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ABSTRACT

Based on H'-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approxi-
mate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding
optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which
is necessary for classical error estimates of finite element analysis.
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1. Introduction

Consider the following initial-boundary value problem of
pseudo-hyperbolic equation

u, —V-(a(X)Vu,)-V-(a(X)Vu)+uy,
_F(X.t), inQx(0.T],

u(X,t)=0, onaQx(0,T],
u(X,0)=uy(X),u (X,0)=u,(X), inQ,

M

where X =(x,y), Q is bounded convex polygonal
domain in R? with Lipschitz continuous boundary oQ.
a(X) is smooth function with bounded derivatives,

Uy(X), u;(X) and fare given functions, and
0<ay, <a(X)<a,,XeQ,

for positive constants a.,,, and a,,, .

The pseudo-hyperbolic equation is a high-order partial
differential system with mixed partial derivative with
respect to time and space, which describe heat and mass
transfer, reaction-diffusion and nerve conduction, and
other physical phenomena. This model was proposed by
Nagumo et al. [1]. Wan and Liu [2] have given some
results about the asymptotic behavior of solutions for this
problem. Guo and Rui [3] used two least-squares Galer-
kin finite element schemes to solve pseudo-hyperbolic
equations.

On the other hand, H'-Galerkin mixed finite element
method (see [4]) has been under rapid progress recently
since this method has the following advantages over
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classical mixed finite element method. The method
allows the approximation spaces to be polynomial spaces
with different orders without LBB consistency condition
and there is no requirement of the quasi-uniform assum-
ption on the meshes. For example, Pani [4,5] proposed an
H'-Galerkin mixed finite element procedure to deal with
parabolic partial differential equations and parabolic
partial integro-differential equations, respectively. Liu
and Li [6,7] applied this method to deal with pseudo-
hyperbolic equations and fourth-order heavy damping
wave equation. Further, Shi and Wang [8] investigated
this method for integro-differential equation of parabolic
type with nonconforming finite elements including the
ones studied in [9,10].

It is well-known that the convergence behavior of the
well-known nonconforming Wilson element is much
better than that of conforming bilinear element. So it is
widely used in engineering computations. However, it is
only convergent for rectangular and parallelogram meshes.
The convergence for arbitrary quadrilateral meshes can
not be ensured since it passes neither Irons Patch Test
[11] nor General Patch Test [12]. In order to extend this
element to arbitrary quadrilateral meshes, various im-
proved methods have been developed in [13-24]. In par-
ticular, [19-24] generalized the results mentioned above
and constructed a class of Quasi-Wilson elements which
are convergent to the second order elliptic problem for
narrow quadrilateral meshes [23].

In the present work, we will focus on H'-Galerkin
nonconforming mixed finite element approximation to
problem (1) under arbitrary quadrilateral meshes. We
firstly prove the existence and uniqueness of the solution
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for semi-discrete scheme. Then, based on a very special
property of the quasi-Wilson element i.e. the consistency
error is one order higher than interpolation error, we
deduce the optimal order error estimates for semi-
discrete scheme directly without using the generalized
elliptic projection which is a indispensable tool in the
tradition finite element methods.

This paper is arranged as follows. In Section 2, we
briefly introduce the construction of nonconforming
mixed finite element. In section 111, we will discuss the
H'-Galerkin mixed finite element scheme for pseudo-
hyperbolic equations. At last, the corresponding optimal
order error estimates are obtained for semi-discrete
scheme.

2. Construction of Nonconforming Mixed
Finite Element

Assume K = [-1.1]x[-1,1] to be the reference element
inthe X—y plane with vertices

& =(-1-1).8 =(1-1).& =(L1) and & =(-L

[y

Let ﬂ:éiéz, fz =8,a,, l,=4,a, and 1,=4,a be

the four edges of K. o

We define the finite elements (K,P',Z'),(i=l,2)
by
f’lzspan{Ni(f(,y),i=1,2,3,4}, ilz{ﬁl,vz,\73,\74},

P? =span{N, (X,y),i=12,34,¢(%),o(¥)},
iz :{ﬁl’ f’zv ﬁ31 f’Av ﬁsv ﬁs}'
where U, =0(4), p=p(4), i=1234,
: zﬁk g(gd)”(d)?, B, —‘ A‘jk g‘zdkdy,
Ny (1,9) = (1-R)(-9). N (%) =F(1+R)2-9),
N, (%,9) =5 (L+D)(L+9). Ny (% 9)=3(1-R)(1+9),

p(1)=3(t 1) [t 1)

When ¢(t)= %(t2 ~1), it is the so-called Wilson ele-

ment.
The interpolations defined above are properly posed
and the interpolation functions can be expressed as

‘k?:ﬁl;}mi(i, )

and
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~ ~ 4 ~ ~~ A ~ ~ ~ ~ ~ ~
PP =3 BiN; (X )+ psp(X) + Pep(9).
i=1
Given a convex polygonal domain Q < R, Let

Q={J,. K be a decomposition of Q such that T,

satisfies the regularity assumption [11], where K denotes
a convex quadrilateral with vertices

a(x.y;)(i=1234), h:mgx{hK}, he is the dia-

meter of the finite element K. R
Then there exists a invertible mapping F, : K - K

The associated finite element space V, and W, are
defined as

v, ={Vh;Vh|K =V, o F, U, e Pt VK el"h}
and
W, :{wh =(mﬁh,wﬁ);wr{|K=Wr{ oF W e P?, VK eT,,
and w} (a) =0, Vnode a€Q, j =1,2}.

2

Then for all ve H*(Q), w=(w,w,)e(H*(Q)),
we define the interpolation operators IT} and I1? by

T - H? (Q) 5V, T | =TTy v = (119)0 K
and
I (HY (@) >w,, 2| =112,
Mmw = (1% ) B (19, )0 R ).

Let L? (©) be the set of square integrable functions
on Q and (LZ(Q))2 the space of two dimensional

vectors which have all components in L*(Q) with its
norm |,. Let H(div;Q) be the space of vectors in

(LZ(Q))2 which has divergence in L*(€) with norm
2 2 2 .
ey =Ho +1V g+ () denotes the L*(€2) inner
product. For our subsequent use, we also use the standard
sobolve space W™?(Q) with a norm ||||mp Espe-
cially for p=2, we denote W™?*(Q)=H"(Q) and

o =

Throughout this paper, C denotes a general positive
constant which is independent of h.
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3. Nonconforming H'-Galerkin Mixed Finite
Element Method for the Semi-Discrete
Scheme

Let o=1/a(X) and p=a(X)Vu,

sponding weak formulation is: Find

{u, p}:[0,T]— Hg (€)x H (div;Q), such that
(Vu,w)=(ap, W), VveH;(Q),
(apeW)+(V-p,V-W)+(V-p,V-W)+(ap,w)
=—(f,V-w), vweH(div;Q),
u(X,0)=uy(X),u (X,0)=u,(X).

The corresponding semi-discrete finite element pro-
cedure is: Find {uy, p,}:[0,T] >V, xW, , such that
(VU Vv, ) =(ap,. Vv, ), YV, €V,

(@ P W)+ (V- P, VoW, )+ (V- 0y, Vow, )
+(apyw,)=—(f.V-w,), YweW,,
uy (X,0) =TT (X ), Uy (X, 0) =TT;u, (X).

then the corre-

O]

®)
Forall v, eV,,w, eW,, we define

1

2

i, { s |vh|iK]
Kel"h

1
ol [z 4| whuOJ

are norms of

and

It is easy to see that |, and ||-||H(divh:9)

V, and W, , respectively.
Theorem 1. Problem (3) has a unique solution.

Proof. Let {¢}" and {'/Ij}?ﬂ the basis of V, and
W, . Suppose that

Un :ihi (t)¢w Pn :Zz:gj (t)'//j’vh =@, W, =y,
j=1

i=1

then (3) can be written as

(a) AH (t)=BG(t),
BREAUNTRMEC LRV e
where
H (1) = (n ()b, (1)

G(t)=(0:(t). 9, (1))
:((ijv‘/ﬁj ))m '
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B=((ayi.ve))), -

nxr

M= ((al//"!//J )rzxrz '

N = ((V v, \Vy, )

Q=(~(f.v-v))

Sine (4) gives a system of nonlinear ordinary diffe-
rential equations (ODEs) for the vector function H (t)
and G(t), by the assumptionson a(X) and the theory
of ODEs, it follows that H(t) and G(t) has the
unique solution for t >0 (see [25]). Therefore the proof
is complete.

il
%ty

Ixr,

4. Error Estimates

In order to get the error estimates the following lemma
which will play an important role in our analysis and can
be found in [24].

Lemma 1. Forall ueH;(Q)NH?(Q),peW,, then
there holds

> J'aKu((p- n)ds
Kely,

where n denotes the outward unit normal vector to
oK.

Now, we will state the following main result of this
paper.

Theorem 2. Suppose that {u,p} and {u,, p,} be
the solutions of the (2) and (3), respectively,

<Chlul, o],

uu,u, e H(Q), p, p e(HZ(Q))Z and
b, =(H*(€2))’, then we have
Ju-uy ], <Ch(lul, + p, +®) 5)
and
[p= Pl gy < CN(IPL [P, + @) ©)
where

@ ={J5Ju () + e (2 # () +]pe (0]

1

+| b (r)|§ +|pe (r)|f )d,}i
Proof. Let u-u, = (u —thu)+(Hﬁu —Uh) =n+¢,

p-p, =(p-T1;p)+(IT;p—p,)
=p+80.

It is easy to see that for all v, eV,,w, €W, , there
hold the following error equations
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(@) (VE, W, ) ==(Vn. WV, )+(ap, Vv, ) +(ab,VV, ),
(b) (@6, W, ) +(V-6,,V-w,)+(V-0,V-w,)
+(ab,,w,)+(6,w,)
=(0.w,)-(ag,.W,)-(ag.w,)-(V-g.V-w,)
-(v pV~Wh)+K§rjhfaKut(wh n)ds

+ ZLKun (w, -n)ds

Kely

)(
) (8

()
Choosing v, =& in (7(a)) and using the Cauchy-
Schwartz’s inequality yields

[vel, <c(Ival, +lel, +l6l;)

(8)
<cn(jul, + |, )+l
Further, choosing w,, =6, in (7(b)) leads to
2
2dt(" a6, +[V- ‘9||o+||9||o) Iv-6l; +]e**6],
_(‘9491)—(%6{“6’1)—(&/,},0()—( 'va'at)
(V-pv-0)+ T J (0 m)is o
+y _[
erh
7
E%A

For the right side of (9), applying ¢ -Young’s in-
equality and noting that a(X) is a smooth function
with bounded derivatives, we get

A+ A+ Al <C (10 +lal; +lele) +lal;
<ch(nf; +Inf)+clel; <l

A+ Al <C(IV-al; +Iv-ol;) + 2[v-8];
<t (|nf; +[of;)+[v-al;.
By Lemma 1 and &-Young’s inequality, we have
A+ A< Ch(lul, +[u, 6],
2 2 2 2 (12)
<t (Juf; +lu; )+ <lal;.

Choosing small ¢ and combining (9)-(12), we can
derive

Sailleal 15 -6l; 1ok
SCh2(|pt|2+|p|2+|pn|1+|pt|1) (13)

+Ch? (|ut|§ +|utt|§)+ clof.
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Integrating the both sides of (13) with respect to time
from 0 to t, by Gronwall’s lemma and noting
6(0)=0,6,(0)=0, we obtain

2 2
=[v-él, +1el,

[0 i
<o [lu (@ w4 o) e
+[p () +|p () + p () e
together with (8), there yields
¢, = Ch(lul, +[pl.)
s ([ (o) +u (L + o) a9)

0+ () (o)

Finally, by use of the triangle inequality, (14) and (15),
we get (5) and (6). The proof is completed.
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