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Abstract 

It is shown that electrons forming simple and multiple covalent bonds may have different contributions to the 
interatomic interactions due to the degeneracy of electron states. A simple relationship between the length of 
covalent bond, its order and atomic numbers of the interacting atoms is deduced. 
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1. Introduction 

In the semiempirical methods describing interatomic 
interactions, the contribution to the interaction energy of 
-bond is assumed to be larger than that of -bond [1,2]. 
The ratio of - to -electron weight factors equal to 1.41 
was empirically determined in [3,4] and checked many 
times for the adsorption of unsaturated hydrocarbons. 
We will show that this ratio can be evaluated from the 
characteristics of covalent bonds (and vice versa). 

It follows from the theoretical and empirical equations 
found by London, Heitler, Lennard-Jones, and others that 
the parameters of atoms symmetrically enter the expres- 
sion for interatomic bond energy [5]. A quasi-classical 
method for describing the self-consistent field of multi-
component electron gas was developed in [6]. This 
method enables us to express the interatomic interaction 
energy. In particular it is shown that this energy is asso-
ciated with the volume V of each atom through a sym-
metrical operation – volumes product 
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where 12r  is the internuclear distance; v  is a “volume” 

of one electron, or the elementary volume, which is equal 
to unity for a nondegenerate electron; V is the electronic 
volume of the atom equal to the sum of elementary vol-
umes of its electrons; the indices enumerate all electrons 
participating in bonding; and the figures at the summa-
tion symbol indicate summation over every electron of 
the corresponding atom. 

According to [6], the shielding radius, which is in-
versely proportional to the square root of the height of 

the potential barrier that the electron overcomes, can be 
used as a criterion of the participation of the electron in 
interatomic interactions. A sphere centered at the atomic 
nucleus with radius equal to the shielding radius of elec-
trons (the shielding sphere) bounds the electrons that 
participate in bonding. An electron contributes to the 
electronic volume of its atom only if the nucleus of the 
atom with which the interaction is considered is situated 
within the electron shielding sphere. 

It is very important to distinguish between the elec-
tronic volume, the key concept of the theory of general- 
ized charges developed in [6], and the corresponding 
number of electrons, though these characteristics often 
quantitatively coincide. It will be shown below that the 
elementary volume of a degenerate electron larger than 
that of a nondegenerate one, i.e. larger than unity.  

2. Theory 
 
Let us consider the sums in (1) in detail 
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where 1i jv v  . The summation is over all possible 

pairs of electrons. The coefficient ½ appears because 
there are no limitations on the permutation of indices.  

Let us apply (2) to pairs of - and -bond electrons. 
For a -bond, the orbital moment projection (m) of its 
electrons onto the internuclear axis has a single (zero) 
value. A pair of -electrons has therefore one state only 
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For -bond electrons, the orbital moment projections 
onto the same axis take equal values, either +1 or –1 
(depending on whether the right- or left-handed coordi-
nate system is used; here we use atomic units of mo-
ment). We therefore have four terms for -bond electrons 
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This gives 2v  . It follows that the n-fold state of 

degeneracy corresponds to the n-fold increase in the sum 
of pair electronic products, that enhances the elementary 

volume of the pair of bond electrons, ev n . It is ne- 

cessary to bear in mind that the electron balance condi-
tion imposes the following restriction: if a aV Z  , 

then 1ev   and, vice versa, if at least one ev  value is 

larger than 1, then a aV Z  . 

The role of the product of volumes in describing the 
interaction of atoms is clarified by the following identity: 
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The appropriately normalized electronic volume of an 
atom corresponds to the probability of that its electrons 
belong to the bond under consideration. In terms of 
probability, the expression in brackets is the excess value, 
which appears as a result of bond formation. 

On the other hand, the covalent bond energy is a func-
tion of the excess electron density in the internuclear 
space 
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where 1 2,Z Z  are the charges of nuclei in the elemen-

tary charge units; d  is the space volume element; l is 
the interatomic distance; and the bars denote the averag-
ing over the scale indicated in parentheses, which coin-
cides with one of the arguments of the functional relation. 
The first integral equals the probability for an atomic 
electron to occur between the planes passing through the 
nuclei normally to the interatomic axis at distance 12r  

from each other. The second integral gives the same 
probability at infinite interatomic distance. The integra-
tion in (4) is performed taking into account that the elec-
tronic wave function in the internuclear space depends 
on bond length. When atoms are infinitely separated, the 
excess electron density is zero, and exactly one-half of 

all the electrons occur in the internuclear space. 

We can therefore write   12 12E F r   12 12,f X r  

that gives 

   12 1 2r g V V                   (5) 

Comparing (3) and (4) by their sense and taking into 
account (5), we obtain 
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According to (6), the excess density in the internuclear 
space is proportional to the geometric mean of the prob-
abilities for atomic electrons to take part in the bond un-
der consideration. 

To simplify (6), let us make the substitution 
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where    12 exp ; 1,2a a ar i a     . We obtain: 
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Let us clear the combinatorial meaning of  : its 
square is the relative part of the cases when a pair of the 
particles belonging to two nonoverlapping sets of 1Z  

and 2Z  particles occurs among the set of 1 2V V  par-

ticles, where 1V  particles belong to the first set and 2V  

particles, to the second one. This interpretation suffers 
from the shortcoming that the electronic volume is a 
more complex concept that the number of electrons.  

The above-mentioned quantity  12a ar   is the 

characteristic of atom depending on bond length. In such 
a case the a  phase is a function of the scalar product 

of the wave vector of atomic electrons (ka) and the in-
ternuclear vector 
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The presence of even exponents in expansion (9) is 
inessential because of their zero contribution to the dif-
ference of phases in (8) when the atoms are identical. For 
the same reason, at least one of the odd constants Ai in (9) 
is nonzero. When the internuclear distance in its tending 
to zero falls beneath a certain value, the number of elec-
trons forming the bond becomes nonzero. Negative ex-
ponents are therefore absent in (9). The absolute term (i 
= 0) in (8) is annulled and therefore does not play any 
role. Thus, we can keep in (9) only the linear term, and 
set, without loss of generality, the constant А1 equal to 
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unity 

 'a a aa  k r ;   1 2 12 1 2   r k k      (10) 

Rewrite expression (8) taking into account (10): 

    12 1 2 12cos cos rr k    r k k ,    (11) 

where rk is the sum of projections of the wave vec-

tors of bond electrons on the bond axis. Finding this sum 
from (11), we get 

1
12 arccosrk r               (12) 

The remarkable feature of rk  is its independence 

of  -electrons of the bond, because the limit value of 
 -electron moment projection on the bond axis corre-
sponds to the zero projection of its wave vector in this 
direction 

1 2 , 0r r r rk k k k           (13) 

Combining (11) with (12) and (13), we find the gen-
eral expression for a covalent bond 
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where primed and unprimed values relate to different 
cases of the bond between the same atoms. Note that (14) 
is valid for both double and triple bonds. Similar to (8), 
we can write 
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where V   differs from the single bond property V  by 
the replacement of one or two electrons by -electrons of 
double or triple bond, correspondingly. Thus, the number 
of electrons forming a covalent bond is independent of 
its order and, due to the above-introduced normalization 
of electronic volume, is equal to the electronic volume of 
atom for the case of single bond ( aV ). Taking into ac-

count the value 2v   obtained above, we find 

  2 1 1a aV V n              (15) 

where 1, 2,3n   is the bond order. In particular, it fol-
lows from (14) that for homo-nuclear bonds 
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It is quite natural to assume that aV  can differ from 

aZ  by the number of closed shell electrons (for which 

the shielding radius is smaller than that for outer shell 
electrons), equal to two for the second-period atoms that 
yields 2a aV Z  . This expression in combination with 

(15) and (16) gives after simple transformations (see 

Appendix) 
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The last result valid for large atomic numbers is valu-
able due to its independence of the kind of atoms, dis-
playing only the dependence of the bond order.  

The calculation using (18) gives 12

12

0.890
r

r


  for 

double bond and 12

12

0.765
r

r


  for triple bond. Formula 

(18) is approximately valid for hetero-nuclear com-
pounds as well. 

The comparison of the theoretical result obtained with 
experimental data is given in the Table. 

For some possible compounds there is no information 
on bond length. This lack of knowledge can be elimi-
nated by theoretical forecast. For example, the triple 
bond of boron with carbon or nitrogen is possible in 
principle. Its length will be about 24% shorter than the 
corresponding single bond. 
 
3. Conclusions 
 
Thus, there is good compliance between experimental 
and theoretical values that confirms the necessity to dis-
tinguish in interatomic interactions the contributions of 
differently degenerated electrons. The contribution of 
 -electron to such an additive property of the interactive 

atom as its electronic volume is in 2  times larger than 
that of  -electron. This effect can be explained by dif-
ferent symmetries of the states with different degeneracy 
of - and -electrons. In present work, the simple ex-
pression (17, 18) for covalent bond length ratio which 
shows strong influence of bond orders and weak de-
pendence on atomic numbers is obtained. 

Table. Ratios of the bond lengths for compounds of the 
second-period elements: reference data [7,8] versus calcula-
tion results. 

Atoms bonded 
Bond length ratio:  
double to single 

Bond length ratio:  
triple to single 

C-C 0.865 0.778 
N-N 0.862 0.757 

O-O 
0.813(O2); 
0.861(O3) 

0.766(O2
+)[8] 

C-N 0.910 0.786 
C-O 0.852 0.791 
N-O 0.897 0.779(NO+)[8] 
Theory:  
formula (18) 0.890 0.765 
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5. Appendix 
 
Deduction of (17). 

Let us denote  
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It is necessary to transform the expression  
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Using the formula 2arccos arcsin 1t t   yields 
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Substitution of iis 2sin  leads to  
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The inverse substitutions of the expressions for 1 2,s s  
give formula (17).

 

 

 

 

 

 

 

 
 


