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ABSTRACT 

Numerical experiments are given to verify the theoretical results for superconvergence of the elliptic problem by global 
and local L2-Projection methods. 
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1. Introduction 

The elliptic problem seeks u in a certain functional space 
such that  

in u f                     (1) 

 in u g                  (2) 

where  denote the Laplacian operator. 
Let h  be a finite element partition of the domain T   

with characteristic mesh size h. Let  be any 
finite element space for u associated with the partition 

.  

 1
h gV H 

hT
The L2-Projection technique was introduced by Wang 

[1-3]. It projects the approximate solution to another 
finite element dimensional space associated with a coarse 
mesh.  

Now, we start with defining a coarse mesh T  where 
h  satisfying:  

h                         (3) 

with . Define finite element space  

 . Let 
0,1 
 2sV H  


Q  to be the L2-Projector onto the 

finite element space V  [1,4,5]. The Projector Q can 
be considered as a linear operator (projection) from 

 onto the finite element space 2L  V  [6,7]. 

2. Superconvergence by Global 
L2-Projection 

The following theorems can be found in [1]. 
Theorem 2.1: Assume that 1 1s k  


 and the finite 

element space . If the exact solution  2sV H


    1 1 1k r
gH H   u H  , then there exists a 

constant C such that  

 
   1 ,

h h

r
h

u Q u h u Q u

Ch u Ch u u


  

 

   

   
 

where  1 min 0,2s s      and  is the finite 
element approximation of (1) and (2). 

hu

Theorem 2.2: Suppose that 1 1s k  
  u

. Let the sur-
face fitting spaces  and h  be the finite 
element approximation of (1) and (2). Then, the post- 
processing of  is estimated by  

2sV H


hu

 
1

1 min 0, 2

k s

r s
  


  
. 

3. Numerical Experiments for Global 
L2-Projection  

In this section, we present several numerical experiments 
to verify the theoretical analysis in [1]. The triangulation 
 is constructed by: 1) dividing the domain into an hT

n3 n3  rectangular mesh; 2) connecting the diagonal line  

with the positive slope. Denote 
3

1
h

n
  as the mesh size. 

The finite element space is defined by 

    1
1; ;  ,  on h g hK

V v H v P K K T v g .         

We define V  as follows: 

    2
2: ;

K
V v L v P K K T       .  

Example 3.1: Let the domain    0,1 0,1    and 
the exact solution is assumed as  
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   1 1u x x y y   .  

Table 1 shows that after the post-processing method, 
all the errors are reduced. The exact solution in L2-norm 
of hu Q u  has the similar convergence rate as  

hu u . There is no improvement for the u in L2-norm. 
However, the error in H1-norm have higher convergence  

rate, which is shown as  1.3O h  for  hu Q u   .  

The order of convergence rate is  better than   0.3O h 
  ,hu u   see Figures 1(a) and (b). 

Figures 2(a) and (b) give results for the finite element 
approximation of (1)-(2) before and after post-processing. 

Example 3.2: Let the domain    0,1 0,1    and 
the exact solution is assumed as  

   sin π cos π .u x y  

 
Table 1. Errors on uniform triangular meshes Th and Tτ. 

h 
1hu u  hu u  

1hu Qu  hu Qu  

2−3 0.6632e−2 0.1287e−3 0.1427e−2 0.1227e−3 

3−3 0.2799e−2 0.2295e−4 0.4332e−3 0.2185e−4 

4−3 0.1433e−2 0.6017e−5 0.1763e−3 0.5730e−5 

5−3 0.8294e−3 0.2015e−5 0.8504e−4 0.1919e−5 

6−3 0.5223e−3 0.7992e−6 0.4596e−4 0.7610e−6 

 O h  0.9998 1.9993 1.3504 1.9996 

 

             
(a)                                                               (b) 

Figure 1. (a) Convergence rate of L2-norm error; (b) Convergence rate of H1-norm error. 
 

      
(a)                                                             (b) 

Figure 2. (a) Surface plot of approximation solution uh; (b) Surface plot of approximation solution Qτuh.      
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From the results shown in Table 2, it is clear that the 

exact solution u in H1-norm has the superconvergence, 
but there is no improvement in the L2-norm, see Figures 
3(a) and (b). The finite element solution given in Fig-
ures 4(a) and (b). This agrees well with the theory.  

Example 3.3: Let the domain    0,1 0,1    and 
the exact solution is assumed as  

  cos π
.

2

x y
u


  

Table 3 gives the errors profile for Example 3. Notice  

that, the gradient estimate is of order , that is   1.3O h 
much better than the optimal order . Although, 

there is no improvement in the L2-norm, see Figure 5.  

 O h

Figure 6 shows that the approximation solutions  
and . 

hu

h
Also, our numerical results and theoretical conclusions 

in Theorems (2.1) and (2.2) show highly consistent. 

Q u

 
Table 2. Errors on uniform triangular meshes Th and Tτ. 

h 
1hu u  hu u  

1hu Qu  hu Qu  

2−3 0.9629e−1 0.1598e−2 0.2242e−1 0.1498e−2 

3−3 0.4063e−1 0.2850e−3 0.6872e−2 0.2669e−3 

4−3 0.2080e−1 0.7475e−4 0.2810e−2 0.6998e−4 

5−3 0.1204e−1 0.2503e−4 0.1359e−2 0.2343e−4 

6−3 0.7582e−2 0.9929e−5 0.7363e−3 0.9294e−5 

 O h  0.9998 1.9991 1.3427 1.9995 

 

             
(a)                                                              (b) 

Figure 3. (a) Convergence rate of error L2-norm error; (b) Convergence rate of H1-norm error. 
 

     
(a)                                                             (b) 

Figure 4. (a) Surface plot of solution uh; (b) Surface plot of approximation solution Qτuh. 
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Table 3. Errors on uniform triangular meshes Th and Tτ. 

h 
1hu u  hu u  

1hu Qu  hu Qu  

2−3 0.9135e−1 0.1770e−2 0.2150e−1 0.1689e−2 

3−3 0.3855e−1 0.3157e−3 0.6579e−2 0.3010e−3 

4−3 0.1973e−1 0.8278e−4 0.2692e−2 0.7893e−4 

5−3 0.1142e−1 0.2772e−4 0.1303e−2 0.2643e−4 

6−3 0.7193e−2 0.1099e−4 0.7062e−3 0.1048e−4 

 O h  0.9999 1.9993 1.3424 1.9994 

 

             
(a)                                                              (b) 

Figure 5. (a) Convergence rate of L2-norm error; (b) Convergence rate of H1-norm error. 
 

      
(a)                                                             (b) 

Figure 6. (a) Surface plot of approximation solution uh; (b) Surface plot of approximation solution Qτuh. 
 

4. Superconvergence by Local L2-Projection  

Notice that, the exact solution u may be not smooth 
globally on  in practical computation, although the 
solution might be smooth enough locally for a good su-
per convergence.  



To this end, let  be a subdomain of  where the  0 
exact solution u is sufficiently smooth. Let  be an-  1

other subdomain of   such that 0 1 . Define fi-
nite element space  The L2-projection 

  
2

1
sV H 

Q  from  2L   onto the finite element space V  is 
said to be local L2-projection. 

The following theorem can be found in [1]. 
Theorem 4.1: Assume that 1 1s k    and the finite 

element space  2
0

sV H
 . If the exact solution 

   1 1
0

k rH H   1 ,gu H       then there exists a 
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constant C such that  

 

 
0 0

0 0

( 1) ,

h h

r
h

u Q u h u Q u

Ch u Ch u u


  

 

 


 

   

   
 

where  is the finite element approximation of (1)-(2). h

Theorem 4.2: Suppose that 1
u

1s k   . Let the sur- 
face fitting spaces  0 u2sV H

  and h  be the finite 
element approximation of (1)-(2). Then, the post-proc- 
essing of  is estimated by  hu

 
1

.
1 min 0,2

k s

r s
  


  
 

5. Numerical Experiments for Local 
L2-Projection  

In this section, we present several numerical experiments 
to verify the theoretical analysis in [1]. The triangulation 

 is constructed by: 1) dividing the domain into an  hT
3n n 3  rectangular mesh; 2) connecting the diagonal line 

with the positive slope. Denote 
3

1
h

n
  as the mesh size.  

The finite element space is defined by  

    1
1; ; ,  on .h g hK

V v H v P K K T v g         

We define V  as follows: 

    2
2: ;

K
V v L v P K K T       .  

Example 5.1: Let the domain    0,1 0,1    and 
   0 0,0.5 0,0.5   . The exact solution is assumed as 

1
.

2
u

x y


 
 

It is clear that the exact solution u is singular and f 
blows down at the boundary of    0,1 0,1   , see  

Figure 7, however, h  and hQ u  are sufficiently smooth 
on 

u
   0,1 0,1   , see Figure 8. 

Table 4 shows that after the post-processing method, 
all the errors are reduced. The exact solution in L2-norm 
of hu Q u  has the similar convergence rate as 

hu u  which is shown as . There is no im- 
provement for the u in L2-norm. However, the error in 
H1-norm have higher convergence rate, which is shown  

 2O h

as  1.3O h  for  hu Q u   . The order of conver-  

gence rate is  0.3O h  better than  h hu u  , see 
Figure 9. 

   Example 5.2: Let the domain 0,1 0,1    and 
   0 0.5,1 0.5,1   . The exact solution is assumed as  

2 2u x y   

Obviously, the exact solution has singularity on the 
origin at the domain    0,1 0,1   , see Figure 10(a). 
On the same domain the function f blows down at the 
boundary, see Figure 10(b). The approximation solu- 
tions u and  have been plot in the proper subdo- 
main 

hQ u
   0

From the results shown in Table 5, it is clear that the 
exact u in H1-norm has the superconvergence, but there is 
no improvement in the L2-norm, see Figure 12. This 
agrees well with the theory. 

0.5,1 0.5,1   , see Figure 11.  

Example 6: Let the domain    0,1 0,1    and 
   0 0.5,1 0.5,1   . The exact solution is assumed as 

2 2
.

y
u

x y



 

From Figures 13(a) and (b), respectively observe that 
the exact solution has strongly singularity on the origin 
of the domain    0,1 0,1  

hu hQ u

 and the function f blows 
up at the boundary, Figure 14 show how the approxima-
tion solution  and  look like at the proper sub-
domain    0  0.5,1 0.5,1 . 

 

      
(a)                                                             (b) 

Figure 7. (a) The exact solution u blows up; (b) f blows down at the boundary. 
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(a)                                                             (b) 

Figure 8. (a) Surface plot of approximation solution uh; (b) Surface plot of approximation solution Qτuh. 
 

Table 4. Errors on uniform triangular meshes Th and Tτ. 

h 
1hu u  hu u  

1hu Qu  hu Qu  

2−3 0.3221e−1 0.1497e−2 0.1026e−1 0.1363e−2 

3−3 0.1291e−1 0.2384e−3 0.2566e−2 0.2169e−3 

4−3 0.8072e−2 0.9306e−4 0.1429e−2 0.8466e−4 

5−3 0.5871e−2 0.4921e−4 0.9977e−3 0.4476e−4 

6−3 0.4613e−2 0.3037e−4 0.7691e−3 0.2763e−4 

 O h  0.9998 2.0030 1.3360 2.0035 

 

      
(a)                                                               (b) 

Figure 9. (a) Convergence rate of L2-norm error; (b) Convergence rate of H1-norm error. 
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(a)                                                              (b) 

Figure 10. (a) Surface plot of exact solution u; (b) f blows down at the boundary. 
 

      
(a)                                                              (b) 

Figure 11. (a) Surface plot of approximation solution uh; (b) Surface plot of approximation solution Qτuh. 
 

Table 5. Errors on uniform triangular meshes Th and Tτ. 

h 
1hu u  hu u  

1hu Qu  hu Qu  

2−3 0.1352e−1 0.1400e−2 0.6141e−2 0.1287e−2 

3−3 0.6835e−2 0.3596e−3 0.2110e−2 0.3314e−3 

4−3 0.4566e−2 0.1607e−3 0.1215e−2 0.1481e−3 

5−3 0.3427e−2 0.9058e−4 0.8529e−3 0.8352e−4 

6−3 0.2743e−2 0.5802e−4 0.6590e−3 0.5350e−4 

 O h  0.9923 1.9806 1.3581 1.9792 
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(a)                                                              (b) 

Figure 12. (a) Convergence rate of L2-norm error; (b) Convergence rate of H1-norm error. 
 

      
(a)                                                              (b) 

Figure 13. (a) Surface plot of exact solution u; (b) f blows up at the boundary. 
 

      
(a)                                                              (b) 

Figure 14. (a) Surface plot of approximation solution uh; (b) Surface plot of approximation solution Qτuh. 
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Table 6. Errors on uniform triangular meshes Th and Tτ. 

h 
1hu u  hu u  

1hu Qu  hu Qu  

2−3 0.1186e−1 0.4006e−3 0.4708e−2 0.2779e−3 

3−3 0.5979e−2 0.1009e−3 0.1621e−2 0.6959e−4 

4−3 0.3992e−2 0.4490e−4 0.9518e−3 0.3094e−4 

5−3 0.2996e−2 0.2527e−4 0.6760e−3 0.1740e−4 

6−3 0.2397e−2 0.1617e−4 0.5261e−3 0.1113e−4 

 O h  0.9943 1.9949 1.3304 1.9989 

 

      
(a)                                                              (b) 

Figure 15. (a) Convergence rate of L2-norm error; (b) Convergence rate of H1-norm error. 
 

Table 6 gives the errors profile for Example 6. Notice  

that, the gradient estimate is of order  that is   1.3O h 
much better than the optimal order . Although, 
there is no improvement in the L2-norm, see Figure 15. 
Also, the numerical results and theoretical conclusions 
show highly consistent.  

 O h
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