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ABSTRACT 

Data evaluation strategies for the novel coupled MCC-IMS sensory system are developed. Mayor attention to the plau- 
sibility of applied procedures and the feasibility of automation was paid. Three stages of extraction levels with increas- 
ing data reduction are presented for several fields of application. According to suitable extraction levels, real data were 
tested on various structures of artificial neural networks (ANN) with the result, that the computational levels must still 
be chosen by expertise, but subsequent processing and training can be fully automated. For the training of larger net- 
works a method of automated generation of secondary training data is presented which exceeds the quality of previous 
noise models by far. It is concluded that the combination of MCC-IMS as measuring instrument and ANNs as evalua- 
tion technique have high potential for industrial use in process monitoring. 
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1. Introduction 

Ion Mobility Spectrometry (IMS [1]) and Gas Chroma-
tography (GC [2]) have been well established measuring 
technologies for several decades. However their coupling 
into a combined measuring technology (GC-IMS) is rela-
tively new [3,4]. Though this method is very promising 
in terms of sensitivity and accuracy, all evaluation tools 
have to be developed from the very beginning. Several 
attempts have been made to find an analytical approach 
for the description of GC-IMS spectra in order to auto- 
mate the evaluation of these measurements, only little 
progress was gained [5,6]. Due to their 2-dimensional 
nature GC-IMS measurements contain great quantities of 
data, which, depending on the measurement setup, may 
contain up to or even data points. 610 710

2. Experimental Details 

2.1. Measuring Principle and Resulting 
Properties of the Measurements 

The GC-IMS is a system that measures 2 different pro- 
perties independent from each other [7-9]. While the GC 
column separates analytes depending on their ability to 
adsorb and desorb on the inner column surface (see Fig-

ure 1), the IMS separates charged particles under the 
influence of an electrical field depending on their drift 
behavior in a carrier gas atmosphere. This can be seen in 
Figure 2. Beginning at the moment of the analyte injec-
tion into the GC column the output of the GC column is 
permanently analyzed by the IMS. At a given rate per 
second the IMS is recording 1-dimensional spectra until 
all fractions of the analyte have been eluted from the 
column. The taken 1-dimensional spectra are combined 
into one 2-dimensional spectrum with certain character-
istics as it can be seen in Figure 3. 

The carrier gas is always present in the measurement 
process and therefore is seen in all spectra. The accord-
ing peak in the spectrum is called RIP (Reactant Ion 
Peak). The RIP is a constant feature of IMS spectra. The 
ions which are analyzed by the IMS are ionized by a ra-
diation source in the reaction region of the IMS and then 
pulled by an electrical field toward the detector. The time 
from the opening of the gate, when the electric field 
starts to pull the ions till they hit the detector and cause 
an electric current is called the drift time of this particu-
lar ion sort. The ionized carrier gas (reactant ions) reacts 
with the analyte sample when latter is eluted from the 
GC into the IMS. Due to the reaction mechanism the 
formation of analyte ions competes with the amount of  
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reactant ions present in the reaction region. Hence the 
detection of a peak at a given retention time Rt  reduces 
the intensity of the RIP at the same Rt (see Figure 3). 
Since the radiation in the ionization region is constant, 
the amount of produced ions is assumed to by nearly 
constant and hence the amount of detected charged parti-
cles at the Faraday detector. 

Thus a decreasing or even vanishing RIP intensity is 
always the result of detected analytes forming a peak at 

D RIP  and preserving the overall ion amount detected 
at a given retention time 
t t

Rt . 
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2.2. Available Measurement Data 

Depending on the processing approach, the demanded  
 

 

Figure 1. Schematic draft of the measurement technique 
and the gas flow inside of a GC-IMS detector. 

amount of measurement data to initialize a certain pro- 
cessing algorithm can differ by orders of magnitude. 
Here initialization means a first and one-time execution 
of the algorithm code which sets the processing program 
into the state where it can simply read an unknown 
measurement sample and produce an appropriate output 
to classify the unknown sample. Initialization can be the 
storage of reference samples, the evaluation of reference 
samples in order to adopt certain threshold parameters 
which determine the classification process or the training 
of an ANN. Furthermore any processing algorithm, once 
initialized, needs to be evaluated with new data sets that 
were not used before during the initialization. 

The most simple case is the attempt to distinguish be-
tween two possible categories for example the breath of 
people with and without some specific decease or the 
detection of some specific contaminant in any food or be- 
verage product. 

Since every processing approach has to be evaluated 
with really measured data it is important to have a dataset 
of measurements big enough. Though the motto is, the 
bigger the dataset the better for the evaluation, the analy-
sis in this work had to content itself to the dataset given 
in Table 1. The measurements were carried out using the 
FlavourSpec and GC-IMS by G.A.S. Both systems con-
sist of a combination of an IMS with a chromatographic 
column for a better pre separation of volatile organic 
compounds (VOCs) in complex mixtures. The essential 
technical and physical data of the measuring devices are 
essembled in Listing 1. 

The involved interaction potentials between drift gas 
and analyze particles are of enormous complexity. This is 
especially the case with complex analyze particles as 
MVOCs. There are no analytical models to predict the 
appearance of a molecule or atom in the spectra just from 

 

 analyte 

 

Figure 2. Schematic picture of the IMS and its parts.  
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Table 1. Data sets for GC-IMS analysis tests. 

Measurement  
class 

Categories Measurements 
Measurements 

total 

Cola 13 ≈10 130 

Juice 18 ≈10 180 

Rice 4 ≈5 20 

Olive oil 3 ≈50 147 

Breath diff.  
candy flavors 

3 ≈16 50 

Meat 14 ≈5 70 

 
-IMS Parameters  

-- Drift length: 50 mm  
-- Drift voltage: 2 kV  
-- Electrical field strength: 400 V/cm 

-Radioactive Ionisation source  
-- Tritium 3H ( -radiation ) 300 MBq 

-- Radioactive half-life: 12.5 years 
-Multi Capillary Column (MCC) Parameters 

-- Film thickness: 0.2 μm 
-- Column Lenght: 20 cm 
-- Capillaries I.D. μm: 40  

-- Number of capillaries: 1200 

Listing 1. Technical Specs of used GC-IMS. 
 
fundamental modeling using first principle physics. An-
other way to distinguish between different spectra would 
therefore be of interest. In the following alternative ap-
proaches for evaluation and processing of GC-IMS spec-
tra are presented. The benefits of using them in Neural 
Networks are discussed and results of classification tests 
produced by them are presented. 

One problem is to find a suitable and general evalua-
tion strategy which helps to determine from which cate-
gory a given measurement is. A successful strategy not 
only has to yield stable classification rates on unseen 
spectra/measurements, it furthermore needs to be general 
enough to be applied to new classification problems 
without cumbersome modifications. 

3. Simple Metrics Evaluation 

After inspecting the spectra of the breath measurements 
(two measurements from two different flavors can be 
seen in Figure 4) a quite simple and straight forward 
approach gets obvious. It is to define a metrics on the 
two dimensional spectra in order to determine a distance 
between two spectra. One possible definition of this dis-
tance  between two arbitrary spectra  and 

 ,
 ,i R DR t t 

R DM t t  is: 

 

   
,max ,max
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
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      (2) 

This method needs only one reference measurement  

 

Figure 3. GC-IMS spectrum shown in perspective view with 
the duality of RIP and Peak. This is an artificial illustration 
intended to visualize basic principles of GC-IMS measure- 
ments. It is therefore exaggerated and not completely con- 
sistent since the smaller peaks should as well diminish the 
RIP intensity. The properties of this spectrum are discussed 
in the text. 
 

 

Figure 4. Two different candy flavors taken from the breath 
measurement. The spectra show obvious differences. Left: 
Candy flavor 1; Right: Candy flavor 2 (see Table 2 for the 
complete list of measurements). 
 

i  for every substance i  that needs to be classified. 
Any uncategorized measurement 
R

M  would then be 
evaluated against all references and the minimum 
distance min  of all distances i  would be 
given as the most likely classification result for the un-
known measurement. Meaning that if min  than  
is the category where M most likely belongs to.  

d  ,R M

= kd

=id 

d k

We find that only measurement categories with visible, 
obvious differences like those in Figure 4 (like the 
breath samples with different candy flavors as seen in 
Figure 4) can be separated by this algorithm. 

Since the simplest straight forward approach doesn’t 
work and several attempts to align measurements ac-
cording to the RIP position failed to gain any improve-
ment, it is mandatory to get more insight into the meas-
uring principle. 
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4. Profile Evaluation 

4.1. Evaluation of RIP Profiles 

Given the measuring characteristics explained in Section 
2.1, one could use the RIP-shape for further analysis and 
neglect the information given by the points with 

>D RIPt t . By doing so the magnitude of data points is 
reduced from millions down to several hundreds. Figure 
5 shows an exemplary extraction of a RIP-Profile along 
the retention time axis. At fixed drift time (which is the 
drift time of the RIP peak) the intensity values along the 
retention time axis are extracted and combined to one 
profile. This process can be automated because the RIP 
can be easily found in every GC-IMS measurement. This 
approach, though being simplifying, allows the use of 
Artificial Neural Networks (ANNs) for the evaluation 
and classification of measured spectra. The use of ANNs 
seems even imperative. As can bee seen in Figure 6 from 
the overlaid different spectra, it is not possible to define 
discrimination levels for the signals to distinguish be-
tween different measurements without multi-feature ana- 
lysis, for which ANN are well suited if training data are 
sufficient. 

4.2. Evaluation of Drift Profiles 

The extraction of the RIP profiles looses a lot of infor-
mation that is enclosed in the drift axis. A similar ap-
proach would be to extract a profile along the drift time 
axis and to lose information that is enclosed in the reten-
tion time axis. Since there is no exceptional point along 
the retention time axis like the RIP is on the drift time 
axis one has to find another extraction formalism differ-
ing from the RIP profile extraction. Two possible ways 
to obtain a drift profile  DD t  are: 

   
,max

=1

=
R

R

t

,D D R
t

D t I t t                 (3) 

or 

    , ,= max , 0,D RIP D R R RD t I t t t t  max       (4) 

Equation (3) is nothing else then just a simple IMS 
measurement, since all information that was gained dur-
ing the separation process of the GC column was now 
again summed up as if it was never separated. Since 
Equation (4) is a projection and doesn’t integrate all in-
formation along the retention time axis for every point in 
our drift spectrum this evaluation formalism was used. 

4.3. Virtual Measurements 

Depending on the setup, the RIP-Profiles contain from 
up to data points. Combined with the drift profile 210 310

 

 

Figure 5. Extraction of a RIP-Profile out of a measured 
GC-IMS spectrum. 

 

 

Figure 6. Averaged RIP spectra of 5 different substances in the same measurement class with the according standard de- 
iation. v
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that contains up to 3000 data points due to higher sam- variations, the RIP profile was cut in separate dips sur-
pling rate, a total data volume of 34  10  points per 
single measurement is obtained. This still is a powerful 
reduction of the original spectra by several orders of 
magnitude. Nonetheless the result is a vector of high di-
mensionality. Let the dimension of this vector be defined 
as n  and the overall amount of weights in the Network 
be . It is obvious that n NN   must apply. Further-
more it is well known that t ount of examples T  
for the training of the Network must be greater then t  
amount of network weights N  (with a rule of thumb 

2T N  [10,11]). This fact im cates that one needs sets 
2 6- 10  measured examples to train a network. 

Wi uring duration between 3 to 10 minutes this 
is hardly to be accomplished. Therefore one must con-
sider a way to produce new “virtual” measurements in 
parametrized manner to simulate the naturally measured 
scattering. 

Generating new datasets by just superimposing white 
no

he am

pli

he

of 
 a m

10
th eas

ise over the existing data sets yields only poor results 
in the training process of networks. In contrast we find 
that virtual generation by functional approximation and 
subsequent parameter variation is more promising. As 
deduced earlier the information about detected sub-
stances is enclosed in the RIP profile as dip. Every dip 
represents a different detected substance. Position, am-
plitude and general form of every dip are considered to 
be the most decisive and relevant properties of the RIP 
profile. Hence one can use exactly these features and 
distort them slightly to generate new “virtual” measure-
ments for the training set of the ANN. Since slight varia-
tions in the detection time (drift or retention time respec-
tively) don’t cause gaussian noise on the peaks but shift 
these peaks and change their shape. In order to produce  

rounded by two peaks. These partial profiles 

   min, max,i R i R iF t t t t   

were superposed with the distortion rofiles, where p
 i RF t  is the profile of the ith dip and min, max,,i it t  are the 

retent n times of the surrounding peak a. It is 
important to understand that the connecting points do not 
contain important information since at these points the 
signal of the RIP is relaxed back to its zero-level. Thus it 
is ensured that relevant data are varied and methodology 
is kept free from artefacts. As distortion functions Bézier 
curves [12,13] were used. A general Bézier curve of or-
der n is defined as 

 

io maxim

 
=0

= 1
n

n j j
j

j

n
B t t t P

j
 
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 
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As control points ,  and min,it max,it ,DIP it  are used. 
Where ,DIP it  is the ret n ti of the m um in the 
partial p e. With only 3 control points Pj the Bézier 
curve simplifies to quadratic form and one gets a para- 
bolic segment as distortion function.  

     2
= 1 2 1B t t P t t  
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
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These partial distortion profiles for the individual dips 
are joined to one distortion profile  RD t  to be super- 
posed on the original measurement. ure 7 a RIP 
profile and the distortion functions in different distortion 
strengths can be seen. The final “virtual” measurement is 
just the sum of the measured original profile 

 In Fig

 RR t  and 
the distortion function  RD t  which is wei by a 
random parameter, wh generated randomly for 

ghted 
ich is 

 

 

Figure 7. Extracted RIP profile and overlay distortions for the generation of “virtual” measurements.  
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very “virtue al” measurement.  

     =R R RV t R t a D t             (7) 

4.4. The Classifying ANN 

ation performance of this 

da

The first tests of the classific
approach showed poor results (as shown in Figure 8). 

Further analysis of the problem revealed that the used 
tasets had many categories which the ANN should 

discriminate. Modifications in the design structure of the 
used ANN brought a major improvement to the classifi-
cation performance. The modified network structure is 
shown in Figure 9. Instead of presenting the example 
measurement to one single network and training this 
network to distinguish all categories from each other, the 
problem set with N  categories was divided. Now N  
Networks were trai ed to distinguish the category  
from all other categories. This approach doesn’t reduc  
the overall ratio of data sets selected for training per 
network weight. But for every binary network i

n i
e

ANN  
which has to decide whether a given measurem  
from the category i  or not, the ratio of training exam-
ples per weight im roved since the network needs less 
weights. An unknown measurement is subsequently pre-
sented to all Networks. The ideal case is, that only one of 
the networks produces the output “yes”. This Network 
and the RIP profile based method yielded up to 100% 
classification rate on nearly all presented problem sets. 
This redesigned architecture (Binary Decision Tree) has 
another advantage. All datasets were pure measurements 
of one substance at a time thus every measurement is 

ent is

p

 

one of the 

pr

und conclusions another test run 
w

s-

f a binary decision tree with virtual data 

 the binary training 
m

definitely assignable to one category. So only 
n  ANNs can have the output “yes” after evaluating the 

ofile vector with all ANNs. The result is a more re-
dundant classification. 

To substantiate the fo
as made. Figure 10 shows the comparison between 

 the standard training approach with an ANN to di
tinguish all categories from each other (yellow plot);  

 the training of a binary decision tree with virtual 
training data generated as described in Section 4.3 
(blue plot);  

 the training o
generated just by superposing white noise over the 
real measurements (green plot). 

One must keep in mind that in
ode the evaluation files of 1n   categories are com-

bined and to one category so that the ANN can classify 
these 1n   categories against one other category k . So 
the rel  of profiles in category “ k ” and category “not 
k ” is about 90% . This means that only classification 

ter than this “mixRate” are actually 
classifying something. As can be seen in Figure 10 only 
the binary decision tree method reaches classification 
rates above the mix rate, and therefore shows the best 
performance. Since the training sets for the binary deci-
sion tree were generated according to Section 4.3 this 
indicates that the principle of generating virtual mea- 
surements is correct. 

Yet worth mentioni

ation

rates that are grea

ng is the fact that the values shown 
in this plot are averaged values. Actually there were 
training runs, where the ANN in the binary decision tree 
architecture yielded classification rates of 100%. 

 

 

Figure 8. Classification performance of the standard ANN approach on the basis of RIP profiles. Results are poor. A rate of 
about 5% - 10% is just as good as guessing when trying to classify between 18 possible categories.     
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Figure 9. Split ANN architecture to find a redundant deci- 

5. Refinement of Data Extraction 

to be a prom

ation about the drift 

erent extraction strategies from the two 
di

iles  
efore the training with RIP pro-

sion mechanism as explained in Section 4.4. 

Though the usage of the RIP Profile seems -
ising approach and furthermore reduces the data by sev-
eral orders of magnitude. It skips many useful data 
though, which is only justified as long as the classifica-
tion performance is high enough. This is the case for 
many of the measurements but not for all of them. Dur-
ing the evaluation tests with olive oil measurements this 
method failed to classify as can be seen in Figure 11. 
The broad bands of standard deviation indicate that the 
training process doesn’t converge in every training at-
tempt to a high classification rate. This is another indica-
tion of insufficient discernible training data. The ex-
tracted RIP profiles do not carry enough information to 
train an ANN successfully in the case of olive oil. Since  
 

the RIP extraction looses all inform
time, the next logical step to add information from pro-
jections onto the drift time axis of the spectra (drift pro-
file). These drift profiles can resolve peaks which are 
distinct on the drift time axis but have the same retention 
time and therefore can not be resolved in a RIP profile. 
Strictly spoken, substances which are not separated by 
the GC column can’t be seen as disjoint features on the 
RIP profile but they have a chance to be separated during 
the drift process. 

The test of diff
mensional spectra reveals that in some cases the RIP 

Extraction is not the ideal method to obtain training vec-
tors and one should use another extraction technique to 
obtain less data intensive training sets. Figure 12 shows 
the comparison of the average of 10 training runs with  
 RIP profiles  
 Drift profiles  
 RIP + Drift prof
as training sets. As seen b
files only shows insufficient classification performance 
with the olive oil measurements. The training with com-
bined RIP and Drift profiles shows better classification in 
the average but is very unstable. This is very probably 
due to the higher dimensionality of the training vector, 
which reduces the probability to reach a global minimum 
in the error function of the ANN. In the case of olive oil 
we find that the training with Drift profiles shows the 
best classification results. Beside the good classification 
performance one can see the very narrow band from the 
standard deviation indicating that this training approach 
yields very stable results and reaches good classification 
results in every training run. 

 

Figure 10. Comparison between different data generation modes and different ANN structures. Green, red and blue curves 
are plotted on the left axis, the yellow curve is plotted on the right axis.  
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Figure 11. Classification performance of different training and data generation approaches on the basis of the RIP profiles. 
 

 

Figure 12. Classification performance of different trainings sets. 
 

ave been tested on several datasets. 

n performance of the ANN 

o be distinguished in each data set, 
th

6. Conclusions 

Various methods h
Different approaches of data reduction/extraction have 
been developed and evaluated as well as different struc-
tures of ANNs for the classification of data samples. To 
reach automated evaluation a peak detection algorithm 
was developed on the basis of the existing “growing is-
lands” algorithm. This algorithm though developed to 
generate virtual measurements from RIP profiles is ge-
neric enough to detect peaks on any continuous profile 
where detected information is enclosed in the formation 
of peaks and dips. 

indicated that the data compression via RIP profile ex-
traction is a powerful method. Out of 6 data sets with 
about 10 categories t

The achieved classificatio

e network classified 5 of the data sets with a rate of 
over 97%. A variety of measured substances like diffe- 
rent sorts of juices to be distinguished from each other, 
several soft drinks, various oil sorts and meat in several 
aging stadiums have been used to evaluate the aforemen-
tioned methods. The discussed draw backs of this extrac-
tion method with RIP profiles and with drift profiles 
were observed during the classification tests. The two 
presented extraction methods showed different results on 

Copyright © 2012 SciRes.                                                                               OJAppS 



A. SCHEINEMANN  ET  AL. 265

the available data sets. In the end at least one strategy for 
every available classification problem was found, which 
managed to reach high classification rates. The combined 
classification results of RIP profiles and drift profiles are 
encouraging. Since they lay ground for automated eva- 
luation of measurements and possible monitoring appli- 
cations. 

An overview of the reached classification results with 
the different evaluation strategies is given in Table 2. The 
classification rates given in this table are maximum rates 
that were reached during several training attempts. 

en-
tio

r data extraction and d
re

re relevant data 
se

Classification rate 

One disadvantage was already mentioned in the intro-
duction. Though the RIP profile contains information 
about peaks being measured in the GC-IMS spectrum it 
doesn’t show double peaks appearing at the same ret

n time, which arise from monomer and dimer forma-
tion. Another drawback is the loss of information on the 
drift time of the peaks. This can lead to the creation of 
RIP profiles without any discriminating information. 
This is the reason why in some cases the drift profiles 
achieve better classification results. Since the principle is 
the same, information appears in form of the peaks, the 
profiles are interchangeable. 

Further Improvements: Although this paper shows 
great potential in evaluation of GC-IMS measurements 
with ANNs, there are still improvements possible which 
are to be investigated. Othe ata 

duction methods should be considered. 
Furthermore tests with bigger data sets should be im-

plemented to investigate the convergence and the classi-
fication behavior of the ANNs and the according data 
extraction strategies. Only statistically mo

ts are able to determine the stableness and usability of 
this method. 
 
Table 2. Classification rates for all measured data with dif-
ferent training profiles used to train the ANN. 

 

Measurement Drift profiles RIP profiles 

Cola 91.0% 96.3% 

Juice 88.8% 

oil 

 flavors 

 meat 

98.6% 

Rice 100% 100% 

Olive 98.9% 76.4% 

Candy 100% 100% 

Aging 96.6% 100% 
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Nomenclature 

Description 

 

Symbol 

Rt  Retention time 

Dt  Drift time 

,max ,max,R Dt t  Measurement specific maximal values of retention or drift time 

 ,R DI t t ,  ,i R DR t t ,  ,R D M t t  
2-dimensio
representat

nal matrix representation of a MCC-IMS measurement, in some cases this discrete data  
ion is regarded as continuous, which is justified by the high resolution due to a high  

sampling rate in the available measurements 

 RQ t  Complete charge accumulated at one certain retention time by summing up charge at all drift times 

    , , ,i R D j R DR t t R t t  
Function mapping 2 matrices iR  and jR  of identical dimension to a scalar value  

   : , ,i R D j R DR t t R t t    

 DD t  1-dimensional extraction of a p file alo  the drift time axis ro ng

 i RF t  Partition of a 1-dimensional prof files that contain only one extre
file 

ile into peace wise pro mum which is not located 
on the edge points of this pro

 nB t  Bezier curve of order n defined by n + 1 control points 
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