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ABSTRACT

In this paper, the complete convergence and weak law of large numbers are established for p -mixing sequences of

random variables. Our results extend and improve the Baum and Katz complete convergence theorem and the classical
weak law of large numbers, etc. from independent sequences of random variables to p -mixing sequences of random

variables without necessarily adding any extra conditions.
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1. Introduction

Let (©,F,P) be a probability space. The random
variables we deal with are all defined on (Q,F,P). Let
{X,;n=>1} be a sequence of random variables. For each
nonempty set S N, write 5 =o(X;;ieS). Given
o -algebras B,R in F,let

p(B.R)=sup{corr (X,Y)[; X e L, (B).Y e L,(R)},

EXY — EXEY

JVarXvarY '

where corr(X,Y)= Define the p -mix-

ing coefficients by
p(n)=supp(£. 5 ), R

where (for a given positive integer n) this sup is taken
over all pairs of nonempty finite subsets S, T of N
such that dist(S,T)>n

Obviously 0<p(n+1)<p(n)<1L,n>0, and
p(0)=1 except in the trivial case where all of the ran-
dom variables X, are degenerate.

Definition 1.1. A sequence of random variables
{X,;n>1} is said to be a p -mixing sequence of ran-
dom variables if there exists k e N such that p(k)<I.

Without loss of generality we may assume that
{X,;n>1} is such that 5(1)<1 (see [1]). Here we
give two examples of the practical application of p -
mixing.

Example 1.1. According to the proof of Theorem 2 in
[2] and Remark 3 in [1], if {X;;i>1} is a strictly sta-
tionary Gaussian sequence which has a bounded positive
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spectral density f (t), then the sequence

{f(X;);i=1} has the property that p( )<1. There-
fore, instantaneous functions {f ( >1} of such a
.

sequence provides a class of examples for
quences.

Example 1.2. If {X ;n>1} has a bounded positive
spectral density f(t),i.e, O<m<f(t)<M for

every t, then p5(1)<1-m/M <1. Thus, {X ;n>1} is
a p -mixing sequence.

£ -mixing is similar to p -mixing, but both are quite
different. p(k) is defined by (1.1) with index sets re-
stricted to subsets S of [Ln] and subsets T of
[n+k,oo), n,k e N. On the other hand, p -mixing se-
quence assume condition p(k)— 0, but p -mixing
sequence assume condition that there exists k € N such
that p(k)<1, from this point of view, A -mixing is
weaker than  p -mixing.

A number of writers have studied p -mixing se-
quences of random variables and a series of useful results
have been established. We refer to [2] for the central
limit theorem [1,3], for moment inequalities and the
strong law of large numbers [4-9], for almost sure con-
vergence, and [10] for maximal inequalities and the in-
variance principle. When these are compared with the
corresponding results for sequences of independent ran-
dom variables, there still remains much to be desired.

The main purpose of this paper is to study the com-
plete convergence and weak law of large numbers of par-
tial sums of p -mixing sequences of random variables
and try to obtain some new results. We establish the

-mixing se-
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complete convergence theorems and the weak law of
large numbers. Our results in this paper extend and im-
prove the corresponding results of Feller [11] and Baum
and Katz [12].

Lemma 1.1. ([10], Theorem 2.1) Suppose K is a posi-
tive integer, 0<r <1, and q>2. Then there exists a
positive constant D =D(K,r,q) such that the follow-
ing statement holds:

If {X;;i>1} isa sequence of random variables such
that p(K)<r and EX;=0 and E|X|]|' <o for all
i>1,then forevery n>1,

E(max|s|*) < D[%E|Xi|q +(§Exqu/2}

1<i<n

where ;=)' X, .
j=1
Lemma 12. Let {X,;n>1} be a p -mixing se-
quence of random variables. Then for any x>0, there
exists a positive constant ¢ such that forall n>1,

xk|>x))zép(|xk|>x)

SCP(max|Xk|>x).
1<k<n

(1— P(max

1<k<n

Proof. Let A =(|X,|>x) and
a, =1- P(kLnJ Akal—P(m(ax|Xk| > x).Without loss of
Z1 <k<n

generality, assume that «,> 0. By the Cauchy-Schwarz
inequality and Lemma 1.2,
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Thus

(1—P(max|xk| > x))zkzn_;P(|Xk| >X)

1<k<n

seP(max

1<k<n

Xk|>x).

2. Complete Convergence

In the following, let a(x)~b(x) denote

a(x)/b(x)—>1,x—>o, and a, <«b, (a,>b) de-
note that there exists a constant ¢>0 such that
a, <cb, (a,>ch,) for sufficiently large n, logx mean

In(max (x,e)), and Sn:éxi .

Definition 2.1. A measurable function 1(x)>0(x>0)
is said to be a slowly varying function at oo if for any

|
e>0, lim () 1.
X—>0 I(X)
Lemma 2.1 ([13], Lemma 1). Let I(x) be a slowly
varying function at o . Then

O
L AT

i) limx’I(x)=o, limx°l(x)=0, forany §>0.

iii) For any r>0 and 7 >0, there exist positive
constants ¢, and c, (depending only on r,7, and the
function 1(-)) such that for any positive number k,

¢ 241(2n) < Zk:2"l(2177) <c,2"1(27).
j=1

iv) For any r<0 and 7 >0, there exist positive
constants d, and d, (dependingonlyon r,7,and the
function 1(-)) such that for any positive number k,

6,21(2 ) < 3271 (21n) < d,271(27).
j=x

Theorem 2.1. Let {X ;n>1} be a p -mixing se-
quence of identically distributed random variables. Sup-
pose that I(x)>0 is a slowly varying function at oo,
and also assume that for each a >0, the function I(x)
is bounded on the interval (0,a). Suppose 0< p<2
and ap>1; and if o<1 then suppose also that
EX,=0. Then

E (X 1{|%f)) <0 2.1)

and
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in“p‘zl(n)P(max
n=1

1<j<n

Sj|>gn )<oo, 2.2)

Ve>0

are equivalent.

For ap=1 we also have the following theorem un-
der adding the condition that I(x) is a monotone non-
decreasing function.

Theorem 2.2. Let {X,;n>1} be a p -mixing se-
quence of identically distributed random variables. Let
I(x)>0 is a slowly varying function at « and mono-
tone non-decreasing function. Suppose « >1/2; and if
a <1 then suppose also that EX, =0. Then

(1%, 1|x[ )] <=0 233)

and

ni:;n’ll(n) (max

1<j<n

sj|>gn“)<oo, Ves0 (2.4)

are equivalent.

Taking I(x)=1 and I(x)=logx respectively in
Theorems 2.1 and 2.2 we can immediately obtain the
following corollaries.

Corollary 2.1. Let {X,;n>1} be a p -mixing se-
quence of identically distributed random variables. Sup-
pose O0<p<2 and ap>1; and if o<1 then sup-
pose also that EX, =0. Then

E|X,|" <o
and

Zn"’p 2P(max

1<j<n

Sj|>5n")<oo,

Ve>0
are equivalent.

Corollary 2.2. Let {X,;n>1} be a p -mixing se-
quence of identically distributed random variables. Sup-
pose 0<p<2 and ap>1; and if <1 then sup-
pose also that EX, =0. Then

E(|X,|" log| X, ) <0
and

Zn"p “log nP(max

1<j<n

Sj|>&‘na)<oo,
V5>O

are equivalent.

Remark 2.1. When {X ;n>1} iid., Corollary 2.5
becomes the Baum and Katz [12] complete convergence
theorem. So Theorems 2.1 and 2.2 extend and improve
the Baum and Katz complete convergence theorem from
the i.i.d. case to p -mixing sequences.
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Remark 2.2. Letting 1(x) take various forms in
Theorems 2.1 and 2.2, we can get a variety of pairs of
equivalent statements, one involving a moment condition
and the other involving a complete convergence condi-
tion.

Proof of Theorem 2.1. (21)=(2.2). Let
—vy(m _
Yi _Yi - Xi|(|xi|Sna),
Y, =Y = Xil(‘x_‘<na),i =1,2,---,n . Firstly, we prove that
n~“ max EY ‘ -0, n > w. (2.5)

1<j<n
By Lemma 2.1 and (2.1), it is easy to show that
E[X,|" <o, for any &> 0. (2.6)
i) For «¢<1, we have p>1/a>1, and EX, =0.
p—l] in (2.6), by

Let 0<o5< min(ap_l,
o
E[X,|"” <wl-ap+as <0,

n % max

1<j<n

Z EY,

EXI

<n‘“Z|EY

i=1

l a
(o)
IXll"‘l‘

a(p=1-6) (| xqf>n")

1 aE|X |
< nl“’p+"‘5E|X1|p_5 —0.

ii) For @>1p>1, let 0<5<%=1 in (2.6), then
[04

E|[X,[ <o and 1-a+as <0. Hence
1-a
N max > ZEY <n E|X1|I‘X‘§na)

< E X[ 50

iii)For a>1,p<1,
an%ZEY <n Z|EY

=n"|EY,| < nl’“E|X1|I

(Ixa=n")

1 azE|X | (i-1)* <%q \<|

Noting p<Lap>1,let 0<5<%P~L in(26). By
(24

l1-ap+as<0 and E|X,|"" <o, we get
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~ (-0 <xqf=ic)
= é E |X1| (-0 <fxyf<i® <

By i“* T and the Kronecker lemma,
o
n §E|Xl|l((i—l)a<‘X1‘Si“) —)0, n — oo.

Hence (2.5) holds. So to prove (2.2) it suffices to
prove that

Znap 2l (n) (ILnJl(|X |>n )j 2.7)
and Ve>0,
in"p‘zl(n) (ﬂ@s ZJ:(Y EY), >gn“]<oo. (2.8)

By Lemmas 2.1 (i), (iii), (2.1), and for each a >0, the
function 1(x) is bounded on the interval (0,a),

St (m)p{ (x> n))

M8

<3 (n)P (X, > n*)

>
1}
iR

8

_Z ap lI

i=02i <p<2i*t

(|X1|>n )

< Jm121'<“"1>21|(21)P(|x1| >2)

:DO apj i S ak a(k+1)
;2 1(2) 3 P(2% <|xy| < 2Y)

k=

=ii2“”l(2j)P(2“k <|x|<27)

k=1 j=1

< k22“”“ (24)P (2 <[ x| < 272)

< E(|X1|p (|x1|1/“‘))

i.e., (2.7) holds.

By the Markov inequality, Lemma 1.2, Lemmas 2.1 (i),

(iv), (2.1), and for each a>0, the function I(x) is
bounded on the interval (0,a),

Copyright © 2012 SciRes.

DY, —EY,| = en” J
<<§nap+2a| (n)é E(Y, -EY,)’

n“P 2 (n) EX

2

gn”’zl(n) (max

1<j<n

IA

Me 2 £

I
AN

(Xafen®)

n“P 2 (n)EX/I

21 <n<2l (IXql<n®)

8

< 212N EX ]I

(X4l<2%)

I
AN

2a(p- 2)J|(21)z EXl |

(@ * B <pxgf<2)
S 9a(p-2)i| (21)EX 2

2P DI(21)EX 2|
=k

] (22D o xg|<2%)

2 a(p —Zk (Zk)E|X1|p 2a(2—p)k|

=1
<E (X[ 1([%,)) <=

Hence, (2.8) holds.
Now we prove that (2.2) = (2.1). Obviously (2.2)
implies

N
< iy

A

(2“("’1) xy|<2% )

x

< ap-2
20" (n)P (@%'XPE”) 0 (29)

Ve >0.
Noting ap-2>-1, by Lemma 2.1 (ii), we have

> P( max | X | > 52““”*1))

ma \1=js2”
<<Z > —P(max Xj|>gn")
1<j<n
m=0 M <y oM+l n J
_Z P(max X.|25n“)
n gl !
sZn“p‘zl(n) ( ax|X. |>gn )
=1 1<j<n

Thus,

max P(max
2™l 1<j<n

X;|> gza““*”j —0.

xj|2522an“)

gP(max

1<j<2m

Therefore, for sufficiently large n,

gliz
1<j<n

which, in conjunction with Lemma 1.2, gives

ax| X |>22"gn ) 1,
2

3 P(|X,|= &2 n") < 4cP(max
k=1

1<j<n

xj|222“gn“).
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Putting this one into (2.9), we get furthermore

Znap 1|
Ve >0.
Thus, by Lemmas 2.1 (i), (iii),

oo>Zl’]0’p 1|
0

>3 > n*M(n

j=12i<n<2i®t

21P1(20)P(|X,] 2 5272000 2 5,20 )

X,|> 2% en®
)P(1i| )<

)P(|X,|= 2% &n”)

X,|> 2% en®
JP(1%] )

V
.Mg

1]
5N

2791 (2! )i P(g0 27 <|X,| < 502‘*(“1))

k=

Zkzzaml(zi)P(gOz“k <|X,| < 2

j=1

™

Il
N

1l
ot

2M1(2°) P (602" <|Xy| < £,2°0Y)

>>E(|X1|p (I ))

This completes the proof of Theorem 2.1.
Proof of Theorem 2.2. (2.3) = (2.4). Let

Y, =Y =X

VY
'L

(i fen)” i=12,---,n, the method of proof
of Theorem 2.2 is similar to method used to prove the
above Theorem 2.1. Only the method of prove of (2.5) is
not the same. In what follows, we prove that (2.5) holds.
Since I(x) >0 is a monotone non-decreasing function,
we have
1o 1o
|X1| =|X1| '(\xl\g)

Ya Ya 1
+|X1| |(|X1| )I(|X |1/a) |(|X1\>1)

1

a o) 1
SR )W'
Hence, by (2.3),

E[X,[" <0 (2.10)

i)For a<1,by EX;, =0 and(2.10),

ZEY‘Snl‘“

1

L (xql>n%)

Va-1
< nl—a E | X | I X | |
- (1X1/>n“)

:E|X1|1"’I —0,

(1 Xal>n*)

1<J<n

i) For a>1,i.e., Ya<1,
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N~ max

max Z EY;

< nl‘“E|Xl| (ot

<n®)
1_
ZE|X | | -1) <\X\<| _>0'
from the Kronecker lemma and

SHE|X, I

i=1

<Y E[X [

<n*“|EY,]|

((i-l)“ <\x1\si“)

(-0 <xaf<i)
= E[X,["" <o

Hence (2.5) holds. The rest of the proof is similar to
the corresponding part of the proof of Theorem 2.1, so
we omit it.

3. Weak Law of Large Numbers

Theorem 3.1. Suppose p>1/2. Let {X ;n>1} be a
p -mixing sequence of identically distributed random
variables satisfying

limnP(|X,|>n")=0. (3.1)

n—oo

Then

Sp 1 P
' n pEX | — 0. 3.2
e Hpgens) 32

Remark 3.1. When p=1 and {X n>1} iid,
then Theorem 3.1 is the weak law of large numbers
(WLLN) due to Feller [11]. So, Theorem 3.1 extends the
sufficient part of the Feller’s WLLN from the i.i.d. case
toa p -mixing setting.

Proof of Theorem 3.1. Let X! =X;l

J (‘Xj‘snp)

n
=ZXJY . Then, foreach n>2,

=1
{Xj:1<j<n} are p -mixing identically distributed
random variables and for every & >0,

S, S,

n n

— >5j£ P[iiij
p np np

1<j<n and §/

< y P(|X|>nP)|=

5 o)

via (3.1). So that (3.1) entails
S S e g
n® P

nP(|X,|>n?) -0,
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Thus, to prove (3.2) it suffices to verify that
Sr: 1-p P
O n Exll(\xl\snp) —>0. (3.3

By (3.1) and the Toeplitz lemma,

YK kP(|X,[> k)
k=1

n
k2p—2

—0, n—> 0.

Thus, together with > k**? «<n** for p>1/2,

k=1
we have

n_2p+1zn:k29—lp(|x1| > kp)—> 0, N> o,
k=1

which, in conjunction with Lemma 1.1, yields for every
>0,

P(|S; —ES;| > en®) <n?PE(S; — ES;)’
2
:n-ZPE(Z(x;—Ex;)]
j=1
<Y E(X]-EX]) <n X
=1

_ a-2p+l 2
= IEX

n
—n 2Py EXZ
k=1

((k-2)P <fxaf=k?)
S (P k-1 )P )
- nzp*l(ni(k+l)2p —KPP(|,[ > k)

k=1

+P(|X,|> 0)—n2pP(|X1| > np)j

<<an+1£§ KPP (X, | > kp)+1j —0.
k=1

Thus
ﬂ:i_nlﬂﬂgxﬂ —P 0.
nP nP (1Xal<nP)
i.e. (3.3) holds.
4. Examples

In this section, we give two examples to show our Theo-
rems.

Example 4.1. Let {X ;;n>1} be a p -mixing se-
quence of identically distributed random variables. Sup-
pose 0<p<2 and ap=>1; and if o<1 then sup-
pose also that EX, = 0. Assume that I(x)=log" x, r>0

Copyright © 2012 SciRes.

and X, has adistribution with

P(|X,|>x)~ . B>+l

XY log” x

Is easy to verify that 1(x) satisfies the conditions of
Theorems 2.1 and 2.2, and

E(x1(|x,[)) <.

Thus, by Theorems 2.1 and 2.2,

0
> n*"?log" nP(max
n=1

1<j<n

Sj|>gn“)<oo, Ve>0.

Example 4.2. Suppose p>1/2.Let {X,;n>1} bea
p -mixing sequence of identically distributed random
variables. Assume that X, has a distribution with

1
P(|X,|> x):o[xj/—pj,
then obviously,
limnP(|X,|>n")=0.

n—oo

Thus, by Theorem 3.1,

Sn 1-p P
S5y ey 0.
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