American Journal of Computational Mathematics, 2012, 2, 249-257
http://dx.doi.org/10.4236/ajcm.2012.24034 Published Online December 2012 (http://www.SciRP.org/journal/ajem)

+53 Scientific
#3% Research

Application for Superconvergence of Finite Element
Approximations for the Elliptic Problem by
Global and Local L*-Projection Methods

Rabeea H. Jari, Lin Mu
Department of Applied Science, UALR, Little Rock, USA
Email: rhjari@ualr.edu, Ixmu@ualr.edu

Received February 12, 2012; revised May 21, 2012; accepted July 12, 2012

ABSTRACT

Numerical experiments are given to verify the theoretical results for superconvergence of the elliptic problem by global

and local L*-Projection methods.
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1. Introduction

The elliptic problem seeks U in a certain functional space
such that

—Au=finQ (1)
u=g in 0Q 2)

where A denote the Laplacian operator.

Let T, be a finite element partition of the domain
with characteristic mesh size h. Let V, < Hy (Q) be any
finite element space for U associated with the partition
T, .

The L*-Projection technique was introduced by Wang
[1-3]. It projects the approximate solution to another
finite element dimensional space associated with a coarse
mesh.

Now, we start with defining a coarse mesh T, where
[l h satisfying:

r=h" 3)

with a e (0,1) . Define finite element space
V.cH*?(Q). Let Q, to be the L>-Projector onto the
finite element space V, [1,4,5]. The Projector Q,can
be considered as a linear operator (projection) from
L>(Q) onto the finite element space V. [6,7].

2. Superconvergence by Global
L*-Projection

The following theorems can be found in [1].
Theorem 2.1: Assume that 1<s<k+1 and the finite

element space V, = H**(Q). If the exact solution
ue " (Q)nH™(Q)n Hé (Q), then there exists a
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constant C such that
Ju=Quy |+ V. (u-Qu, )|
< Che [ull+-Ch* [V (u-u, ).

where o=s—1+amin(0,2-s) and u, is the finite
element approximation of (1) and (2).

Theorem 2.2: Suppose that 1<s<k+1. Let the sur-
face fitting spaces V, = H*?(Q) and u, be the finite
element approximation of (1) and (2). Then, the post-
processing of U, is estimated by

k+s—1
a= .
r+1—min(0,2—s)

3. Numerical Experiments for Global
L’-Projection

In this section, we present several numerical experiments
to verify the theoretical analysis in [1]. The triangulation
T, is constructed by: 1) dividing the domain into an
n’xn’ rectangular mesh; 2) connecting the diagonal line

with the positive slope. Denote h = # as the mesh size.
The finite element space is defined by
V, ={ve H;(Q):v], e R(K);V KeT,,v=g on Q.
We define V, as follows:
V. ={ve}(Q):v], eR(K);VKeT,}.

Example 3.1: Let the domain Q=[0,1]x[0,1] and
the exact solution is assumed as
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u=x(1-x)y(1-y).

Table 1 shows that after the post-processing method,
all the errors are reduced. The exact solution in L*-norm
of ||u -Q.u, || has the similar convergence rate as
||u —uh|| . There is no improvement for the u in L*-norm.
However, the error in H'-norm have higher convergence

rate, which is shown as O(h”) for "VT (u—Qruh)”.

The order of convergence rate is O(hm) better than

[V (u=uy)|. see Figures 1(a) and (b).
Figures 2(a) and (b) give results for the finite element
approximation of (1)-(2) before and after post-processing.

Example 3.2: Let the domain Qz[O,l]x[O,l] and
the exact solution is assumed as

u = sin(nx)cos(my).

Table 1. Errors on uniform triangular meshes T, and 7.

h u—u,], Ju—u,] Ju-Qu,|, Ju—Qu|

27 0.6632¢—2 0.1287¢-3 0.1427¢-2 0.1227¢-3

37 0.2799¢-2 0.2295¢—4 0.4332¢-3 0.2185¢—4

43 0.1433e-2 0.6017¢—5 0.1763¢-3 0.5730e-5

57 0.8294¢-3 0.2015¢-5 0.8504¢—4 0.1919¢-5

6° 0.5223¢-3 0.7992¢—6 0.4596e—4 0.7610¢—6

O(h) 0.9998 1.9993 1.3504 1.9996
10° 10°
-&-|lu-ul - u-u),
—+=|lu - Oul| —+-|u-Ou,,
10 —o— O(I) - —— O(h)
+\\ o ﬂ‘\ﬂ
10° e TSl e
~ho
S~k
N
. 3 " -5 1
v 10" 10° 10° e : 8
10 10 10
(a) (b)

Figure 1. (a) Convergence rate of L2-norm error; (b) Convergence rate of H*-norm error.

(@)
Figure 2. (a) Surface plot of approximation solution u,; (b) Surface plot of approximation solution Q.u,,.
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From the results shown in Table 2, it is clear that the
exact solution U in H'-norm has the superconvergence,
but there is no improvement in the L*-norm, see Figures
3(a) and (b). The finite element solution given in Fig-
ures 4(a) and (b). This agrees well with the theory.

Example 3.3: Let the domain Q= [0,1]><[0,1] and
the exact solution is assumed as

. cos(n(x+ y))

Table 3 gives the errors profile for Example 3. Notice
that, the gradient estimate is of order O(h”), that is

much better than the optimal order O(h). Although,

there is no improvement in the L>-norm, see Figure 5.
Figure 6 shows that the approximation solutions U,
and Q,u, .
Also, our numerical results and theoretical conclusions

2 in Theorems (2.1) and (2.2) show highly consistent.
Table 2. Errors on uniform triangular meshes T, and 7.
h ju-u, Ju-u ju-Qu| Ju-qu
27 0.9629¢—1 0.1598e—2 0.2242e-1 0.1498e—2
373 0.4063e—1 0.2850e—-3 0.6872e—2 0.2669¢-3
473 0.2080e—1 0.7475e—4 0.2810e—2 0.6998e—4
57 0.1204e—1 0.2503e—4 0.1359¢—-2 0.2343e—4
6> 0.7582e—2 0.9929¢-5 0.7363e—3 0.9294e—5
O(h) 0.9998 1.9991 1.3427 1.9995
10° 10"
- -l a-lu-u),
—+=[lu-Quyl | —+-lu-Qul,
—e— O(1) 107 —e—O(h)
R\ = \‘
. Sk
. SN
‘ -3 *\
NS 10 N .
LS *
Re
10° : 10" :
10° 10 10° 10' 10° 10°
() (b)

Figure 3. (a) Convergence rate of error L>-norm error; (b) Convergence rate of H*-norm error.
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(®)
Figure 4. (a) Surface plot of solution u,; (b) Surface plot of approximation solution Q,u,.
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Table 3. Errors on uniform triangular meshes T, and 7.

h u—u,] Ju—u,] Ju-Qu,| Ju—Qu|
27 0.9135¢-1 0.1770e-2 0.2150e-1 0.1689¢—2
37 0.3855¢-1 0.3157¢-3 0.6579¢-2 0.3010e-3
43 0.1973¢~1 0.8278¢—4 0.2692¢—2 0.7893¢—4
57 0.1142¢-1 0.2772¢—4 0.1303e-2 0.2643¢—4
67 0.7193¢-2 0.1099¢—4 0.7062¢3 0.1048¢—4
O(h) 0.9999 1.9993 1.3424 1.9994
10° 10°

= -||u-u)| > =-u-uy),

—+=||u - Ouy| \ —+-|u- Quy,

—a—O(h) =N —&=0(h)

i T8 ]
" 10 "\\\ = -
~ S Rl
\\\ *\
e
‘\q o
Xy
®
w
10'5 = 104 L
10° 10’ 10? 10° 10' 10°
(a) (b)

Figure 5. (a) Convergence rate of L2-norm error; (b) Convergence rate of H*-norm error.
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4. Superconvergence by Local L?-Projection

Notice that, the exact solution U may be not smooth
globally on Q in practical computation, although the
solution might be smooth enough locally for a good su-
per convergence.

To this end, let Q, be a subdomain of Q where the

exact solution U is sufficiently smooth. Let Q, be an-

Copyright © 2012 SciRes.
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Figure 6. (a) Surface plot of approximation solution u,; (b) Surface plot of approximation solution Q.u,,.

other subdomain of Q such that Q, cQ,. Define fi-
nite element space V. cH*?(Q,) The L’-projection
Q, from L*(Q) onto the finite element space V. is
said to be local L*-projection.

The following theorem can be found in [1].

Theorem 4.1: Assume that 1<s<k+1 and the finite
element space V, < H*?(Q). If the exact solution
ue H"' (Q)NH™(Q,)"H, (), then there exists a
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constant C such that
"U - Qruh”QO +h* |Vz' (u -Q.u, )"QO
<Ch«h ||u||QO +Ch” ||V (u-u, )||Q ,
0

where U, is the finite element approximation of (1)-(2).

Theorem 4.2: Suppose that 1<s<k+1. Let the sur-
face fitting spaces V, = H*(€,) and u, be the finite
element approximation of (1)-(2). Then, the post-proc-
essing of U, is estimated by

k+s-1
a= .
r+1-min(0,2-5)

5. Numerical Experiments for Local
L*-Projection

In this section, we present several numerical experiments
to verify the theoretical analysis in [1]. The triangulation
T, is constructed by: 1) dividing the domain into an

n*xn’ rectangular mesh; 2) connecting the diagonal line

. . 1 .
with the positive slope. Denote h=—as the mesh size.

3
The finite element space is deﬁnec? by
V, ={ve H} (Q):V], €R(K);VK eT,,v=g on Q}.
We define V, as follows:

V. ={vel’(Q):v| P (K);VKeT,}.

Example 5.1: Let the domain Q=[0,1]x[0,1] and
Q, =[0,0.5]x[0,0.5] . The exact solution is assumed as
1
U= ————.
2-X-Yy

It is clear that the exact solution U is singular and f
blows down at the boundary of Q=[0,1]x[0,1], see
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2001

00
@
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Figure 7, however, u, and Q,u, are sufficiently smooth
on Q=[0,1]x[0,1], see Figure 8.

Table 4 shows that after the post-processing method,
all the errors are reduced. The exact solution in L*-norm
of "U_quh” has the similar convergence rate as
||u—uh|| which is shown as O(h?). There is no im-
provement for the u in L*-norm. However, the error in
H'-norm have higher convergence rate, which is shown

as O(h”) for "VT(U—quh)"- The order of conver-

gence rate is O(h0'3) better than "Vh (u —-Uy )" , see
Figure 9.

Example 5.2: Let the domain Q=[0,1]x[0,1] and
Q, =[0.5,1]x[0.5,1] . The exact solution is assumed as

U=+X>+Yy?

Obviously, the exact solution has singularity on the
origin at the domain Q=[0,1]x[0,1], see Figure 10(a).
On the same domain the function f blows down at the
boundary, see Figure 10(b). The approximation solu-
tions U and Q.u, have been plot in the proper subdo-
main Q, =[0.5,1]x[0.5,1], see Figure 11.

From the results shown in Table 5, it is clear that the
exact U in H'-norm has the superconvergence, but there is
no improvement in the L*-norm, see Figure 12. This
agrees well with the theory.

Example 6: Let the domain Q=[0,1]x[0,1] and
Q, =[0.5,1]x[0.5,1] . The exact solution is assumed as

vy
X +y?

From Figures 13(a) and (b), respectively observe that
the exact solution has strongly singularity on the origin
of the domain Q=[0,1]x[0,1] and the function f blows
up at the boundary, Figure 14 show how the approxima-
tion solution u, and Q.,u, look like at the proper sub-
domain Q= [O.S,I]X[O.S,l] .

U=

x 107

5 02
(b)
Figure 7. (a) The exact solution u blows up; (b) fblows down at the boundary.
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Table 4. Errors on uniform triangular meshes T, and 7.

(b
Figure 8. (a) Surface plot of approximation solution u,; (b) Surface plot of approximation solution Q.u,,.
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h u—u,] Ju—u,] Ju=Qu,| Ju—Qu|

27 0.3221e-1 0.1497e-2 0.1026e—1 0.1363e-2

373 0.1291e-1 0.2384¢-3 0.2566e—2 0.2169¢-3

473 0.8072e—-2 0.9306e—4 0.1429¢—-2 0.8466e—4

57 0.5871e-2 0.4921e—4 0.9977¢-3 0.4476e—4

67 0.4613e—2 0.3037e—4 0.7691e—3 0.2763¢e—4

O(h) 0.9998 2.0030 1.3360 2.0035
10" v 10° T
-H- [ - w)| -B8- |-y,
107 - Hu—Qu,,H 10" o Iu_Quh‘l
—i= O(h") = O(h)
= -
-
107 ® N 107 o,
L] a AES o
" . a8
W o
s +
4 Y -3 ~
10 .~ 10 +‘+ 1
i
107 . 10% .
10° 10' 10° 10° 10' 10°
(a) (b)
Figure 9. (a) Convergence rate of L2-norm error; (b) Convergence rate of H*-norm error.
Copyright © 2012 SciRes. AJCM



R. H. JARL, L. MU

-100 4

150 4

00
(®)
Figure 10. (a) Surface plot of exact solution u; (b) f'blows down at the boundary.
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Figure 11. (a) Surface plot of approximation solution u,; (b) Surface plot of approximation solution Q,u,,.

Table 5. Errors on uniform triangular meshes 7, and T..

255

1.4

1.3

1.2

1.1

0.9

0.8

h ju-u, Ju-u, Ju-Qu,| Ju=Quy|
23 0.1352¢—1 0.1400e—2 0.6141e—2 0.1287e-2
37 0.6835¢—2 0.3596e—3 0.2110e-2 0.3314¢-3
43 0.4566e—2 0.1607¢—3 0.1215¢-2 0.1481e-3
573 0.3427e-2 0.9058e—4 0.8529¢3 0.8352¢—4
6 0.2743e-2 0.5802¢—4 0.6590¢—3 0.5350e—4

o(h) 0.9923 1.9806 13581 1.9792
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Figure 12. (a) Convergence rate of L*-norm error; (b) Convergence rate of H*-norm error.
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Figure 13. (a) Surface plot of exact solution u; (b) f'blows up at the boundary.
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Figure 14. (a) Surface plot of approximation solution u,; (b) Surface plot of approximation solution Q.u,,.
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Table 6. Errors on uniform triangular meshes 7, and T..

h u—u,] Ju—u,] Ju-Qu,| Ju—Qu|

27 0.1186e—1 0.4006e—3 0.4708¢—2 0.2779¢—3

373 0.5979e—2 0.1009¢-3 0.1621e—2 0.6959¢—4

473 0.3992¢—2 0.4490e—4 0.9518e—3 0.3094e—4

573 0.2996e—2 0.2527e—4 0.6760e—3 0.1740e—4

6 0.2397e—2 0.1617¢—4 0.5261¢—3 0.1113e—4

O(h) 0.9943 1.9949 1.3304 1.9989
10° 10° T
-B-|lu-ul -B8- lu-u)
= 4=~ Ou| - 4= u-Ouy,
——0() —ip— O(h)
2.
10° } vo B
2. w_ Bag
S -~
~ : Y,
R 10° Py
E: E
10° ; . 107 - ; .
10° 10' 10° 10° 10' 10°
(@) (b)

Figure 15. (a) Convergence rate of L?-norm error; (b) Convergence rate of H*-norm error.

Table 6 gives the errors profile for Example 6. Notice
that, the gradient estimate is of order O(h”) that is

much better than the optimal order O(h). Although,
there is no improvement in the L>-norm, see Figure 15.
Also, the numerical results and theoretical conclusions
show highly consistent.
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