error terms are further assumed to be normal. 
However, modification is required in the area of confi- 
dence interval calculated for each sample and the power 
of the test. 

The violation of the assumption of independent re- 
gressors leads to multicollinearity. With strongly interre- 
lated regressors, interpretation given to the regression co- 
efficients may no longer be valid because the assump- 
tion under which the regression model is built has been 
violated. Although the estimates of the regression coeffi- 
cients provided by the OLS estimator is still unbiased as 
long as multicollinearity is not perfect, the regression 
coefficients may have large sampling errors which affect 
both the inference and forecasting resulting from the 
model [5]. Various methods have been developed to esti- 
mate the model parameters when multicollinearity is 
present in a data set. These estimators include Ridge Re- 
gression estimator developed by Hoerl [6] and Hoerland 
Kennard [7], Estimator based on Principal Component 
Regression suggested by Massy [8], Marquardt [9] and 
Bock, Yancey and Judge [10], Naes and Marten [11], and 
method of Partial Least Squares developed by Hermon 
Wold in the 1960s [12-14]. 

The methodology of the biased estimator of regression 
coefficients due to principal component regression in- 
volves two stages. This two-stage procedure first reduces 
the predictor variables using principal component analy- 
sis and then uses the reduced variables in an OLS regres- 
sion fit. While it often works well in practice, there is no 
general theoretical reason that the most informative li- 
near function of the predictor variables should lie among 
the dominant principal components of the multivariate 
distribution of the predictor variables. 

Consider the linear regression model, 

Y X                    (2) 

Let 1 1X X T T  , where  1 2diag , , , p      is 
a pxp diagonal matrix of the eignvalues of 1X X  and T 
is a p × p orthogonal matrix whose columns are the ei- 
genvectors associated with 1 2, , , p   . Then the above 
model can be written as: 

1Y XTT Z              (3) 

where 1 1 1 1 1, .Z XT Z Z T X XT T T T T       
The columns of Z, which define a new set of orthogo- 

nal regressors, such as 1 2, , , pZ Z Z Z   are referred to 
as principle components. The principle components re- 
gression approach combats multicollinearity by using 
less than the full set of principle components in the mo- 
del. Using all will give back into the result of the OLS 
estimator. To obtain the principle component estimator, 
assume that the regressors are arranged in order of de-  

scending eigen values, 1 2 p      and that the 
last of these eigen values are approximately equal to zero. 
In principal components regression, the principal com- 
ponents corresponding to near zero eigen values are re- 
moved from the analysis and the least squares applied to 
the remaining component. 

When all the assumptions of the Classical Linear 
Regression Model hold except that the error terms are not  

homoscedastic   2
1. . ni e E U U I  but are heterosce-  

dastic   2
1. .i e E U U   , the resulting model is the  

Generalized Least Squares (GLS) Model. Aitken [15] has 
shown that the GLS estimator β of β given as  

  11 1 1 1X X X Y


    is efficient among the class of  

linear unbiased estimators of β with variance-cova-  

riance matrix of β given as     12 1 1V X X 


  ,  

where Ω is assumed to be known. The GLS estimator 
described requires Ω, and in particular ρ to be known 
before the parameters can be estimated. Thus, in linear 
model with autocorrelated error terms having AR(1): 

    11 1 1 1ˆ
GLS X X X Y

          (3) 

and 

     12 1 1ˆ
GLSV X X 

         (4) 

where 

  2
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, and the inverse of Ω is 
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Now with a suitable  1n  xn matrix transformation 
P  defined by 
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 1

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1
n n










 

 
  
  
 
 
  





     


P    (5) 

Multiplying then shows that P P   gives an n × n 
matrix which, apart from a proportional constant, is iden- 
tical with 1  except for the first elements in the lead- 
ing diagonal, which is 2  rather than unity. With an- 
other n × n transformation matrix P obtained from P   

by adding a new row with 21   in the first position  

and zero elsewhere, that is 

 
1
221 0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1
nxn








  
    
 
 
  






     


P    (6) 

Multiplying shows that  2 11P P      . The dif- 
ference between P  and P lies only in the treatment of 
the first sample observation. However, when n is large, 
the difference is negligible, but in small sample, the dif- 
ference can be major. If Ω or more precisely ρ is known, 
the GLS estimation could be achieved by applying the 
OLS via the transformation matrix P  and P above. 
However, this is not often the case; we resort to estimat- 
ing Ω to have a Feasible Generalized Least Squares Es- 
timator. This estimator becomes feasible when ρ is re- 
placed by a consistent estimator ̂  [3]. There are sev- 
eral ways of consistently estimating ρ, however, some of 
them either use the P  or P transformation matrix. 

Several authors have worked on this violation espe- 
cially in terms of the parameters’ estimation of the linear 
regression model with autoregressive of orders one. The 
OLS estimator is inefficient even though unbiased. Its 
predicted values are also inefficient and the sampling 
variances of the autocorrelated error terms are known to 
be underestimated causing the t and the F tests to be in- 
valid [3-5] and [16]. To compensate for the loss of effi- 
ciency, several feasible GLS estimators have been devel- 
oped. These include the estimator provided by Cochrane 
and Orcutt [17], Paris and Winstern [18], Hildreth and Lu 
[19], Durbin [20], Theil [21], the Maximum Likelihood 
and the Maximum Likelihood Grid [22], and Thornton 
[23]. Among others, the Maximum Likelihood and Maxi- 
mum Likelihood Grid impose stationary by constraining 
the serial correlation coefficient to be between –1 and 1 
and keep the first observation for estimation while that of 
Cochrane and Orcutt and Hildreth and Lu drops the first 
observation. Chipman [24], Kramer [25], Kleiber [26], 

Iyaniwura and Nwabueze [27], Nwabueze [28-30], Ay- 
inde and Ipinyomi [31] and many other authors have not 
only examined these estimators but have also noted that 
their performances and efficiency depend on the structure 
of the regressor used. Rao and Griliches [32] did one of 
the earliest Monte-Carlo investigations on the small 
sample properties of several two-stage regression me- 
thods in the context of autocorrelated error terms. Other 
recent works done on these estimators and the violations 
of the assumptions of classical linear regression model 
include that of Ayinde and Iyaniwura [33], Ayinde and 
Oyejola [34], Ayinde [35], Ayinde and Olaomi [36], 
Ayinde and Olaomi [37] and Ayinde [38]. 

In spite of these several works on these estimators, 
none has actually been done on prediction especially as it 
relates multicollinearity problem. Therefore, this paper 
does not only examine the predictive ability of some of 
these estimators but also does it under some violations of 
assumption of regression model making the model much 
closer to reality. 

2. Materials and Methods 

Consider the linear regression model of the form: 

0 1 1 2 2 3 3t t t t tY X X X u           (7) 

where  2
1 , ~ 0, , 1,2,3, ,t t t tu u N t n        and 

 ~ 0,1 , 1,2,3iX N i   are stochastic and correlated. 
For Monte-Carlo simulation study, the parameters of 

equation (1) were specified and fixed as β0 = 4, β1 = 2.5, 
β2 = 1.8 and β3 = 0.6. The levels of intercorrelation 
(multicollinearity) among the independent variables were 
sixteen (16) and specified as: 

     12 13 23

0.49, 0.4, 0.3, ,0.8,0.9,0.99.

x x x     

    
 

The levels of autocorrelation is twenty-one (21) and 
are specified as 0.99, 0.9, 0.8, ,0.8,0.9,0.99.       
Furthermore, the experiment was replicated in 1000 
times  1000R   under six (6) levels of sample sizes 
 10,15,20,30,50,100n  . The correlated stochastic nor- 
mal regressors were generated by using the equations 
provided by Ayinde [39] and Ayinde and Adegboye [40] 
to generate normally distributed random variables with 
specified intercorrelation. With 3P  , the equations 
give: 

1 1 1 1

2 2 12 2 22 2

23
3 3 13 3 1 2 33 3

22

X Z

X m Z

m
X Z Z n Z

m

 

  

  

 

  

   

  (8) 

where  2 2
22 2 121m    ,  23 2 3 23 12 13m        
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and 
2
23

33 33
22

m
n m

m
  ; and  ~ 0,1 , 1, 2,3.iZ N i   

By these equations, the inter-correlation matrix has to 
be positive definite and hence, the correlations among the 
independent variables were taken as prescribed earlier  

 12 13 23      . In the study, we assumed  

 ~ 0,1 , 1, 2,3.iX N i   
The error terms were generated using one of the dis- 

tributional properties of the autocorrelated error terms  
2

2
~ 0,

1tu N 


  
     

 and the AR(1) equation as follows: 

1
1 21








             (9) 

1 ,  2,3,4, ,t t tu u t n           (10) 

Since some of these estimators have now been incor- 
porated into the Time Series Processor (TSP 5.0) [41] 
software, a computer program was written using the 
software to examine the goodness of fit statistics of the 
estimators by calculating their Adjusted Coefficient of 
Determination of the model  2R . The estimators are 
Ordinary Least Square (OLS), Cochrane Orcutt (COR), 
Maximum Likelihood (ML) and the estimator based on 
Principal Component (PC) Analysis.The two possible 
PCs (PC1 and PC2) of the Principal Component Analysis 

were used. The Adjusted Coefficient of Determination of 
the model was averaged over the numbers of replications. 
i.e. 

2

1

1 R

i
i

R R
R 

                 (11) 

An estimator is the best if its Adjusted Coefficient of 
Determination is the closest to unity. 

3. Results and Discussion 

The full summary of the simulated results of each esti- 
mator at different level of sample size, muticollinearity, 
and autocorrelation is contained in the work of Apata 
[42]. The graphical representations of the results when n 
= 10, 15, 20, 30, 50 and 100 are respectively presented in 
Figures 1, 2, 3, 4, 5 and 6. 

From these figures, it is observed that the perfor- 
mances of COR at each level of multicollinearity and 
those of ML, especially when the sample size is large, 
over the levels of autocorrelation have a convex-like pat- 
tern, while those of OLS, PC1 and PC2 are generally 
concave-like. Also, as the level of multicollinearity in- 
creases the estimators, except PC estimators when mul- 
ticolinearity is negative, rapidly perform better as their 
averaged adjusted coefficient of determination increases 
over the levels of autocorrelation. The PC estimators 
perform better as multicollinearity level increases in its 
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Figure 1. Predictive ability of the estimators at each level of multicollinearity and all levels of autocorrelation when n = 10. 
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Figure 2. Predictive ability of the estimators at each level of multicollinearity and all levels of autocorrelation when n = 15. 
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Figure 3. Predictive ability of the estimators at each level of multicollinearity and all levels of autocorrelation when n = 20. 
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Figure 4. Predictive ability of the estimators at each level of multicollinearity and all levels of autocorrelation when n = 30. 
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Figure 5. Predictive ability of the estimators at each level of multicollinearity and all levels of autocorrelation when n = 50. 
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Figure 6. Predictive ability of the estimators at each level of multicollinearity and all levels of autocorrelation when n = 100. 
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absolute value. The COR and ML estimators are gene- 
rally good for prediction in the presence of multicollin- 
earity and autocorrelated error term. However, at low 
levels of autocorrelation, the OLS estimator is either best 
or competes consistently with the best estimator, while 
the PC2 estimator is also either best or competes with the 
best when multicollinearity is high  
 0.8 or 0.49    . 

Specifically, according to Figure 1 when n = 10, the 

average adjusted co-efficient of determination of the ML 
and COR estimators is often greater than 0.8. The OLS 
estimator consistently performs well and competes with 
the ML and COR estimators at low and occasionally at 
moderate levels of autocorrelation in all the levels of mul- 
ticollinearity. Also, the PR1 and PR2 do perform well 
and compete with ML and COR except at high and very 
high level of autocorrelation when 0.7 or 0.49    . 
The best estimator for prediction is summarized in Table 1. 

 
Table 1. The best estimator for prediction at different level of multicollinearity and autocorrelation when n = 10. 

λ 
ρ 

–0.49 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 
–0.99 COR COR COR COR COR COR COR COR 
–0.9 COR COR COR COR COR COR COR COR 
–0.8 COR COR COR COR COR COR COR COR 
–0.7 COR COR COR COR COR COR COR COR 
–0.6 COR COR COR COR COR COR COR COR 
–0.5 COR COR COR COR COR COR COR COR 
–0.4 COR COR COR COR COR COR COR COR 

–0.3 PR2 ML ML ML ML COR COR COR 

–0.2 PR2 ML ML ML ML ML ML ML 

–0.1 PR2 ML ML ML ML ML ML ML 

0 PR2 ML ML ML ML ML ML ML 

0.1 PR2 ML OLS OLS OLS OLS OLS OLS 

0.2 PR2 ML OLS OLS OLS OLS OLS OLS 

0.3 PR2 ML ML ML ML ML ML ML 

0.4 PR2 ML ML ML ML ML ML ML 

0.5 PR2 ML ML ML ML ML ML ML 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 

λ 
ρ 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 

–0.99 COR COR COR COR COR COR COR COR 

–0.9 COR COR COR COR COR COR COR COR 

–0.8 COR COR COR COR COR COR COR COR 

–0.7 COR COR COR COR COR COR COR COR 

–0.6 COR COR COR COR COR COR COR COR 

–0.5 COR COR COR COR COR COR COR COR 

–0.4 COR COR COR COR COR COR COR COR 

–0.3 COR COR COR COR COR COR COR PR2 

–0.2 ML ML ML ML COR COR PR2 PR2 

–0.1 ML ML ML ML ML ML PR2 PR2 

0 ML ML OLS OLS OLS OLS PR2 PR2 

0.1 OLS OLS OLS OLS OLS OLS PR2 PR2 

0.2 OLS OLS OLS OLS OLS OLS PR2 PR2 

0.3 ML ML ML ML ML ML PR2 PR2 

0.4 ML ML ML ML ML ML PR2 PR2 

0.5 ML ML ML ML ML ML ML PR2 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 
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From Table 1, when n = 10, the COR estimator is best 

except when 0.3 0.5   . At these instances, the PC2 
estimator is often best when 0.9   and 0.49.    
Moreover, when 0 0.2   and 0.3 0.8   , the 
OLS estimator is generally best. At other instances, the 
best estimator is frequently ML and very sparsely COR. 

When n = 15, Figure 2 reveals that the pattern of the 
results is not different from when n = 10 except that PR 
estimators now compete very well with the ML and COR 
when 0.8  . The best estimator for prediction is pre- 
sented in Table 2. 

According to Table 2, the COR estimator is generally 
 

Table 2. The best estimator for prediction at different level of multicollinearity and autocorrelation when n = 15. 

λ 
ρ 

–0.49 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 

–0.99 COR COR COR COR COR COR COR COR 

–0.9 COR COR COR COR COR COR COR COR 

–0.8 COR COR COR COR COR COR COR COR 

–0.7 COR COR COR COR COR COR COR COR 

–0.6 COR COR COR COR COR COR COR COR 

–0.5 COR COR COR COR COR COR COR COR 

–0.4 COR COR COR COR COR COR COR COR 

–0.3 COR COR COR COR COR COR COR COR 

–0.2 COR COR COR COR COR COR COR COR 

–0.1 COR COR COR COR COR COR COR COR 

0 COR COR COR COR COR COR COR COR 

0.1 COR COR COR COR COR COR COR COR 

0.2 COR COR COR COR COR COR COR COR 

0.3 COR COR COR COR COR COR COR COR 

0.4 COR COR COR COR COR COR COR COR 

0.5 COR COR COR COR COR COR COR COR 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 

λ 
ρ 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 

–0.99 COR COR COR COR COR COR COR COR 

–0.9 COR COR COR COR COR COR COR COR 

–0.8 COR COR COR COR COR COR COR COR 

–0.7 COR COR COR COR COR COR COR COR 

–0.6 COR COR COR COR COR COR COR COR 

–0.5 COR COR COR COR COR COR COR COR 

–0.4 COR COR COR COR COR COR COR COR 

–0.3 COR COR COR COR COR COR COR COR 

–0.2 COR COR COR COR COR COR COR COR 

–0.1 COR COR COR COR COR ML ML PR2 

0 COR COR COR COR ML ML ML PR2 

0.1 COR COR COR COR ML ML ML PR2 

0.2 COR COR COR COR COR ML ML PR2 

0.3 COR COR COR COR COR COR COR PR2 

0.4 COR COR COR COR COR COR COR COR 

0.5 COR COR COR COR COR COR COR COR 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 



K. AYINDE  ET  AL. 

Copyright © 2012 SciRes.                                                                                  OJS 

541

 
best except when 0.1 0.3 and 0.7     . At these 
instances, the PC2 estimator is best when 1   and at 
other instances, the best estimator is frequently ML or 
COR. 

When n = 20, 30, 50 and 100, the results according to 
Figures 3, 4, 5 and 6 are not too different. However, 

from Table 3 when n = 20, the COR estimator is gener-
ally best except when 0.3 and 0.3   . At these 
instances, the PC2 estimator is best when  

0.1 0.2    and 1  . At other instances, the ML 
or COR is best. 

When n = 30 from Table 4, COR estimator is gener- 
 

Table 3. The best estimator for prediction at different level of multicollinearity and autocorrelation when n = 20. 

λ 
ρ 

–0.49 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 

–0.99 COR COR COR COR COR COR COR COR 

–0.9 COR COR COR COR COR COR COR COR 

–0.8 COR COR COR COR COR COR COR COR 

–0.7 COR COR COR COR COR COR COR COR 

–0.6 COR COR COR COR COR COR COR COR 

–0.5 COR COR COR COR COR COR COR COR 

–0.4 COR COR COR COR COR COR COR COR 

–0.3 COR COR COR COR COR COR COR COR 

–0.2 COR COR COR COR COR COR COR COR 

–0.1 COR COR COR COR COR COR COR COR 

0 COR COR COR COR COR COR COR ML 

0.1 COR COR COR COR COR COR COR COR 

0.2 COR COR COR COR COR COR COR COR 

0.3 COR COR COR COR COR COR COR COR 

0.4 COR COR COR COR COR COR COR COR 

0.5 COR COR COR COR COR COR COR COR 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 

λ 
ρ 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 

–0.99 COR COR COR COR COR COR COR COR 

–0.9 COR COR COR COR COR COR COR COR 

–0.8 COR COR COR COR COR COR COR COR 

–0.7 COR COR COR COR COR COR COR COR 

–0.6 COR COR COR COR COR COR COR COR 

–0.5 COR COR COR COR COR COR COR COR 

–0.4 COR COR COR COR COR COR COR COR 

–0.3 COR COR COR COR COR COR ML ML 

–0.2 COR COR ML ML ML ML ML ML 

–0.1 ML ML ML ML ML ML ML PR2 

0 ML ML ML ML ML ML ML PR2 

0.1 ML ML ML ML ML ML ML PR2 

0.2 COR COR ML ML ML ML ML PR2 

0.3 COR COR COR COR COR ML ML ML 

0.4 COR COR COR COR COR COR COR COR 

0.5 COR COR COR COR COR COR COR COR 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 
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Table 4. The best estimator for prediction at different level of multicollinearity and autocorrelation when n = 30. 

λ 
ρ 

–0.49 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 

–0.99 COR COR COR COR COR COR COR COR 

–0.9 COR COR COR COR COR COR COR COR 

–0.8 COR COR COR COR COR COR COR COR 

–0.7 COR COR COR COR COR COR COR COR 

–0.6 COR COR COR COR COR COR COR COR 

–0.5 COR COR COR COR COR COR COR COR 

–0.4 COR COR COR COR COR COR COR COR 

–0.3 COR COR COR COR COR COR COR COR 

–0.2 COR COR COR COR ML ML ML ML 

–0.1 ML ML ML ML ML ML ML ML 

0 ML ML ML ML ML ML ML ML 

0.1 ML ML ML ML ML ML ML ML 

0.2 COR COR COR COR ML ML ML ML 

0.3 COR COR COR COR COR COR COR COR 

0.4 COR COR COR COR COR COR COR COR 

0.5 COR COR COR COR COR COR COR COR 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 

λ 
ρ 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 

–0.99 COR COR COR COR COR COR COR COR 

–0.9 COR COR COR COR COR COR COR COR 

–0.8 COR COR COR COR COR COR COR COR 

–0.7 COR COR COR COR COR COR COR COR 

–0.6 COR COR COR COR COR COR COR COR 

–0.5 COR COR COR COR COR COR COR COR 

–0.4 COR COR COR COR COR COR COR COR 

–0.3 COR ML ML ML ML ML ML ML 

–0.2 ML ML ML ML ML ML ML ML 

–0.1 ML ML ML ML ML ML ML PR2 

0 ML ML ML ML ML ML ML PR2 

0.1 ML ML ML ML ML ML ML PR2 

0.2 ML ML ML ML ML ML ML ML 

0.3 COR ML ML ML ML ML ML ML 

0.4 COR COR COR COR COR COR ML ML 

0.5 COR COR COR COR COR COR COR COR 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 

 
ally best except when 0.3  . At these instances, the 
PC2 estimator is best when 0.1 and 1   . At 
other instances, the best estimator is frequently ML and 

sparsely COR. 
From Table 5 when n = 50, COR estimator is gener- 

ally best except when 0 0.1 and 1    . At these  
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Table 5. The best estimator for prediction at different level of multicollinearity and autocorrelation when n = 50. 

λ 
ρ 

–0.49 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 

–0.99 COR COR COR COR COR COR COR COR 

–0.9 COR COR COR COR COR COR COR COR 

–0.8 COR COR COR COR COR COR COR COR 

–0.7 COR COR COR COR COR COR COR COR 

–0.6 COR COR COR COR COR COR COR COR 

–0.5 COR COR COR COR COR COR COR COR 

–0.4 COR COR COR COR COR COR COR COR 

–0.3 COR COR COR COR COR COR COR COR 

–0.2 COR COR COR COR COR COR COR COR 

–0.1 COR COR COR COR COR COR COR COR 

0 COR COR COR COR COR COR COR COR 

0.1 COR COR COR COR COR COR COR COR 

0.2 COR COR COR COR COR COR COR COR 

0.3 COR COR COR COR COR COR COR COR 

0.4 COR COR COR COR COR COR COR COR 

0.5 COR COR COR COR COR COR COR COR 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 

λ 
ρ 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 

–0.99 COR COR COR COR COR COR COR COR 

–0.9 COR COR COR COR COR COR COR COR 

–0.8 COR COR COR COR COR COR COR COR 

–0.7 COR COR COR COR COR COR COR COR 

–0.6 COR COR COR COR COR COR COR COR 

–0.5 COR COR COR COR COR COR COR COR 

–0.4 COR COR COR COR COR COR COR COR 

–0.3 COR COR COR COR COR COR COR COR 

–0.2 COR COR COR COR COR COR COR COR 

–0.1 COR COR COR COR COR COR COR COR 

0 COR COR COR COR COR COR COR PR2 

0.1 COR COR COR COR COR COR COR PR2 

0.2 COR COR COR COR COR COR COR COR 

0.3 COR COR COR COR COR COR COR COR 

0.4 COR COR COR COR COR COR COR COR 

0.5 COR COR COR COR COR COR COR COR 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 
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instances, the PC2 estimator is best. When n = 100 from 
Table 6, COR estimator is generally best. 

4. Conclusion 

The performances COR, ML, OLS and PCs estimators in 
prediction have been critically examined under the viola- 

tion of the assumptions of fixed regressors, independent 
regressors and error terms. The paper has not only gener- 
ally revealed how the performances of these estimators 
are affected by multicollinearity, autocorrelation and 
sample sizes but has also specifically identified the best 
estimator for prediction purpose. The COR and ML are  

 
Table 6. The best estimator for prediction at different level of multicolli nearity and autocorrelation when n = 100. 

λ 
ρ 

–0.49 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 

–0.99 COR COR COR COR COR COR COR COR 

–0.9 COR COR COR COR COR COR COR COR 

–0.8 COR COR COR COR COR COR COR COR 

–0.7 COR COR COR COR COR COR COR COR 

–0.6 COR COR COR COR COR COR COR COR 

–0.5 COR COR COR COR COR COR COR COR 

–0.4 COR COR COR COR COR COR COR COR 

–0.3 COR COR COR COR COR COR COR COR 

–0.2 COR COR COR COR COR COR COR COR 

–0.1 COR COR COR COR COR COR COR COR 

0 COR COR COR COR COR COR COR COR 

0.1 COR COR COR COR COR COR COR COR 

0.2 COR COR COR COR COR COR COR COR 

0.3 COR COR COR COR COR COR COR COR 

0.4 COR COR COR COR COR COR COR COR 

0.5 COR COR COR COR COR COR COR COR 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 

λ 
ρ 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 

–0.99 COR COR COR COR COR COR COR COR 

–0.9 COR COR COR COR COR COR COR COR 

–0.8 COR COR COR COR COR COR COR COR 

–0.7 COR COR COR COR COR COR COR COR 

–0.6 COR COR COR COR COR COR COR COR 

–0.5 COR COR COR COR COR COR COR COR 

–0.4 COR COR COR COR COR COR COR COR 

–0.3 COR COR COR COR COR COR COR COR 

–0.2 COR COR COR COR COR COR COR COR 

–0.1 COR COR COR COR COR COR COR COR 

0 COR COR COR COR COR COR COR COR 

0.1 COR COR COR COR COR COR COR COR 

0.2 COR COR COR COR COR COR COR COR 

0.3 COR COR COR COR COR COR COR COR 

0.4 COR COR COR COR COR COR COR COR 

0.5 COR COR COR COR COR COR COR COR 

0.6 COR COR COR COR COR COR COR COR 

0.7 COR COR COR COR COR COR COR COR 

0.8 COR COR COR COR COR COR COR COR 

0.9 COR COR COR COR COR COR COR COR 

0.99 COR COR COR COR COR COR COR COR 



K. AYINDE  ET  AL. 

Copyright © 2012 SciRes.                                                                                  OJS 

545

 
generally best for prediction. At low levels of autocorre- 
lation, the OLS estimator is either best or competes con- 
sistently with the best estimator while the PC2 estimator 
is either best or competes also with the best when multi- 
collinearity level is high. 
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