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ABSTRACT 

Bohm’s mechanics was built for explaining individual results in measurements, and mainly for getting rid of the enig- 
matic reduction postulate. Its main idea is that particles have at any time definite positions and velocities. An additional 
axiom is that particles follow continuous trajectories that admit the first derivative in time, the velocity. In the quantum 
theory, if the position of a quantum object is well-defined at some time, a Δt time later the object may be found any- 
where in space, so, the velocity defined as Δx/Δt is completely undefined. This incompatibility is regarded in standard 
quantum theory as nature’s property. The disagreement between quantum and Bohm’s mechanics is particularly strong 
in wave-like phenomena, e.g. interference. For a particle traveling through an interference fringe, Bohm’s velocity for- 
mula shows a dependence of the time-of-flight on the fringe length. Such a dependence is not supported by the quantum 
theory. Thus, for deciding which prediction is correct one has to measure times-of-flight. But this is a problem. If one 
detects a particle at two positions and records the detection times, the time difference is meaningless, because the first 
position measurement disturbs the particle’s Bohm velocity (if exists). This text suggests a way around: instead of 
measuring positions and times, the particles are raised to an excited, unstable level, by passing them through a laser 
beam. The unstable level will decay in time, s.t. the density of probability of the excited atoms will indicate the time 
elapsed since excitation. For comparing the Bohmian and quantum predictions, this text proposes in continuation to 
send the beam of excited particle upon a mirror. Bohm’s velocity leads to anomalies in the reflected wave. 
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1. Introduction 

Bohm’s mechanics (BM) was built with the purpose of 
offering a simple and plausible alternative to the quan- 
tum theory (QT). The latter doesn’t predicting measure- 
ment results of individual systems, only the statistics 
thereof, and regards this limitation as a property of the 
nature, 

“It requires us to give up the possibility of even 
conceiving precisely what might determine the be- 
havior of an individual system at the quantum level, 
without providing adequate proof that such a renun- 
ciation is necessary” [1,2]. 

BM has an opposite view, 

“Permits us to conceive of each individual system as 
being in a precisely definable state, whose changes 
with time are determined by definite laws, analo- 
gous to (but not identical with) the classical equa- 
tions of motion” [1,2]. 

BM is a hidden variable theory. It assumes that at a 
given time 0  a particle has a well-defined position, and 
this is the hidden variable of the theory. BM assumes that 

the density of probability for positions at t0 is given by  

t

 the absolute square of the wave-function, 0

2
Ψ , tr

0t t

 

, 

and proves, [3], that at any  the density of prob-  
2

Ψ , trability of the positions is , the connection be-  

 Ψ , tr  and tween 0Ψ  being given by Schrödin- 
ger’s equation. (An extensive analysis of BM may be 
found in [4]). 

, tr

 

So far, no contradiction with QT seems to appear. 
However, BM assumes an additional assumption, that 

the Bohmian particle travels along a continuous trajec- 
tory that admits also the first derivative with the time, the 
velocity. For this velocity BM postulates the expression 

 1
, , t S t

M
 r rv ,            (1) 

where M is the mass of the particle, and S is the function 
that appears in the exponent if the wave-function is put in 
the form  Ψ expR S 

0r 1r

 with R and S real. 
Then, if the Bohmian trajectory and velocity exist, the 

time-of-flight between two points  and  on a tra- 
jectory should be the integral 

   BM
0 1flight
,  d , t L t r r rv ,         (2) 
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where the position vector  sweeps the trajectory, dL is 
the element of trajectory length, and  is the pro- 
jection upon dL of the Bohmian velocity at  and t (the 
time when the particle passes through the point ). 

r
 , trv

r
r

r

r

t t

     

     

1

1

,  = 2π e ,

,  = 2π e .

x z

x z

κ

The standard QT disagrees with Equation (1). The un- 
certainty principle forbids the coexistence of definite 
values for position and velocity, s.t. Equation (2) is also 
meaningless in QT. 

A good tool for examining the Equations (1) and (2) 
are experiments on single particle interference. As shown 
in the next section, Equation (1) may entail that a Boh- 
mian particle that enters an interference fringe is locked 
in it and has to travel along it until the end of that fringe. 
In consequence, if some fringes are longer and others 
shorter as happens when a beam falls obliquely on a 
mirror, the particles that enter short fringes have a short 
way to go through the interference region, and the parti- 
cles that enter long fringes have a long way through this 
region. A difference in time-of-flight follows from this. 
No such difference is predicted by the QT. 

There remains a problem. In order to decide between 
the two theories one has to measure experimentally the 
times-of-flight. This is not a trivial task. The procedure 
of sensing the particle (without absorption) when it 
passes through the point 0  and recording the time t0, 
then detecting the particle when passing through the 
point 1  and recording the time t1, is worthless. The first 
position measurement disturbs the Bohmian velocity (if 
exists), s.t. the time difference  is meaningless. 1 0

There is a wide literature on the arrival-time topic. Ar- 
rival-time distributions and averages for different ex- 
perimental configurations are calculated theoretically, 
see for instance the review [5], the general treatment in 
[6], and references therein. Though, how to measure 
times-of-flight without the disturbance at t0, is not clear. 

An interesting idea of Muga et al. [7] (see also [8]), 
was to raise the particle to an unstable state by passing 
the particle through a laser beam. The unstable state de- 
cays with photon emission, and the photon detection in-
dicates the presence of the particle. 

Although [7,8] don’t address the problem of the dis- 
turbance at t0, the present text uses their idea for finding 
an alternative to the position measurement at t0. The 
movement of a beam of unstable atoms is studied. The 
decay renders a set of such atoms more and more de- 
pleted with the distance from the laser beam, s.t. the de- 
gree of depletion of the set indicates how long time the 
set traveled. 

The beam is sent onto a mirror for atoms. An interfer- 
ence tableau of non-maximal visibility is obtained, through 
which the Bohm velocity (if exists) would drag the atoms 
in such a way that abnormal effects would appear in the 
reflected wave. 

The following sections are organized as follows. Sec- 

tion 2 illustrates the difference between the BM and QT 
predictions on a simple, ideal case, then shows a possible 
implementation. Section 3 examines the behavior of a 
beam of unstable atoms reflected by a mirror and finds 
the time-of-flight and the Bohmian trajectories. Section 4 
comprises discussions. 

2. Times-of-Flight of Bohmian Particles 
through Interference Patterns 

2.1. An Ideal Case 

Consider a beam of particles falling on a perfectly re- 
flecting mirror. For simplicity, let’s assume that the beam 
is produced in a tilted form, Figure 1, (eventually by 
means of fields). Let’s approximate the direct and the 
reflected beam by plane waves, 

x  z t
D

κ x  z ωt
R

ψ t

ψ t

  

 

  

  

r

r  

       

          (3) 

For the incidence angle of 45˚ one has .  x z

So, in the region of interference the wave function is 

     
     1

,   ,  + , 2

            2π e cosx

I D R

κ x ωt

ψ t ψ t ψ t

κz

   



r r r

- 

 , trv

 

       (4) 

(The subscript “I” stands for “interference”). 
Now, let’s find the trajectories of two Bohmian parti- 

cles, 1 and 2, that pass simultaneously through the points 
Q1, respectively Q2, Figure 1(a). We will work below 
with a more practical expression for  than (1), 

   
 

,  , 
,  Im

, 

t t
t   

M t

     
  

 r r
r

r
v ,      (5) 

which is typically used in the literature. Substituting 
 D  in this equation one gets for both particles the 

Bohm velocity 
ψ r

    x z Mv v   . Substituting  Rψ r  
one gets for them    x z M  v v . 

However, in the fringes the wave-function expression 
is (4), and the formula (5) yields the same xv 0v, but z  . 
That implies that once in a fringe, the Bohmian particle 
travels along that fringe until the end of that fringe, 
without passing from one fringe to another. At the fringe 
end, the control of the particle is taken by the returning 
wave  R , and the particle begins to move with the 
Bohm velocity 

ψ r
   x z M  v v  as calculated above. 

Figure 1(a) shows the consequences of these facts, 
and Figure 1(b) shows the quantum replica.  

In Figure 1(a) one can see that particle 2 has a longer 
way to the detector than particle 1. From the points Q1 
and Q2 down to the dotted line, both particles travel equal 
path-lengths, and so from the dotted line to the detector. 
But in the fringes particle 1 passes immediately from  
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(a) 

 
(b) 

Figure 1. Bohmian trajectories vs. quantum paths. (Not to 
scale). The dark strips in the interference region represent 
allowed fringes, and the bright strips forbidden fringes. For 
eye-guiding, the path starting at Q1 is marked with full line 
and the path starting at Q2 with dashed line. (a) Bohm tra-
jectories; (b) Paths of two geometrical points driven by the 
wave-function. 
 

Dψ  to Rψ , while particle 2 makes in addition the route 
MNN'M'. 

That induces a delay in the arrival at the detector for 
particles that pass through the vicinity of Q2, comparing 
with particles that pass through the vicinity of Q1. The 
difference in time can be easily calculated with the 
Bohm-velocities found above. 

No such things are predicted by the QT. Figure 1(b) 
shows the paths of two geometrical points (no particles) 
driven by the movement of the wave-function. They fly 
toward the mirror, then they return from it. One point 
follows the route Q1 MP2, the other follows the route Q2 

NP1, and the lengths of the routes are equal. 

2.2. A Practical Implementation 

M. Köhl reported the results of a series of experiments 
with long and coherent beams of atoms [10,11], extracted 

from Bose-Einstein condensates. The extraction proce- 
dure is detailed in [12]. The atoms in the beam, initially 
in a state with no magnetic dipole, crossed a region swept 
by laser beams where the atoms absorbed the energy 
necessary to pass to a state with magnetic momentum 
(see Figure 2(a) in [11]). Thus the magnetic field began 
to act on them, and in fact repelled them. The treatment 
of the movement of a particle in a constant field can be 
found in [13]. The magnetic field implemented a mirror, 
in the region of superposition between the direct and the 
reflected beam appeared interference fringes. The mirror 
surface, i.e. the region within which the probability to 
find an atom drops to zero, was extremely thin. These 
experiments and those described in [7,8] inspired the 
procedure of estimating time-of-flight described in the 
next section. 

3. Interference with Unstable Particles 

This section has the purpose to show the difference be- 
tween the BM and the QT predictions in a way that won’t 
require the uncontrolled disturbance at t0. To the contrary, 
a controlled disturbance is used. The particles are passed 
through a laser beam where they absorb a photon and rise 
to a level of higher energy. This level is supposed to be 
unstable and to decay in time, s.t. the depletion of the 
beam shows us how much time elapsed since the atom 
was excited. 

The process of raising the atom to the excited state is 
not instantaneous, it doesn’t occur at some sharp time t0. 
But in the experiment described below, all the particles 
that cross the laser beam and rise to the excited state un- 
dergo the same transformation, which takes the same 
interval of time. Next, if the particles exiting some region 
of the source follow a longer way than the particles exit- 
ing another part of the source, the former particles dis- 
play a stronger depletion due to the decay than the latter. 
Thus, the absolute time-of-flight can’t be established, 
because the excitation takes some time. However, one 
can establish differences between times-of-flight accord-
ing to the degree of depletion. 

In the thought-experiment examined below, the tra- 
jectories of the Bohmian particles exiting some region of 
the source are longer than the trajectories of the Bohmian 
particles exiting another region of the source. The wave 
returning from the mirror is expected to show corre- 
sponding differences in depletion. For distinguishing the 
evolution of parts of the wave-function exiting different 
regions of the source, wide wave-packets are needed. 
Also, for studying the movement through the interference 
region, long wave-packets are needed for producing sta- 
ble fringes during long intervals of time. All these re- 
quirements are met by the wave-packets used in Köhl’s 
experiments. In addition, long wave-packets display a big 
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indetermination in position, which entails a small inde- 
termination in the linear momentum. In absence of fields, 
such wave-packets can be well approximated by plane- 
waves. To get an image of how long were these wave- 
packets, one can look at Figure 1 in [12]. 

The inconvenient with Köhl’s experiments is that the 
atoms were accelerated by fields, and that complicates 
the calculi. In this section we will consider again the 
ideal case in which the direct and the reflected beam 
have, each, a quite well-defined linear momentum. (A 
magnetic field will be used too, however for removing 
unwanted particles). The question of how to implement 
the mirror for atoms will be left aside, there are different 
ways to do it and we won’t deal here with that. 

3.1. A Thought-Experiment 

Consider a long beam of atoms as in [10,11], prepared in 
a state with magnetic number m . The atom beam 
passes through a laser beam where the atom absorbs a 
photon and jumps to a higher energy level with 

 1

0m  . 
In continuation, the atom beam lands on a mirror and is 
reflected, Figure 2. Suppose that the state with 0m   is 
unstable and decays to a lower energy state with 1m   
by emitting a photon. The magnetic field B pushes away 
the atoms with  from the atom beam.  1m

 
The decay of the excited state is assumed to obey the 

exponential law 0   e tP t P 

   

, where P0 is the prob- 
ability to find the atom in the unstable state at a certain 
time taken as , and P(t) is the probability to find it 
still in this state after an interval of time t.1 We study 
here the beam of excited atoms. We will approximate the 
direct and returning beam by plane waves as in the ex- 
pressions (3), however we will take in consideration the 
losses due to decay. For simplicity let’s assume  

, 

 0t 

    x z   

 
,  + , 

2

e e
D Rt ψ tr r

 

,  = e ψ
ψ tr ,        (6) 

   
 

2e
1

, 2π
Dtκx  z t
τ

    

 

e
Dψ t

r ,        (7) 

   
 

2e
1

, 2π
Rtκx  κz ωt
τ

   e
Rψ t

r .2       (8) 

(The upper-script “e” stands for “excited”). D

 

Figure 2. An interference experiment with unstable atoms. 
The figure illustrates (not to scale) the depletion increasing 
with the distance traveled from the laser beam. The de- 
excited atoms are not shown. The level z = 0 is the mirror 
surface. zI is the top level of the interference region. The 
layer between the two horizontal lines is considered as 
moving with the group velocity. C is a fix point in space. 
 
when returning from the mirror. The group velocity of 
our wave-packet is given by 

t  is the 
time needed to a thin horizontal layer of the wave-packet 
to travel from the top of the interference region, zI , to a 
fix point C of height z; Rt is the time interval since the 
layer was at zI until its second visit of the layer at C, i.e.  

  κgr

 

Mv , [14], and  

Since x z  , we have , ,gr x gr zv v . We can write 

, ,

,          I I
D R

gr z gr z

z z z z
t t  

v v

 
  , 

and we will assume in continuation 

,  2I gr zz v 

     

.                (9) 

Introducing tD, tR and the convention (9) in the Equa- 
tions (7) and (8), the direct and the returning beam be- 
come 

1 +,  2πe e Iκx  κz ωt z ze
Dψ t   r

     

,        (10) 

1 +,   2πe e Iκx  κz ωt z ze
Rψ t   r  

 

.        (11) 

From the Equations (6), (10) and (11) there results the 
wave-function in the interference region, 

 

1 1

e  e
,  e

8πe 

I I
z z

z z
κx - ωte

I

+
ψ t

 



   
     
   

r  

 

,     (12) 

whose intensity is 

   
 

2

2

cosh 2 + cos 2
, 

2πe

Ie
I

z z κz
ψ t r .     (13) 

1It is known that the decay doesn’t evolve always exponentially in time, 
see [9], but here is addressed the typical situation.  
2The fraction This intensity entails a z-dependence of the fringe 

visibility V. Considering a small vicinity of some level z, 
the fringe visibility is the ratio of the difference between 

 2t τ  that appears here instead of t τ  as in the decay 

law, is due to the fact that the decay law refers to probabilities, while 
the expressions (6), (7), (8), give amplitudes of probability. 
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the maximal and minimal intensity in that vicinity, divided 
by the sum of the two. One gets     1 cosh 2 IV z z z

e

. 
The next subsection examines the movement of the 
Bohm particle through this pattern, and the implications. 

3.2. The Bohm Velocity and the Time-of-Flight 

For the calculus of the time-of-flight we will use the in- 
tegral (2). Therefore, the Bohm velocity will be needed. 

Introducing Dψ  from (10) in the Equation (5), one 
gets x z . Introducing v v     eM Rψ  from (11) in (5) 
one gets the same xv , but zv  changes sign. Let’s no- 
tice that these values are equal with the group velocity 
components, , ,gr x gr z  

In the interference region the things are more compli- 
cated. One can check that 

v v M   . 

xv  remains the same, but, to 
the difference from the experiment in Section 2, here zv  
isn’t zero in the fringes. From the Equation (12) results 

   

   
 2

 sin 2

e

z

, 
,  

sinh 21

2π

I
I

I

I

t
t

z

z z

z




 


 


 
   

 

r
r

. 

Using this expression and the intensity (13) in the for- 
mula (5) one obtains 

   

   

sin 2
+  

+ cos 2
I

z

κz

z κz


sinh 2

cosh 2

I

z
I

z z
κ

M z
 


v .       (14) 

The quantity Iκz  is very big since the fringe width is 
a couple of orders of magnitude smaller than zI. Thus, 

     sinh 2sin 2 I I . Noticing that the lead- 
ing factor in the RHS is the x component of the Bohm 
velocity, (as calculated above, 

κz κz z z

xv M  ), we get 

 
   
sinh

cosh 2z x
I

v v
z z

 
2

cos 2
Iz z

z
.        (15) 

The leading sign “−” indicates that as long as a particle 
is in the fringes, it only falls, never goes up, see Figure 3. 
We will see in the next subsection the implications of 
this fact. 

With this velocity we can calculate the time-of-flight 
of a Bohmian particle along a Bohmian trajectory. 

Given two points A(xA, zA) and B(xB, zB) on a Bohm 
trajectory, we have according to the Equations (2) and 
(15), 

 

   
 

BM
flight

d
,

cosh 2 +1
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A

B

A
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z
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







v

v

cos 2
d

x I

κz
 z

z z

 

Since the fringe width is extremely small comparing  

 

Figure 3. Bohmian trajectories. The interference fringes are 
not shown because they are too narrow. The black lines 
represent a comb of Bohmian trajectories of the excited 
atoms. The numbers on the top of the figure label the tra-
jectories in the comb. The trajectories 0 - 19 begin at equal 
distances, while the trajectory 20 is slightly closer to 19. 
 
with zI, the hyperbolic functions are practically constant 
over intervals in which  changes many times 
and its values cancel mutually. There remains 

 cos 2κz

   
 

BM
flight

sinh 2  
,   ln

sinh 2
A II

 x B I

z zz
t A B

z z


v2

 

.        (16) 

Note: this time-of-flight is between two points on the 
same Bohmian trajectory and in the fringe region. Out- 
side the fringe region 

flight , A B A Bt A B z z z z   gr, z xv v

BM QTt t

.   (17) 

This expression is also valid in QT. Indeed, consider- 
ing a thin layer that travels with the wave-packet, as we 
considered in Section 3.1, the time of flight from A to B 
is given by the Equations (17), with the sign “−” for a 
direct flight from A to B, and the sign “+” for an indirect 
flight, first from A to mirror, then from mirror to B. 

Let’s repeat for the sake of clarity: outside the fringes 

flight flight  and is given by the expression (17), but in- 
side the fringes BM gives for the time-of-flight the ex- 
pression (16), while in QT is still valid (17). 

3.3. Bohm Trajectories and the Reflected Wave  

For the rationale that follows we will need the Bohmian 
trajectories. Then, let’s first find their equation. 

The x component of the Bohm velocity is constant and 
the same inside and outside the interference region. So, 
we can write for two points A(xA, zA) and B(x, z) on a 
same Bohmian trajectory, 

   BM
flight ,  At A B x x  xv

BMt
t

.         (18) 

Equating with flight  from Equation (16) for the region 
inside the fringes, and with flight  from Equation (17) for 
the regions outside the fringes, we get, respectively, 

 
 

sinh 2    
 ln

sinh 2
IA

 I A I

z zx x

z z z


  .       (19) 

   A Ax x z z   ,              (20) 
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where “−” is for the direct wave and “+” for the reflected 
wave. 

Figure 3 illustrates a comb of Bohmian trajectories, 
labeled 0 - 20 that begin at equal distances, except for the 
trajectory 20 which is slightly closer to 19. One can see 
that the interference region behaves as a convergent lens 
bringing the trajectories closer to one another. Toward 
the bottom of the interference region the trajectories ag- 
glomerate and some of them overlap. On the other hand, 
the border between the interference region and the re- 
flected wave e

Rψ

e

 has a divergent effect. In the reflected 
wave the trajectories appear very rarefied. 

These facts open a couple of problems. 
1) In Figure 3 different trajectories overlap toward the 

bottom of the interference region. However, as long as 
the gradient of the wave-function is single-valued at each 
point (which is the present case), QT doesn’t allow sev- 
eral lines of flux to merge into one, or one flux line to 
split into several. 

Of course, examining the trajectories in Figure 3 at a 
higher resolution it will be found that the apparently 
overlapping trajectories are though separated by small 
distances. But under a higher resolution one can draw a 
denser comb of trajectories. Again there will be adjacent 
trajectories that merge into one, and the problem will 
reappear at the new scale. 

1) Assume that trajectories don’t overlap, i.e. there is a 
minimal distance between trajectories (assumption even 
more plausible if one works with fermions). Still, another 
problem appears. 

Let’s imagine a transversal section through the direct 
beam, and consider the set of excited atoms present on 
this transversal section at the same time. Let’s denote by 
δ the smallest distance between two atoms in this set. 
That means, δ is the distance between two neighbor 
Bohmian trajectories in Dψ

e

. 
The requirement of simultaneity is needed because sets 

of particles that begin their journey at different times 
may have their nets of trajectories displaced, one net with 
respect to the other. The distance between two trajecto- 
ries that begin at different times may be arbitrarily small. 

From the trajectory formulas (19) and (20) one finds 
out that the trajectories that pass through the neighbor- 
hood of the point C are about 16 times more rarefied than 
they are in Dψ . 

BM tells us that the trajectories passing through the 
vicinity of C are short, see Figure 3, so the loss of parti- 
cles by de-excitation is small and good statistics could be 
gathered. Then one should get that the distance between 
two particles detected at the same time in the vicinity of 
the point C never falls below 16δ. 

To the contrary, toward the RHS border of the re- 
flected wave, the distance measured between two simul- 
taneously detected particles should decrease. The calcu- 

lus shows that on the RHS border this distance may be as 
small as 30δ . Of course, BM tells us that the trajecto- 
ries here are much longer, so the statistics is poor. Two 
neighbor particles may not reach the detector together 
because one of them was lost by de-excitation. Though, 
examining many sets of simultaneously detected particles, 
one should obtain sometimes distances smaller than the 
minimal distance obtained in the neighborhood of the 
point C. 

QT does not confirm such effects. 

4. Discussions 

Bohm’s mechanics is a salutary trial to get rid of the 
non-understandable reduction postulate of von Neumann. 
The explanation that a click in a detector on the branch 
a  of the wave-function and the silence of the detectors 

on the other branches, is caused by something in the 
branch a  that isn’t in the other branches, is most 
plausible and appealing. Indeed, the detector doesn’t 
click at its whim, it responds at a stimulus present in the 
wave-function.  

Vis-à-vis this explanation, the reduction postulate of- 
fers no explanation on why this detector responds and the 
others don’t. 

It is therefore important to see if Bohm’s explanation, 
together with the other assumptions of BM, are contra- 
diction-free. If a contradiction though appears, it is de- 
sirable to find which one of the assumptions causes it. 

The present analysis puts under question mark Bohm’s 
velocity formula. 

In a theory that aims at producing the same predictions 
as QT, the idea of simultaneously well defined values for 
position and velocity raises suspicions. This text doesn’t 
prove that this idea is wrong. It proves less, that Bohm’s 
formula for velocity creates problems. 

Whether this formula can be replaced by a better one 
for building a Bohm-like mechanics, is still ahead to be 
investigated. It wouldn’t be a simple task because Bohm’s 
velocity formula fits very well in the continuity equation, 
and any other formula should preserve this property. 
Also, any Bohm-like mechanics should be able to explain 
why in single particle interference, the probability to find 
the particle in the bright fringes is bigger and in the dark 
fringes smaller. 
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