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ABSTRACT 

Based on H1-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approxi-
mate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding 
optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which 
is necessary for classical error estimates of finite element analysis. 
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1. Introduction 

Consider the following initial-boundary value problem of 
pseudo-hyperbolic equation 
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where  , ,X x y
2R

  is bounded convex polygonal 
domain in  with Lipschitz continuous boundary 


 .  

 a X  is smooth function with bounded derivatives,  

 0u X ,  and f are given functions, and   1u X

 min max0 ,a a X a X    , 

for positive constants  and . min max

The pseudo-hyperbolic equation is a high-order partial 
differential system with mixed partial derivative with 
respect to time and space, which describe heat and mass 
transfer, reaction-diffusion and nerve conduction, and 
other physical phenomena. This model was proposed by 
Nagumo et al. [1]. Wan and Liu [2] have given some 
results about the asymptotic behavior of solutions for this 
problem. Guo and Rui [3] used two least-squares Galer- 
kin finite element schemes to solve pseudo-hyperbolic 
equations. 

a a

On the other hand, H1-Galerkin mixed finite element 
method (see [4]) has been under rapid progress recently 
since this method has the following advantages over 

classical mixed finite element method. The method 
allows the approximation spaces to be polynomial spaces 
with different orders without LBB consistency condition 
and there is no requirement of the quasi-uniform assum- 
ption on the meshes. For example, Pani [4,5] proposed an 
H1-Galerkin mixed finite element procedure to deal with 
parabolic partial differential equations and parabolic 
partial integro-differential equations, respectively. Liu 
and Li [6,7] applied this method to deal with pseudo- 
hyperbolic equations and fourth-order heavy damping 
wave equation. Further, Shi and Wang [8] investigated 
this method for integro-differential equation of parabolic 
type with nonconforming finite elements including the 
ones studied in [9,10]. 

It is well-known that the convergence behavior of the 
well-known nonconforming Wilson element is much 
better than that of conforming bilinear element. So it is 
widely used in engineering computations. However, it is 
only convergent for rectangular and parallelogram meshes. 
The convergence for arbitrary quadrilateral meshes can 
not be ensured since it passes neither Irons Patch Test 
[11] nor General Patch Test [12]. In order to extend this 
element to arbitrary quadrilateral meshes, various im- 
proved methods have been developed in [13-24]. In par- 
ticular, [19-24] generalized the results mentioned above 
and constructed a class of Quasi-Wilson elements which 
are convergent to the second order elliptic problem for 
narrow quadrilateral meshes [23]. 

In the present work, we will focus on H1-Galerkin 
nonconforming mixed finite element approximation to 
problem (1) under arbitrary quadrilateral meshes. We 
firstly prove the existence and uniqueness of the solution *Corresponding author. 
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for semi-discrete scheme. Then, based on a very special 
property of the quasi-Wilson element i.e. the consistency 
error is one order higher than interpolation error, we 
deduce the optimal order error estimates for semi- 
discrete scheme directly without using the generalized 
elliptic projection which is a indispensable tool in the 
tradition finite element methods. 

This paper is arranged as follows. In Section 2, we 
briefly introduce the construction of nonconforming 
mixed finite element. In section III, we will discuss the 
H1-Galerkin mixed finite element scheme for pseudo- 
hyperbolic equations. At last, the corresponding optimal 
order error estimates are obtained for semi-discrete 
scheme. 

2. Construction of Nonconforming Mixed 
Finite Element 

Assume    ˆ = 1,1 1,1K   
ˆ

 to be the reference element 
in the x̂ y

   
 plane with vertices  

 1 2 3ˆ ˆ ˆ1, 1 , 1, 1 , 1,1a a a       and .   4ˆ 1,1a  

Let 1 1 2 2 2 3 3 3 4
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ,l a a l a a l a a    and 4 4

ˆ ˆ ˆl a a 1  be  

the four edges of K̂ . 
We define the finite elements  

by  
   ˆ ˆ ˆ, , , = 1, 2i iK P i
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2 5
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When    21
ˆ 1

8
t t    , it is the so-called Wilson ele-  

ment. 
The interpolations defined above are properly posed 

and the interpolation functions can be expressed as 
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Given a convex polygonal domain , Let  2R 

hK
K


   be a decomposition of   such that h   

satisfies the regularity assumption [11], where K denotes 
a convex quadrilateral with vertices 

   , 1, 2,3,4i i ia x y i  ,   max ,K
K

h h Kh  is the dia-  

meter of the finite element K. 
Then there exists a invertible mapping ˆ:KF K K  
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The associated finite element space  and  are 
defined as  

hV hW

 1 1ˆˆ ˆ; , ,h h h h K h hK
V v v v F v P K       

and  

 
  

1 2 1 2ˆˆ ˆ, ; , ,

and 0, node , 1, 2 .

j j j
h h h h h h K hK

j
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w w w w F w P K

w a a j
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W w 
 

Then for all ,        22 2
1 2, ,v H w w H    w

1 2we define the interpolation operators  and h h  by 

   1 2 1 1 1 1ˆ ˆ: , ,h h h K hK

1
KH V v v F            

and 

  22 1 2 2: ,h h h K
H W ,K       

    2 2 1 2
1 2

ˆ ˆˆ ˆ, .h Kw F w F    w   1
K  

Let  2L   be the set of square integrable functions  

on   and  the space of two dimensional    22L  
vectors which have all components in  with its 
norm 

 2L 

0
 . Let  ;H div   be the space of vectors in  

  22L    which has divergence in  with norm  2L 

 
2 2 2

0; 0
,

H div 
       ,   denotes the  2L   inner  

product. For our subsequent use, we also use the standard 
sobolve space  ,m pW   with a norm 

,
.

m p
  Espe-  

cially for 2p  , we denote    ,2m mW H    and  

,2m m
Throughout this paper, C denotes a general positive 

constant which is independent of h. 

 .  
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3. Nonconforming H1-Galerkin Mixed Finite 
Element Method for the Semi-Discrete 
Scheme 

Let  1 a X   and  a X u p , then the corre- 
sponding weak formulation is: Find  
     1

0, : 0,u T H p  ;H div 
1

, such that 
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The corresponding semi-discrete finite element pro- 
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It is easy to see that 
h
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   are norms of  

hV  and W , respectively. h

Theorem 1. Problem (3) has a unique solution. 
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Sine (4) gives a system of nonlinear ordinary diffe- 
rential equations (ODEs) for the vector function  tH  
and  tG , by the assumptions on  a X  and the theory 
of ODEs, it follows that  tH  and  tG  ha  
uniqu tion for 0t   (see [25]). Ther  the proof 
is complete.  

4. Error Estimates 

s the
e solu efore

In order to get the error
which will play an impor

 estimates the following lemma 
tant role in our analysis and can 

be found in [24]. 
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It is easy to see that for all h , there 
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For the right side of (9), applying
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Integrating the both sides of (13) with respect to time 
from 0 to t, by Gronwall’s lemma and noting  
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together with (8), there yields  
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Finally, by use of the triangle inequality, (14) and (15), 
we get (5) and (6). The proof is completed. 
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