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ABSTRACT 

This paper addresses the optimal recovery of functions from Hilbert spaces of functions on the unit disc. The estimation, 
or recovery, is performed from inaccurate information given by integration along radial paths. For a holomorphic func-
tion expressed as a series, three distinct situations are considered: where the information error in  norm is bound by 2L

0   or for a finite number of terms the error in 2
Nl  norm is bound by 0   or lastly the error in the  coeffi-

cient is bound by 

thj

0j  . The results are applied to the Hardy-Sobolev and Bergman-Sobolev spaces. 

 
Keywords: Approximation; Optimal Recovery; Holomorphic 

1. Introduction 

Let W be a subset of a linear space X, let Z be a normed 
linear space, and T the linear operator  that 
we are trying to recover on W  from given 
information. This information is provided by a linear 
operator 

:T X Z
X

:I X Y  where Y is a normed linear space. 
For any x X  we know some y Y  that is near Ix . 
That is, we know y Y  such that 

Y
Ix y                  (1) 

for some 0  . The value y  is our inaccurate infor- 
mation. Now we try to approximate the value of Tx  
from y



 using an algorithm or method, . Define a 
method to be any mapping , and regard 

 as the approximation to Tx  from the infor- 
mation 

m
:m Y Z

m y
y Y . Our goal is to minimize the difference of  

Tx  and  in  m y Z , i.e. minimize   .
Z

Tx m y   

However, the size of   .
Z

Tx m y   varies since y   

can be chosen to be any y Y  satisfying (1). Further- 
more Ix  varies depending on the x W  chosen. So 
the error of any single method is defined as the worst 
case error 

   
,

, , , , .sup

Y

Zx W y Y
Ix y

e T W I m Tx m y



 
 

 




 

 

Now the optimal error is that of the method with the 
smallest error. Thus the error of optimal recovery is 
defined as 

   

 

: ,

:

, , supinf

, , , .inf

Y

Zm Y Z x W y Y
Ix y

m Y Z

E T W Y Tx m y

e T W Y m


  

 



 








           (2) 

For the problems addressed in this paper, let  
be linear spaces with semi-inner norms 

1, , nY Y

kY
  and 

:k kI X Y  linear operators,  1, , n I I I  . We want 
to recover  for Tx

 : ,1 ,0
j

k j jY
x W W x X I x j k k n          

(where if 0k   we let ), if we know the values 0W X

jy  satisfying 
j

j j jY
I x y    for . 1, ,j k n  

Define the extremal problem 
22 2max, , 1, , , .

j
j iZ Y

Tx I x j n x X    

n

 (3) 

This problem is dual to (2). 

2. Construction of Optimal Method and 
Error 

The following results of G. G. Magaril-Il’yaev and K. Yu. 
Osipenko [1] are applied to several problems of optimal 
recovery. 

Theorem 1: Assume that there exist ,  ˆ 0j 
1, ,j    such that the solution of the extremal 

problem 

22 2

1 1

ˆ ˆmax, ,
j

n n

j j j jZ Y
j j

Tx I x x X  
 

      (4) 
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is the same as in (3). Assume also that for each  

 1 1, , n ny y y Y    Y

n

 there exists 

 1, ,yx x y y   which is a solution to  

2

1

ˆ min .
j

n

j j j Y
j

I x y x X


  

n

          (5) 

Then for all , ,0 <k k

 
, 1, ,

, , , sup

j Y j

k Z
x X

I x j nj

E T W I Tx






 




 

and the method 

  1 1ˆ , , 0, ,0, , ,k n km y y Tx y y    n      (6) 

is optimal.  
Theorem 1 gives a constructive approach to finding an 

optimal method  from the information. It follows 
from results obtained in [1-7] (see also [8] where this 
theorem was proven for one particular case.) 

m̂

In order to apply Theorem 1 the values of extremal 
problems (4) and the dual problem (3) must agree. The 
following result, also due to G. G. Magaril-Il’yaev and K. 
Yu Osipenko [1], provides conditions under which the 
solution of problems (3) and (4) will agree. 

Typically, when one encounters extremal problems, 
one approach is to construct the Lagrange function . 
For an extremal problem of the form of (4), the corre- 
sponding Lagrange function is 



  22

1
1

, , , .
j

n

n jZ Y
j

jx Tx I x  


    

Furthermore, x̂ X  is called an extremal element if 
2 2ˆ

j
j jY

I x   for  and thus admissible in (4)  1, ,j   n

and  

2 2

2 2

, 1, , .

ˆ .sup

j jY j

Z Z
x X

I x j n

Tx Tx




 





 

Theorem 2: Let  and ˆ 0j  x̂ X  be such that 
2 2ˆ

j
j jY

I x   for 1  and j n 

1)    1 1
ˆ ˆ ˆ ˆˆmin , , , , , ,n n

x X
x x  


     

2) 
2 2

1
ˆ ˆ 0.

j

n

j j jj Y
I x 


   
   

Then x̂  is an extremal element and  

2 22 2

1 1

2 2 2

1
ˆ ˆ, 1, ,

ˆ .sup sup
n n

j j j j j jY j Y jj j

n

j jZ Z
x X x X j

I x j n I x

Tx Tx

   

 

 

  
   

  


 

If we wish to combine Theorems 1 and 2 to determine 
an optimal error and method then we must show the 
posed problem is able to satisfy equating extremal pro- 

blems (3) and (4). Through Theorem 2 we have such a 
means available. 

3. Main Results 

Consider the class of functions defined on the unit disc 
 : 1z z   given by 

  2

0 0

:j
j j j

j j

X X f z a z a 
 

 

 
     

 
   (7) 

for ja  , 0j   satisfying  

1liminf 1j
j

j



                (8) 

and 

   1
1lim j

j
j




  0.           (9) 

Therefore, any f X  is holomorphic in the unit disc 
by (6). We define the semi-norm in X  as 

1 2
2

0
j jX

j

f a




 
  
 
  

and 

 : 1
X

W f X f .            (10) 

Let  2:K X L  ,  π,π  , be a linear operator 
given by 

   1 i

0
e d .Kf f r    r  

That is, Kf  is the radial integral of . To see that f
 2Kf L  , by (7) we have for all but finitely many ,  j

 2
1

j

c

j
 


0c  for some . Thus if 

X
f    then  

 2L
Kf   . 

We assume to know  Kf   given with a level of 
accuracy. That is, for a given 0  , we know a 

 2y L   such that 

 2
.

L
Kf y                (11) 

The problem of optimal recovery is to find an optimal 
recovery method of the function f  in the class W  
from the information y  satisfying (9). The error of a 
given method is measured in the  norm defined 
by 

 2L

   
2

1 2
21 π i

0 π

1
e d d

2πL
f f r r 



   
   .r  

Any method   2 2:m L L   is admitted as a re-  

covery method. Let   ,  j jj j  
 be sequences of  

non-negative real numbers such that  
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, 0lim lim
j

j
j j j




 
   .  

Define  to be the con-       0,0 ,j j
j

C co  


 

vex hull. Define  x  for  0,x   by  

    max : , .x y x y C    

Lemma 1: The piecewise linear function   with 
points of break  ,s sx y  , with 0 10,1,s   ,x x   
for  1,s sx x x   given by  x 1x 2     is such that 

1 2, 0   . 

Proof. Assume that 1
1

1

0.s s

s s

y y

x x
 




 


 It means that  

1s s . Since iy   y    and i 
k s

 as  
there is a  such that 

j 
k  x   and k sy  . Then  

the interval between  ,s sx y  and  ,k k   belongs to 

. Consequently, C  1 1s sx y    1,s and  1sx y   is not  

a point of break of  . 
Assume that 2 0 


. Since  the interval   0,0 C

between  and 0,0  1 1,s sx y 

 0,0

 belongs to C . Geo- 

metrically, the line  to  1 1,s sx y   will lie above  

the line 1 2( ) =x x   . It means that  s sx y   
contradicting that  , s sx y  is a point of break of  . 

Note that as 0lim
j

j

j


 



 then for any fixed 

 ,b b   the slopes between points  ,b b    and 

 , j j   also tends to 0 as 

0.lim lim

j b

j b j j

j j jj b b

j j

 
   

  
 

 




 



 

3.1. Inaccuracy in  Norm  2L 
2Consider the points in  given by 

  2
1 , 1j

j
j j


 


  and define the convex hull of the  

origin and this collection of points as M : 

     2
0,0 1 , 1 .j

j
M co j j



    
 

   (12) 

Let 

   max : , ,x y x y M          (13) 

thus   is a piecewise linear function. Let  ,s sx y , 
 be the points of break of 0,1,s     with 

0 1 . By (7) the assumption for Lemma 1 is 
satisfied by  and 
0 x x  

 2
1j j j   1jj  

1

. 
Theorem 3: Suppose that 2

s sx x 
   with  

. Let 0sy 

1 1
1 2

1 1

ˆ ˆ, .1s s s s s

s s s s

y y y x y x

x x x x
  

 

 
 

 
s     (14) 

Then the error of optimal recovery is  

  2
1 2
ˆ ˆ, , ,E W K                 (15) 

and 

      
121

1 2
0

ˆ ˆˆ 1 1 1 j
j j

j

m y j j y z  
 





      (16) 

is an optimal method of recovery. If  then  0sy 

  1

1

, ,
y

E W  and  is an optimal me-  ˆ 0m y K  
x

thod. 
Proof. Consider the dual extremal problem 

   2 2

2 2 2 2max, 1,
L X L

f f Kf         (17) 

which can be written as 

 

2

0

2 2 2
2

0 0

1
max,

1

1
1,

1

j
j

j j j
j j

a
j

a a
j

 





 

 




 




 
 

where   0
j

jj
f z a




  z . Define the corresponding  

Lagrange function as  

 
 

    
2

2

1 2 1 22
0

, , 1 1 .
1

j

j
j

a
f j

j
    





   


 j   

Let the line segment between successive points  

 ,s sx y  and  1 1,s sx y   be given by   1 2
ˆ

s x x ˆ    .  

That is  1,s ss x x 


 . Thus 1 2
ˆ ˆ,   are given by (12). 

Take any   2
1 , 1j j j   , then by definition of the  

function   we have 

     2 2
1 1j s jj j j       1 .  

Thus for all 0,1,j    

 2

1 2
ˆ ˆ1 1jj j       

and hence  1 2
ˆ ˆ, , 0f     for any . f X

We proceed to the construction of a function f̂  
admissable in (15) that also satisfies  

 2

2 2
2

1 2
ˆ ˆˆ ˆ1 0.

X L
f Kf             

 Assume .  0sy 

As 0sy   if and only if  and 00s  0y   then 
 if and only if  or . Let 0sy 0s  0y 0 ,k k   
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be the indices that satisfy  

    2
, 1 ,s s kx y k k  1

, 1

 

and 

    2

1 1, 1s s kx y k k       . 

We let  for 0ja  ,j k k  , and choose ,k ka a   so 
that they satisfy the conditions  

2 2
1k k k ka a      

   
2 2 2

2 2

1 1
.

1 1
k ka a

k k
 

 
  (18) 

From these conditions let  

   
   

1 2
2

2 2

1 22
1

1

1 1
1

1 1

1

k
k

k k

s
s

s s

k
a k

k k

x
y

x x

 

 











   
  
     

 
  

 

 

   
   

1 222

2 2

1 22

1
1

1 1
1

1 1

1

k
k

k k

s
s

s s

k
a k

k k

x
y

x x

 

 










  
   

    

 
  

 




k

   (19) 

and 

 ˆ .k
k kf z a z a z 

                 (20) 

Now if 2
1s sx x 
   with  or 0s  0s   and  

0 0y   the function f̂  is admissible in (15) and  

 ˆ ˆ 1 2
ˆ, , 0f    , that is f̂  minimizes  1 2

ˆ ˆ, ,f     

and condition 1) of Theorem 2 is satisfied. Furthermore, 
by construction, f̂  satisfies condition 2) of Theorem 2. 

If , that is  and , define 0sy  0s  0 0y  ka   as 
in (17). Then as  0x  0

1 22
1 2 1 20

1 1 1
1 0

1
.k k

x
a y y x

x x


 

 

 
  

 
  

So let  and we have   ˆ k
kf z a z 


   2

2 2
2

2
1

1 1ˆ ˆ1, .
1X L

k

f Kf
xk


 

  
 

  

Thus the function f̂  is admissable in (15) and 
satisfies 1) and 2) of Theorem 2. It should be noted that 
in this case 1 2

ˆ ˆ,   are simply 1 1 1
ˆ y x   and 2̂ 0  . 

Now we proceed to the extremal problem 

 

 
2

2 2

2 1

2

ˆ ˆ min,

, .

L X
Kf y f

f W y L

   

 








   (21) 

This problem may be rewritten as  
2

1 2 2

2 2 1
0 0

1ˆ ˆ ˆ min
1j j j j j

j j

y a y a
j

   
  

  

   
     

which has solution 

  221
1 2

1 ˆ: 0,
ˆ ˆ1 1

0 : otherwi

j

jj

j
y j

ja


  

     



 0

se

 

So for 2
1s sx x 
  ,  by Theorems 1 and 2, 

(14) is an optimal method and the error of optimal 
recovery is given by (13). If  then  

0sy 

sy  0

  1

1

, ,
y

E W K
x

   and  is an optimal me-   ˆ 0m y 

thod.  
It should be noted that for fixed , that is for 

a fixed 
1 2
ˆ ˆ,   0

0  , the terms 

    
121

1 2
ˆ ˆ1 1j j j j   


 1     

will have the property, 0 1j   and lim 0j
j




  as 

   1
lim 1 0j
j

j



  . So  smooths approximate  m̂

values of the coefficients of y  by the filter j . 

3.2. Inaccuracy in  Norm 2
Nl

Our next problem of optimal recovery remains to recover 
f X X    from inaccurate information pertaining to 

the radial integral of f. However, the inaccurate infor- 
mation we are given are the values  

0 1 1, , , Ny y y      such that  
1 2 2

0

N

j j
j

K f y 




    

where jK f  is the  coefficient of the radial integral thj
Kf , 

 
 2

i, e .j
j L

K f Kf  


 

Denote 

 0 1 1, , , .N
NK K K K    

We again consider the space of functions X X   
given by (5) and M  and   defined by (10) and (11) 
respectively but now add the condition 

0, .j j N                   (22) 

The problem of optimal recovery on the class W  
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given by (8) is to determine the optimal error 

 , ,NE W K                           (23) 

   
   2

2 0 1 1
1 2 2

0

: , , , ,

supinf
N N

N
N

j j
j

L
m L f W y y y

K f y

f m y








  

 


  






  (24) 

and an optimal method  obtaining this 
error. 

 2ˆ : Nm L 

Define  as the largest index such that 0l 

      0

1 1

0 1 maxl l
l N

l l 
 


  1 ,        (25) 

which by (7) exists, and  

  0

1
1

0 0
1

min 0 : 1 .s s
l

s s

y y
s s l

x x


 



 
    

 
   (26) 

Theorem 4: Suppose 2
1s sx x 
   with 0s s . If  

0sy   let 1
1

1

ˆ s s

s s

y y

x x
 







 and 1 1

2
1

ˆ s s s

s s

s

x x
  







y x y x

. 

Then the optimal error is 

  2
1 2
ˆ ˆ, ,NE W K               (27) 

and  

      
1 121

1 2
0

ˆ ˆˆ 1 1 1
N

j
j j

j

m y j j y z  
 





      (28) 

is an optimal method. If  then  0sy 

  1

1

, ,N y
E W K

x
   and  ˆ 0m y   is an optimal me- 

thod. 
If 

0

2
sx  


 and  then with  

0
0sy 

 0

1

1 0
ˆ 1l l 


   and 

0 02̂ s sy x 1̂    the error of op- 

timal recovery is (22) and (23) is an optimal method. For  

0
0sy  ,   1

1

, ,N y
E W K

x
   and  is an op-   ˆ 0m y 

timal method. 
Proof. For the cases 2

1s sx x 
   with 0s s  we 

simply apply the same structure of proof as in Theorem 3. 
For the case 

0

2
sx    there remains some work. 

Our construction will depend on whether or not 
, that is whether or not  with  

0
0sy 

 
0 0s 

 
0 0
, 0s sx y  ,0 . 

First we notice 
0sy N

0j

. Assume not. Then if 
 we also know 

0
 since for all 

 we assumed 
0

0sy N 
j N

0sx 
  . Since 0  we know 

. Then by definition of 
0x

00 0s  s  we know for 

00 s s  , 

  0

1
1

0
1

1s s
l

s s

y y
l

x x







 


 

and substituting 0=s s 1  we have  

  0 0 0

0

0 0 0

11
0

1

1
s s s

l
s s s

y y y
l

x x x







  


 

which contradicts the definition of . Therefore  0l

0sy N  and if     0 0

2
, 1s s cx y c c , 1    then  

c N . 
In either case, 

0
0sy   or , the dual problem 

is of the form 
0

0sy 

 2

2
max,

L
f             (29) 

1 22 2

0

1, , .
N

jX
j

f K f f X




    

The corresponding Lagrange function is then  

 
 

    
2

2

1 2 1 22
0

, , 1 1
1

j N
j j

j

a
f j

j
     





j    


  

where N
j  is the characteristic function of  

 N:j j . 
Case 1):  

0

If  let  correspond to the index satisfying  
0s 

0 c
y

0sy 

    0 0

2
, 1 ,s s cx y c c 1 .    

To determine 1 2
ˆ ˆ,   let 1̂y x 2

ˆ    be the line  

through the point  0 0
,s sx y

 

 that is parallel to the line 

from the origin to  2

01 , 1l
0 0l l   . That is, let  

  0

1

1 0 2
ˆ ˆ ˆ1 ,l sl y

0 0 1sx  


    

2̂

      (30) 

So for any point of break we have 1̂s sy x    and 
for any index 1j N  , we obtain 

    2 2

1 2
ˆ ˆ1 1 1j jj j j .         

1

 

If  then j N

      

    
0

1

1 0

1

ˆ 1 1 1 1 1

1 1

0.

j l j

j j

j l j

j j

   

 





     

   



 

Thus for the chosen 1̂  and 2̂  and any f X  we  

have  1 2
ˆ ˆ, , 0f   

ˆ

. 

To construct f X  admissable in (24), let ˆ 0ja   
for 0,j c l  and define  by the system  

0
ˆ ˆ,c la a

12 2
2

0

ˆ ˆ1,
N

j
X j

f K f 




  

and since 00 c N l    this becomes 
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 0 0

2
22 2

2

ˆ
ˆ ˆ 1, .

1

c
c c l l

a
a a

c
    


 

So let  and ˆ 1ca c    
0

1 222

0

1 1
ˆ c

l
l

c
a

 


  
 
 
 

.  

Then for  the function   
0

22 1c c     sx

  0

0

ˆ ˆ ˆ lc
c lf z a z a z   is admissable in (24) with  

 1 2
ˆ ˆ ˆ, , 0f     

Therefore   1 2 1 2
ˆ ˆ ˆ ˆ, , min , ,f Xf f ˆ      and by 

construction we have 
2ˆ 1
X

f   and 
21 2

0
ˆN

jj
K f 


  

so that 

12 2
2

1 2
=0

ˆ ˆˆ ˆ1 0
N

j
X j

f K f  
           
  

and conditions (a) and (b) of Theorem 2 are satisfied. 
Case 2):  

0

If  then , and , as  
0sy 

0
0s 0 0

this is the only point in the set  
y    , 0s sx y  ,0

 


0 0s 

    2
0,0 1 , 1j

j
j j



  
 




 with a -coordinate  y

of . Furthermore, as  is a point of break of 0 (0,0)   
we know 0j   for all . Since  then by  j 0 0s 

the definition of 0s  we know   0

1
1

0
1

1l

y
l

x



  . As  

   
      0

11

01

11

0

1max

1 1max

j
j

j l
j N

y
j

x

j l



 









 

   
  (31) 

then we obtain equality,   0

1
1

0
1

1l

y
l

x



  . 

Define 1 2
ˆ ˆ,   by (25) so 1

1
1

ˆ y

x
   and . If we 

let 

2̂ 0 

f̂ X  be     0

0

1 2ˆ l
lf z z


  then 

   

12 2
2

1 2
0

2
1

ˆ ˆˆ ˆ1

ˆ 1 1 0 0 0.

N

j
X j

f K f  

 





          

    


 

In addition f̂  is admissable in extremal problem (24)  

as 
2ˆ 1
X

f   and 
21 2

0
ˆ 0

N

jj
K f 


  . 

To justify  simply note that as   1 2
ˆ ˆ, , 0f   

 1 1,

 1

1

1 1 0j

y
j

x
    . So we have  

   
2

1
1 2 0

1

ˆ ˆ, , 1 1 0
1

j

jj

a y
f j

j x
  



 
      
 . Since  

 1 2
ˆ ˆ, , 0f     then f̂  minimizes . 

For both cases, we now consider extremal problem 
1 22

1 2
0

ˆ ˆ min, .
N

j jX
j

f K f y f X 




        (32) 

This problem can be written as  
2

12

1 2
0 0

ˆ ˆ min,
1

N
j

j j j
j j

a
a y

j
  

 

 

  
    

which will have solution  

  221
1 2

2

1 ˆ: 0 1, 0
ˆ ˆ1 1

ˆ0 : ,or 0

j

jj

j
y j N

ja

j N


  





       
  


 

So by Theorems 1 and 2 we have obtained the optimal 
error and an optimal method for all scenarios. In each 
case i and ii, 1̂  and 2̂  are given by (25). In each case, 
the error of optimal recovery is  

  2
1 2
ˆ ˆ, ,NE W K       which for case 2) simplifies 

to   1

1

, ,N y
E W K

x
  . Also for each case, a method of 

optimal recovery is given by   1

0
ˆ N j

jj
m y a z




   where  

in case 2) this simplifies to  since in case 2),  ˆ 0m y 

2̂ 0  .  
One may be able to reduce the amount information 

needed without affecting the error of optimal recovery. 
Therefore, by reducing the number of terms in the 
optimal method we reduce the compututaions needed. 
The following ideas are in [9]. We consider the subset 

sJ C , 0s s  as the set of all points whose slope to 
the origin is greater than the slope of  x  for 

 1,s sx x x  , that is the slope of the line segment 
between points  ,s sx y  and  1 1,s s x y  . Define the 
sets 

   1 1

1

0 1: 1 s s
s j

s s

y y
J j N j

x x


 



,
 

      
 

  (33) 

for 00,1, ,s s   where if 0j   define  

  1j j
1

   . Now consider the same problem as  

stated in Theorem 4 using only information sJK f . For  

0sy  , we have 1 1

1 1

s s s s

s s s

y y y y

sx x x x
 

 


 


 and so 

x y  satisfies (26) and 0j   for all  then  0j 
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      2

1 1, , , 1 , 1s s s s j 
j Js

x y x y j j 


   . In this si-  

tuation, 00 s s   with , it was shown that the 
error of optimal recovery only involves the two points  

0sy 

   1 1, , ,s s s s x y x y 
N

 then the reduction in information  

from K  to sJK  will not change the error. That is  

  , , , ,sJNE W K E W K    and if sJ N  , an opti- 

mal method is 

      
12

1 2
0

ˆ ˆˆ 1 1 1 k

k

N

k

j
j k k j

k

m y j j y z  




   


  (34) 

where .  0
, ,

Nj jy y y




3.3. Varying Levels of Accuracy Termwise 

In Theorems 3 and 4 the inaccuracy of the information 
given is a total inaccuracy. That is, the inaccuracy 2  is 
an upper bound on the sum total of the inaccuracies in 
each term, be it a finite or infinite sum. For Theorems 3 
and 4 however, there is no way to tell how the inaccuracy 
is distributed. In particular, with regards to Theorem 4, 
the situations in which the given information  

 satisfies  0 , , Ny y y    1

, = 0, ,j jK f y N j N    1  

or for some particular  satisfying  m 0 1m N  

:

0 :j j

j m
K f y

j m

 
   
  

are treated the same. For the next problem of optimal 
recovery we address this ambiguity. The problem of opti- 
mal recovery is to determine an optimal method and the 
optimal error of recovering f X 


, from the infor- 

mation  0 1, , N
Ny y y      satisfying 

j j jK f y    

for some prescribed 0j   and . 0, , 1j N 
To define X   use conditions (6) and (20) as pre- 

viously but impose an additional restriction. We add the 
condition 

   11 2 , 0,j jj j j      1, .  

Define  0 , , N     1  where 0j   are the le- 

vels of accuracy. If  define 2
0 0 1  

 22
0

0

max 0 : 1 1, 1 .
p

j j
j

p p j p N 


 
      

 
  (35) 

So  and furthermore 
00 0p  1 0p   . The case  

 will be treated seperately. 2
0 0  1
Theorem 5: If  let 2

0 0 1  

 
0 1 0

1ˆ
2p p


 




           (36) 

 2

0

0

ˆ1 1 :ˆ
0 : 1

j
j

j j j p

p j N




     
    1

 

then the error of optimal recovery is given by  

 
0

2

0

ˆ, ,
p

N ˆ
j j

j

E W K    


          (37) 

and  

 
0

0

ˆˆ
p

j
j j

j

m y y z


                  (38) 

is an optimal method. 
If  then 2

0 0 1     1 2
0, ,NE W K     and  

  0m̂ y   is an optimal method. 
Proof. The dual problem in this situation is  

 2

2
max

L
f                (39) 

 

2

2 2
2

1, , 0,1, , 1
1

j

jX

a
f j

j
 N  


   (40) 

with the corresponding Lagrange function  

 
 

 
    

 
    

2 2
12

2
0 0 0

2
1

2

2
0

2

2

2

,
1 1

1 1
1

1 1
1

N
j j

j j j
j j j

N
j

j j
j

j

j
j N

a a
f a

j j

a
j j

j

a
j j

j

   

 



  

  









   
 

   


  


  











 

The method of proof will be to first determine  

 1
ˆ ˆ ˆ ˆ, , , N      1 0 with  and ˆ ˆ, j   f̂ X  admi- 

ssable in (31) and satisfying 1) and 2) of Theorem 2. 
If 2

0 0 1   , define ̂  and f̂  as follows:  

 
0 1 0

1ˆ
2p p


 




 

 2

0

0

ˆ1 1 :ˆ
0 : 1

j
j

j j j p

p j N




     
    1

 

 

 
0

0

0

1 2

22
0

0 1

0

1 :

1
ˆ 1 1 :

0 :

j

p

j j j
j p

j j

a j j

j p



 
 

 

  

1

.

p

p         
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To verify  assume  in which case ˆ 0j 

1 
0j p

2 j    
0

2

1 0j pj p   1  and hence  

   

    

0

0

0

2

1 0

1 0
1 0

1ˆ 1 1
2

1
1 2

2

j j
p

p
p

j j
p

j p
p

 










   


     


1 0.j

 

To show for the chosen ̂  and any f X ,  

 ˆ,f   0

1j

, we consider the cases  or .  0j p 0j p

For  we know by assumption  0j p
  

0 1 0 2p jp      and hence  

     
0 1 0

1ˆ 1 1 1 1
2

1 1 0

j
p

j j
p

 
 

    


  

j

0.

 

For   0j p

   

       

2

2 2

ˆ ˆ1 1

ˆ 1 1 1 1

j j

j j

j j

j j j j

 

 

   

        
 

Thus for any f X ,  ˆ,f   0 . For the con- 

structed f̂ , it can be shown that  ˆ,f   0  as de-  

sired. and thus f̂  minimizes the Lagrange function. 

To show f̂  is admissable in (31) we can clearly see 

that for , 0pj 
 

2

2
2

ˆ

1

j

j

a

j



. It remains to show 

 
0

0

2
p 

2

1

2

0

ˆ

2

pa

p




1p N 1  for . Assume not, then  o

 
 

0

0

0

22 2
12

0 1 0

1
1 1

2

p

j j p
j p

j
p

  



 

        
 


 

which occurs if and only if  

 
0 1

22

0

1 1
p

j j
j

j 




   

which contradicts the definition of 0  unless  
. If  then  and hence  

p
N0 1p N  0 1p N  0 1p  

we no longer need the condition 
 

0

0

2

1 2
12

0

ˆ

2

p

p

a

p





 in  

order for f̂  to satisfy (31). 
Furthermore 

0

0 0

0 0

2 22

1 1
0

2 2

0 0

ˆ ˆ ˆ

ˆ ˆ1 1

p

j j p p
X j

p p

j j j j
j j

f a a

a a

 

 

 


 

 
  
 

    
            



 
 

and so f̂  is admissable in (31). 

By the construction of f̂  we also have the results  

ˆ 1
X

f   and 
 

2

2
2

ˆ

1

j

j

a

j



 for  while 0j p ˆ 0j    

for . Thus 0j p f̂  satisfies 2) of Theorem 2 as  

 

2
12

2
2

0

ˆ
ˆˆ ˆ1 0

1

N
j

j j
X j

a
f

j
  





 
    .        

   

We now proceed to the extremal problem  

0 22

=0

ˆ ˆ min, .
p

j j jX
j

f K f y f X       

Notice the upper bound on the sum is 0 1p N   as 
ˆ 0j   for any . This extremal problem will 

have solution 
0j p

 
  02

0

ˆ 1 ˆ :
ˆ ˆ .1

0 :

j
j j j

j j j

j
y y j p

a j

j p




 

 
   




 
 

Therefore the error of optimal recovery is given by  

 
0

2

0

ˆ ˆ, ,
p

N
j j

j

E W K    


   

and  

 
0

0

ˆˆ
p

j
j j

j

m y y z


    

is an optimal method. 
Now we proceed to the case . Choose 2

0 0 1  
1

0̂    and ˆ 0j   for . Then as 0,1,j  , 1N 
 1j0 j    for all  0j 

   
       1

0

ˆ 1 1

1 1 1 1 1 1 0.

j

j

j j

j j j



 

  2

       
 

Thus  ˆ,f   0  for all f X  . Let 1 2
0 0â     

and   0
ˆ ˆf z a  and notice 

2ˆ 1
X

f   and clearly  

2 1
0 0â 2

0    so f̂  is admissable in (31). Further-  

more  

   2

0 0
ˆ ˆ ˆˆ, 1f a  0    
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and so    ˆ ˆ ˆ, min ,
f X

f f 


 . Also, 

 
 

2
12

2
2

0

ˆ
ˆˆ ˆ ˆ1 1 1 0 0

1

N
j

j j
X j

a
f

j
   





 
               

 .  

Therefore   1 2
0

ˆ, ,NE W K       and  ˆ 0m y    

is an optimal method.  
The optimal method may not use all of the information 

provided as 0  may be less than . Thus in- 
creasing  may not change  and hence not change 
the error or the method. If 

p 1N 
N 0p

p N0 1  , then  

   0 1, , , ,p NE W K E W K    

and we can reduce the amount of information needed for 
a given optimal error. 

If 0  we may be able to reduce the error of 
optimal recovery if we have more information available. 
Fix 

1p N 

 0 1, ,      . The greater number of terms 
we have of Kf  then the better we may be able to 
approximate f , that is the smaller the optimal error of 
recovery. Let 

 22

0

max 0 : 1 1
p

j j
j

N p j  


 
    

 
      (41) 

and for   N  

   , , , ,N NE W K E W K    

for any . If we know the first 0N  N  terms with 
some errors, then further increasing the terms will not 
yield a decrease in the error of optimal recovery. 

3.4. Applications: The Hardy-Sobolev and 
Bergman-Sobolev Classes 

We now apply the general results to the Hardy-Sobolev 
and Bergman-Sobolev spaces of functions on the unit 
disc. Let  denote the set of functions holomor- 
phic on the unit disc. Define the Hardy space of functions  

  

 2   as the set of all ,  f     0
j

jj
f z a




  z  

with  2f  
   where  

 
2

2
0

.j
j

f a




    

The Hardy-Sobolev space of functions,  2,r 


, are 
those  such that  and   f  

 
  2rf  

2,rH  is the class consisting of those  2,rf     

with  
 2

1rf 
 

. The Bergman space of functions  

 2   is the space of all  such that  f  

   
2

22
d .

L
f f z A   

 

That is,  2   is the space of all holomorphic func- 
tions in  2 L . The Bergman-Sobolev space of func-  

tions,  r2,  , consists of  with  f  
   2rf    and  2,r   as the class of all 

 2,rf    with  
 2

1r

L
f 


. 

So each space can be considered as the space X   
with 

     

   

2

2,

2

2,

0 :

!
: ,

!

! 1
: ,

! 1

r
j

r

j r

j
X r j X

j r

j
r j X

j r j r









 
      

        









.  

For each space of functions we have the collection of  

points       2
, 1 ,X j j j

j
C j   1j


    . If  

 X  2,r  then for  j r

       
 

2 2

2 2 1 !!
1 1

! !j

jj
j j

j r j r


   
          

.




 

Therefore for 0,1,r     

     2
1 ! 1

1 0lim lim
! 1j

j j

j r
j

j j




 

 
.   

 
 

In this case we consider the collection of points  

      22,
2, 0,0 1 , 1 .r

r j
j

C j


j
    
 




  

It is easy to see that if  then the piece-   2,rM co C
 

wise linear function     max : ,x y x y M    will  

have points of break  

   
 

2
1 !

0, , 1 : , 1, .
!

j
r j j r r

j r

          


    


      

 


 (42) 

For the space , the points to consider are  2,r

      2,

22,0,0 1 , 1 .r
r

j
j

C j


j
    
 




  

Again let  and        2,max : , rA
x y x y co C  

thus the points of break of   will be precisely  
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2
1 !

!
0, , 1 : , 1, .

1

j

j r
r j j r r

j r

                    
   

  
  






 

 



 

For the special case of , the function 2,0   has only 
a single point of break at the origin as  

     2,0 0,0 1, 1
j

C j j


  


 

so that  x x   for . Furthermore,  does 
not satisfy (7) as  

0x  2,0

     
1

2,0 1
1lim lim

1j
j j

j j
j




 
   


 1 1.  

Thus, in the applications of the general results, this 
case will be treated separately. 

For notational purposes, let       , ,s s s sx y x X y X , 
 be the points of break of 0,1,s     for the space 

X . 
Corollary 1. Let  or . If  2,rX  2,rX 

2
1s sx x 
 

s 

 with  or  then the error of 
optimal recovery is given by (13) and (14) is an optimal 
method. If  and  then 

0s 

0r 

0

 , ,E W K

r

0  1   and 
 is optimal.  ˆ 0m y 

Proof. For the spaces  or , 2,r 2,rX  0sy   if 
and only if  and . Thus  if and only 
if  or . Thus apply Theorem 3 to obtain the 
result for all spaces except . The dual problem in 
the case  leads to a simple Lagrange function. 
The dual problem is specifically 

0s 
0r 

2,0

0

2,0

r 0s y
0s 

X

 

2 2 2

2
2

0 0 0

max, 1, .
1 1 1

j j j

j j j

a a a

j j j


  

  

 
  

     

Therefore the Lagrange function is simply given by  

 
 

    
2

1 2 1 22
0

, , 1 1 .
1

j

j

a
f j j

j
   





    


  

Now if we let  and  then  1̂ 1  2̂ 0 

 1 2
ˆ ˆ, , 0f     for any . So now proceed as in  f X

2,0Theorem 3. As any  will minimize , choose f̂  
f̂  as in (18). The extremal problem (19) is solved 

similarly, and as  then  for 2̂ 0  0ja  0,1,j   . 
 
It should be noted that the optimal method described is 

stable with respect to the inaccurate information data. 
We now apply Theorem 4 to the Hardy-Sobolev 

spaces  and Bergman-Sobolev spaces  in 
which 0

2,r 2,r
s  is explicitly defined to be the smallest non- 

negative integer satisfying  

     2 2

1

1 1

1 2 1N s s
N s s  


   

 

For the case ,  for all . 
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ˆ
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