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ABSTRACT 

This paper treats the problem of designing an optimal size for a lookup table used for sensor linearization. In small em- 
bedded systems the lookup table must be reduced to a minimum in order to reduce the memory footprint and intermedi- 
ate table values are estimated by linear interpolation. Since interpolation introduces an estimation uncertainty that in- 
creases with the sparseness of the lookup table there is a trade-off between lookup table size and estimation precision. 
This work will present a theory for finding the minimum allowed size of a lookup table that does not affect the overall 
precision, i.e. the overall precision is determined by the lookup table entries’ precision, not by the interpolation error. 
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1. Introduction 

Look-up tables (LUTs) are used in a wide variety of 
computer and embedded applications; NASA use it to 
improve the pointing precision of antennas [1], CERN 
uses LUTs to calibrate the beam energy acquisition sys- 
tem of the Large Hadron Collider (LHC) [2] and it is one 
of the most common methods for digital synthesis of ar- 
bitrary waveforms [3]. It is used extensively in numeric 
calculations, for example in division algorithms [4], 
square root algorithms [5] and even for fast evaluation of 
general functions [6,7]. In Data Acquisition Systems (DAQ) 
it is used to correct non-linearities and offset errors in 
Analog-to-Digital Converters (ADCs) [8-10] or to design 
non-uniform ADCs [11]. This work will focus mainly on 
LUT applications in Embedded Measurement Systems 
(EMS); linearizing sensor signal outputs is one of the 
major applications of LUTs [12-18]. 

A sensor converts the physical unit (the measurand) 
into some electrical unit (preferably volt) and the em- 
bedded measurement system converts the sensor output 
into a digital value (typically an integer) [19]. The main 
errors in most measurement systems are related to the 
transducer’s offset, gain and non-linearities [20], and for 
that reason the process of sensor linearization is a crucial 
step in the design of an embedded measurement system 
[21]. The linearization process must compensate for the 
non-linear relationship between the sensor’s input and 
the output signals [21], see Figure 1. 

If the relationship between the sensor’s input and its 
(digitalized) output y, is given by the non-linear function  

f, i.e. y = f(x), then the relationship between the lineari- 
zing block’s input y and its output z should be 1f   [22], 
i.e.  1z f y , so that 

    1 1z f y f f x x              (1) 

Many DAQs and EMSs use floating-point or fixed- 
point controllers that can handle real-numbers without any 
significant overhead penalty [23]. However, in smaller, 
8-bit integer systems, the main concern is not necessarily 
to reproduce the input signal exactly; they are dedicated 
to linearizing the signal and any parameter estimations 
are performed off-line in the host computer. In these 
cases, expression (1) changes to 

z k x                    (2) 

where k is in general a real constant transferring the in- 
teger x into to a real number estimate of the measurand. 
Consequently, these systems work with integers only and 
apart from generating faster computations, they also 
typically reduce the memory footprint of the LUT since 
integers are stored in bytes or words (8 or 16 bits) while 
real-numbers are stored as “floats” or “doubles” (24 or 
32 bits). Even if we would use a larger, 32-bit system 
with a real-number computational engine, and perhaps 
also lots of non-volatile memory for LUT storage, it is 
still important to keep the LUT size to a minimum since 
even the most advanced 32-bit systems have a limited 
size of cache memory; LUT sizes should be small 
enough to fit into level 1 cache since a memory fetch 
from level 1 cache render a maximum penalty of two 
lock cycles while a fetch from level 2 cache may need  c 
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Figure 1. The linearization process. 
 
as much as 15 clock cycles [24]. 

Several other linearization methods have been sug- 
gested in literature. The most common linearization me- 
thods can be classified as follows [21,25,26]: 1) Analog 
hardware-based; 2) Software-based; 3) Analog hard- 
ware-software mixed approach. 

Analog hardware-only solutions are frequently used 
[27,28] but the disadvantage is that the extra analog com- 
ponents necessary increase both cost and power con- 
sumption and also, due to inherent variations in the ma- 
nufacturing process parameters, each sensor is likely to 
need individual trimming and tailored compensation [29, 
30] and that may be complicated (and expensive) in ana- 
log hardware-only solutions. Some sensors are also sen- 
sitive to secondary parameters (typically temperature) 
[31-34] and this may be very hard to compensate for in 
hardware-only solutions. (The dependence on secondary 
parameters is sometimes referred to as cross-sensitivity 
[22]). However, for non-digital measurement systems 
these solutions are important and could also be consi- 
dered for digital measurement systems with limited me- 
mory and/or limited computing power [27,28,34,35]. This 
work is concerned with software-based solutions only, or 
rather, firmware-based solutions, since it focuses on lin- 
earizing by using embedded controllers. 

The rest of this work is organized as follows; Section 2 
presents some basic theory concerning linearzing with 
LUTs and interpolation. Section 3 presents the hypothe- 
sis of which this work is based upon and Section 4 de- 
scribes the methods used to verify the hypothesis. Sec- 
tion 5 presents some results and they are discussed in 
Section 6. The work is summarized in Section 7 with 
some conclusions. 

2. Theory 

2.1. Linearization 

The process of designing the linearization block in Fig- 
ure 1 is typically a multi-step process. First of all the 
non-linear function f, relating the sensor input and output, 

Typically, this is done by a calibration process where a 

is in general not known and needs to be determined.  

have found f, we can solve for the inverse 
fu

number of x,y-pairs are registered experimentally and f is 
determined by off-line curve fitting (using the MATLAB 
commands polyfit() or nlinfit()). This is illustrated in 
Figure 2.  

Once we 
nction 1f   that we need to implement into the lin- 

earizing b  in Figure 1. There are basically two dif- 
ferent ways to implement 1

lock
f  ; if your embedded mea- 

surement system has access 32-bit floating-point pro- 
cessing (with hardware multiplication), then 

 to 
 1z f y  

can be calculated in real-time. In small emb  
systems with limited computational power, 1

edded 8-bit
f   is typi- 

cally implemented as a LUT in flash mem . In this 
case we assume that y is the n-bit integer produced by the 
ADC and this integer is simply used as a pointer to the 
memory location where  1

ory

f y  is stored, see Figure 3. 
(Notice that Figure 3 ind hat the resolution of the 
z-output (= m) in general differs from the resolution of 
the y-input (= n). 

The disadvanta

icates t

 1f y  
omplex

ge of the first method, when 
is calculated in real-time, is that it requires a c  
(and expensive) floating-point or fixed-point processor. 
The advantage is that it does not require much program 
memory; only the function parameters for the 1f   func- 
tion needs to be stored (= p + 1 parameters for a nomial 
of order p). The advantage of the LUT method is that it 
can be implemented even in the simplest controller but 
the disadvantage is that it occupies a lot of program me- 
mory. So, the choice between the two methods is a trade- 
off between the need for signal processing power and 
memory space occupancy. Since memory space is typi- 
cally less expensive than a floating-point processing en- 
gine, a LUT is the dominating linearity method. However, 
a combination of the use of a (sparse) LUT and some 
non-complex integer signal processing may reduce the 
demand for LUT space and still meet the real-time dead- 
lines. The “non-complex integer signal processing” is 
typically limited to linear interpolation in order to re- 
trieve the “missing” LUT elements. This work is con- 
cerned with the details of this process and the question  

poly
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Figure 2. Finding f by curve fitting. 

 

 

Figure 3. Linearizing by LUT. 
 
f the necessary precision of the LUT elements and/or the 

2.2 Interpolation 

will assume that we need to lin- 

te LUT 
w

T  

may be implemented and then we can use interpolation to 
re

ne, the method is referred 
to

o
maximal sparseness of the LUT entries. 

In the following we 
earize a sensor signal using a small embedded system, i.e. 
the non-linear sensor signal is digitalized by an n-bit 
ADC and we are looking for a firmware algorithm that 
linearizes the signal according to expression (2). The fact 
that we use a “small” (and inexpensive) system, indicates 
that memory is scarce and that the processing power is 
limited; all signal processing will be on integers. 

If the resolution of the ADC is n bits, a comple
ould occupy 2n memory locations. For example, a 12-bit 

ADC would need 4 kbyte of program memory if we set- 
tle for “byte” resolution and twice as much if we want 
“word” resolution. This is by no means an insignificant 
amount of program memory for a general purpose micro- 
controller. For example, the PIC18F458 RISC controller 
from Microchip has a flash memory of 32 kbyte [36]. 

In order to save some program memory, a sparser LU

trieve intermediate values [20]. Considering our assumed 
limited computation capability, linear interpolation is the 
obvious choice, see Figure 4. 

Since we approximate each interval between LUT en- 
tries with a different straight li

 as Piece-wise Linear Interpolation (PwLI) [37] and 
the combination of a sparse LUT and PwLI is referred to 
as polygon interpolation [32,33]. 

Assume that y is the integer output from an n-bit ADC 
and that we use 1f   to map each y  to a (linearized) z ; 
th

i i

is would require 2n LUT entries. Since this would oc- 
cupy too much m ory space we need to decimate the 
LUT table and the decimation factor should be an even 
multiple of 2 (in order to simplify integer division later). 
If the decimation factor is 2

em

pn
 (np < n) the number of 

LUT entries is reduced to 2 pn n
, and that leaves us an np 

–bit number that we can use f  interpolation. 
By decimating the LUT save precious flash/cache 

memory. However, the downside is that we a

or
 we 

lso reduce 
the precision of the LUT estimation. Consider Figure 5. 
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Figure 4. Piece-wise linear interpolation. 
 

f -1

yi,zi 

yi+1,zi+1 

z 

y

f -1 

ym 

zm 

f -1(ym) 

 

Figure 5. Linear interpolation. 
 

Implementi approximate ng linear interpolation, we 
 1

mf y  with z : m

   1
m

z z1

1

i i
m i m i

i i

f y 
 z z y y

y y




   


     (3) 

ym represents the measured (digital) value, 
the point estimator of our measurement. From Figure 5 
w

and zm is 

e can see that the error of this estimation (the remain- 
der term) is 

   1             (4) m mR y f y zm

In general, the remainder term of 
proximation is given by [38] 

a first order ap- 

 
 

   12!m m i m iR y y y y y          (5) 

3. Hypothesis 

ly be two contributions to the uncer- 
ation of x: the interpolation error 

1f  

There will basical
tainty of the final estim
represented by expression (5) and the precision te of the 
LUT entries themselves (truncation or rounding errors). 
The total uncertainty of the estimation will be propor- 
tional to the square root of the sum of the squares:  

 2 2Uncertainty m eR y t           (6) 

We will assume that we work with inte
that LUT entries are stored either as 8-bit bytes or as 
16

gers only and 

-bit words. That means that te is 

8 32 3.906 10                (7) 

16 52 1.52 10                 (8) 

for the 8- and 16-bit cases, respectively. 
Our goal here is to reduce the LU

rall accuracy of 
th

T size to a minimum 
(by decimation) without reducing the ove

e estimation. According to expression (6) that means 
that we have to monitor the size of the remainder term 
and increase the decimation factor for as long as  

 m eR y t  [39]. 

Hence, we need to know the maximal value of the re- 
mainder term nsider expressions (4) and (5). 
A

 in (5). Co
ccording to expression (4) the remainder term is the 

difference between the linear interpolation zm and “true” 
function value  1

mf y . If we assume 1f   to be a 
smooth continuous function, the maximum error must 
occur where the f ’s curviness is m mum and 
this agrees with expression (5); the second derivative of 

1

unction axi

f   represents the curviness. Hence, we need to find the 
maximal value of    1m i m iy y y y     in the segment 
of aximal curviness. 

First of all we ap  derivative: 
 m

proximate the second

  
 

2 1 2 1d f1
2 2d

f 
 (9) 

We find the maximum of the second p
ting the first derivative equal to zero: 

f y
y y

 


          

art in (5) by set- 

  1

d

d m i m i
m

y y y y
y  

  
 

 

2
1 1

1

1

d

d

2 0

1

2

m m i i i i
m

m i i

m i i

y y y y y y
y

y y y

y y y

 





   

   

  

    (10) 

Hence, the maximum value of    1m i m iy y y y     
is 

   

   

1 1

1 1

2 2

1

1

1

2 2 2 2

1 1

2 2

1 1

4 4

i i i i i i

i i i i

i i

y y y y y y

y y y y

y y y

  

 



    
   

   

   

  (11) 

Inserting (11) and (9) into (5) gives us 

1 1 1    

  2 1

max 8mR y f     
1

         (12) 

Expression (12) should be calculated
the function 

 in the segment of 
1f   

d also lik
that has the greatest curviness. 

We woul e to be able to calculate the remain-  
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de
 1. 

       (13) 

Hence, we can estimate the maximum of t
term from the LUT entries by the following expression: 

r term from data. Suppose we have implemented the 
LUT in Table

We can see that 

  
1

1 1

1 12

i i i

i i i i

i i i

z z z z

z z z



 

 

   

  

 

2 1 1 1f f f      

he remainder 

  1 1 maxmax

1
2

8m i i iR y z z z          (14) 

4. Methods 

We will illustrate the ideas suggested above with a case 
 linearize a thermistor whose resistance 
temperature as follows [40]: 

study. We will
depends on the 

25

1 1
exp

298TR R
T

      

where the temperature T is in Kelvin [K]. In
a positive temperature coefficient and to
signal, we use the simple signal conditioning circuit in 

  
        (15) 

 order to get 
 get a voltage 

Figure 6. 
This will produce a voltage U(T) equal to 

  1
U T

1 1
1 exp      298

refU

T

 

  

     (16) 

and the ADC will produce an integer N according to 

 

 

2

1
2

1 1
1 exp

298

n

refU

n

U T
N

T

f T



 

 
       



     (17) 

We get the inverse, linearizing function by solving for 
T: 

   11
K

n
T f N 

 
   (18) 

1 2 1
ln 1

298N
   

 

In order to get some numbers to work with, 
assign  a typical value of 3000 K [40]. We will also 
assume that we use a 16-bit ADC. Hence, expression (18) 
is 

we will 

 11

1 65536 1
T f N 

 
   (19) 

ln 1
3000 298N

   
 

Table 1. Implemented LUT (y,z). 

y   z = f –
1
(y) f –

1
 2

f –
1

 

 

 

RT 

R25 

Uref Uref 

U(t) = x n-bit 
ADC 

N = y

 

Figure 6. Signal conditioning for non-linear thermistor. 
 

Ideally, we should store one LUT value for each value
in the domain of N (0.65535), but we want to save me

- 
r

 
- 

m
te

ory space and decimate this table; we will estimate in
mediate values by linear interpolation. According to 

(5), the interpolation error is proportional to the second 
derivative of expression (19). The second derivative cor- 
responds to the “curviness” of the function and since we 
are looking for the size of the maximum interpolation 
error, we will focus on the segments of 1f   that has the 
greatest curviness. Also, we can estimate the second de- 
rivative from data by using expression (13). In Figure 7 
we have plotted both expression (19) and the second de- 
rivative from expression (13). As expected, the maximum 
of the second derivative occurs at the points of maximum 
curviness. 

In Figure 7 we have only plotted the temperature for 
N ranging from 13,602 to 57,889; this corresponds to an 
assumed temperature range of –10˚C to +100˚C. 

5.

rviness, 
and hence the maximal interpolation errors, occurs at the 

 Empiri/Results 

From Figure 7 we can see that the maximal cu

upper end of the 1f   function. Hence, we only need to 
calculate expression (12) for the last N values in order to 
find the maximal interpolation error for any decimation 
factor. 

Table 2 lists the values of the maximal remainder term 
for different degrees of decimation. The remainder term  
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Figure 7. The function f–1 and its second derivative. 
 
Table 2. Maximal remainder term vs

r. 
 LUT decimation fac- 

to

Decimation factor Maximal remainder 

1 1.2896 × 10–7 

2 5.1553 × 10  

4 2.0597 × 10–6

8 8.2191 × 10–6 

16 3.2720 × 10–5 

32 1.2965 × 10–4

64 5.0810 × 10–4 

128 2.0021 × 10–3 

256 7.3008 × 10–3

–7

 

 

 

 
was calculat om expressions (12)

ble 2 should be compared to the byte 
ns in expressions (7) and (8). 

ed fr  and (13).  

6. Discussion 

The values in Ta
and word precisio

If we use the restraint that  m eR y t , we can see 
from Table 2 and expression (7) that if we store LUT 
en  use a 16-bit 

interpolation. If we store the LUT values as 16-bit words,  

 2 and expression (8) that a deci- 
mation factor of 8 will not affect the overall precision. 

g 
an

rs in every digital system that 
rong or inaccurate LUT entries may 
nctions. As a matter of fact, it was a 

linear inter- 
po

LUT size must be reduced to a minimum in order to 

we can see from Table

tries in 8-bit byte format and ADC, we can 
decimate the LUT by a factor of 64 without reducing the 
overall precision; the precision of the measurement esti- 
mate is still determined by the precision of the stored 
LUT entries, not by the errors introduced by the linear 

For the 8-bit case, we reduce the size of the LUT from 
65 kbyte to only 1 kbyte which is a significant (and ab- 
solutely necessary) reduction of the LUT memory foot- 
print in a small embedded system. Of the 16-bit integer 
produced by the ADC, we use 10 bits for LUT indexin

d 6 bits for (piece-wise) linear interpolation. This is 
illustrated in Figure 8. 

7. Conclusions 

LUTs are used in a vast variety of applications [1-18] 
and the precision of LUT entries and the size of the LUT 
are crucial design facto
relies on LUTs. W
cause serious malfu
LUT error that caused the infamous malfunction of In- 
tel’s Pentium processor in the mid 90’s [41]. 

This work has suggested a method for finding an op- 
timal LUT size when linearizing sensor outputs in small 
embedded systems. The idea is to use some of the (most 
significant) bits from the quantizer for LUT index ing 
and the rest of the (least significant) bits for 

lation. The allocation of bits for indexing and interpo- 
lation, respectively, depends on the precision of the stored 
LUT values. Since interpolation inherently introduces an 
error due to the curviness of the mapped function, it is 
important to keep the LUT size large enough to make the 
interpolation errors insignificant. On the other hand, the 
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10 bits 
Us

b15  b14  b13  b12  b11  b10  b8   b7   b6   b5  b4  b3  b2  b1   b0  

ed for LUT indexing 
6 bits 

Used for PwLI 

 b9 

16-bit ADC, y: 

 

Figure 8. LUT indexing and piece-wise linear interpolation. 
 
minimize the LUT memory footprint, which is absolutely 
crucial in small embedded systems. This work has pre- 
sented a theory for finding th
emonstrated its use by a case study. 

the original sam
va

e optimal LUT size and 
d

The work is limited to the case were LUT entries are 
stored as integers since this is typically the case in small 
(8-bit) microcontrollers; the controller linearizes the sen- 
sor signal only, it does not estimate ple 

lue. We have argued that the interpolation error should 
be much less than the precision of the LUT entries. If the 
LUT entries are stored with m bits resolution we can es- 
timate their precision to be 2–m and if we use expressions 
(12) and (13) to estimate the interpolation error, we get 
the following general condition for determining the LUT 
size: 

1 1 max

1
2 2

8
m

i i iz z z 
           (20) 
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