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ABSTRACT 

The recent Standard ISO 226 concerning equal-loudness-level contours has been critically analysed. As a result, it is 
shown that the fitting and smoothing processes applied in the standard lead to parameter values defining equal-loud- 
ness-level contours that are not consistent with the chosen loudness function type. Serious mathematical and acoustical 
discrepancies have also been found that result in constant terms having an unnecessarily high numerical accuracy and a 
flawed phon definition, which leads to an erroneous loudness level representation. Therefore an extensive treatment of 
the logarithmic calculations (phon) of a loudness function is performed in this study. Finally, the author concludes that 
it would be desirable for the discrepancies in the standard (shown in the study) to be taken into account and corrected 
before publishing a new version of the standard. 
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1. Introduction 

An international researcher group of Japanese scientists 
(serving as project leader) and researchers from Germany, 
Denmark and the United States has produced the recent 
determination of equal-loudness-level contours for the 
human auditory perception system called ISO 226:2003 
(E): Acoustics—normal equal-loudness-level contours [1]. 

Particularly because the equal-loudness-level contours 
in the standard are now based on a chosen loudness func- 
tion, the equal-loudness-level contour complex is of spe- 
cial interest. Namely, such a function defines the upward 
and downward behaviour of the contours, providing an 
unequivocal view of how the subjective loudness grows 
between the contours. The author [2,3] of this study has 
earlier derived similar contours based on Stevens’ power 
law, also mentioned as an alternative loudness function 
by Suzuki and Takeshima [4]. 

The derived contours in [2] were almost identical to 
the equal-loudness-level contours in the former ISO 
standard ISO 226:1987 [5]. However, no loudness func- 
tion appears in this standard, although the contours are 
shown as a result of mathematical expressions. In fact, 
purely mathematically, there are lots of mathematical 
expressions that could simulate such contours without 
any connection between the expression (and its parame- 
ters) and the acoustical or psycho-acoustical terms. It 

proved [2] that the mathematical expressions based on 
defined acoustical quantities and Stevens’ power law 
were simpler than the expressions used to achieve similar 
contours in the standard [5]. 

In the present study, the derivation of equal-loudness- 
level contours in ISO 226:2003(E) [1] is first reviewed 
and analysed. The review is fairly critical because the 
author found several discrepancies which partly (at least) 
spoil the contour complex system shown in the standard 
[1]. Problems concerning interpretations of loudness 
functions and, in particular, loudness levels seem to be 
somewhat general but also have disturbing effects on the 
standard [1]. These are treated more extensively in the 
technical chapters of this study, which is mostly per- 
formed by following the excellent informative part (An- 
nex C) in the standard [1]. 

Finally, the author has some reservations concerning 
the statistical validity of the data and of applying ad- 
vanced fitting methods and the fitting in general: For 
example, the data does not consist of a homogeneous 
solid sample of normal hearing people. Instead, the scat- 
tered measurements and calculations are performed by 
different researchers and laboratories in different coun- 
tries and on different continents. Therefore the sources of 
error are pretty numerous. However, possible problems 
arising from the non-validities of the data can not be 
treated in detail here. 
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2. The Loudness Function 

A loudness function (a mathematical model or estimate) 
represents the subjective strength of the auditory percep- 
tion of a given sound defined by its magnitude (sound 
pressure level) and frequency (pure tone or narrow band 
sound). The international group has applied the following 
basic loudness function [1], l: 

 2 2
tl c p p                   (1) 

where c is a dimensional constant, p is the sound pressure 
of a pure tone, θ is the exponent of the loudness-percep- 
tion process and pt is the threshold of hearing in terms of 
sound pressure [1]. Although this form of describing a 
loudness function is quite common in the literature, there 
is a drawback caused by the use of non-dimensionless 
sound pressure (or square sound pressure). This seems to 
create troubles with the main equations in the standard 
[1], as seen later. A more useful form of Equation (1) 
would be 

    t10 1010 10pL Lpl c
              (2) 

or 

    t10 1010 10pL k Lp kl c
          (2’) 

where the pressures are written in dimensionless (the 
loudness function should be dimensionless) magnitudes 
of sound pressure squares (in sound pressure levels (dB)), 
and in the latter equation θ is taken to be 1/k. k (the root 
notation, see e.g. [2,3] by the author) is shown here be- 
cause it refers to Stevens’ power law stating that the 
loudness is proportional to a distinct root of the sound 
intensity. In addition, it should be noted that Equations (1) 
and (2 and 2’) do not differ provided that the square 
pressure magnitude is (p/po)

2, where po is the reference 
pressure 20 μPa, in Equation (1). However, this seems 
not to be the case in [1]. 

The frequency-dependent exponent θ (or the root k) is 
the most important and crucial quantity when considering, 
in particular, loudness and equal-loudness or equal-loud- 
ness-level contours according to Equation (1). Very little 
attention has paid to this fact in [1]. 

For example, as stated by Suzuki and Takeshima [4], 
Stevens’ power law takes the form (written here with the 
same notation as Equation (2)) 

   10
10 pL

l S c


              (3) 

The author has deduced [2] that if the parameters c and 
θ are determined for a type of equation like Equation (3), 
in each frequency band the equal-loudness-(level) con- 
tours are wholly determined. Note that θ (having the 
value of 0.3 at 1000 Hz according to Stevens’ power law) 

has the same significance at every frequency band, i.e. θ 
is not important only at 1000 Hz, and that θ varies de- 
pending on the frequency band. Consequently, he has 
derived the contours [2] shown in the former standard 
ISO 226:1987 [5]. It is worth emphasising that θ wholly 
determines the growth of the loudness function (3) at 
each frequency band. 

It may seem that Equation (1) is a problematic loud- 
ness function because of the vanishing property at the 
threshold, but this is not the case. In fact, Equation (1) is 
neither a new nor a different loudness function if com- 
pared with Equation (3). Rather, Equations (1) and (3) 
are wholly the same, with the difference that in Equation 
(1) the threshold loudness (the loudness function value at 
the threshold sound pressure level) has been removed to 
zero. Then, of course, Equations (1) and (2) vanish (take 
the value of zero) at the threshold. However, this is not a 
problem because Equation (1) must also be allowed to 
take negative values. 

In fact, Equation (3) and the first part (cp2θ) of Equa- 
tion (1) are similar basic loudness functions estimating 
the behaviour of the human auditory perception system 
in regard to sounds that can be heard. This implies that, if 
the threshold has been determined e.g. for people with 
normal hearing, people who have very good hearing 
(hearing sounds below the general threshold) must also 
have a loudness function. Equation (1) then takes nega- 
tive values and does not vanish, and the threshold loud- 
ness-level contour may be seen rather as one of the 
equal-loudness-(level) contours of the whole system. If 
so, the threshold loudness-level contour should be con- 
sidered of particular importance, because it is the only 
contour that is based on a human subjective impression 
or experience resulting in an exact expression: “The 
sound cannot be heard”. 

Possibly as a consequence of this fact, the least scat- 
tered values of the sound pressure levels around the fitted 
loudness level contours lie at the threshold contour (best 
fit) in the standard [1]. Upwards the fittings seem to be- 
come poorer and poorer. 

It now appears that to perform the equal-loudness 
(-level) contours, it would have been enough for the in- 
ternational group to consider the actual loudness function, 
i.e. the first part (cp2θ) of Equation (1) only. However, no 
analysis has apparently been done of the problem that 
emerged. In continuing to develop type-equation (1) of 
the loudness function, they state: “there are two different 
processes in assessing loudness: one is a ‘loudness per- 
ception process’; the other is a ‘number assignment 
process’.” The group finally concludes that a process of 
assessing loudness rating consists of three parts, include- 
ing a linear transfer function, a loudness perception and a 
number assignment. On this basis the group finally re- 
writes Equation (1) as 
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     22

tl b c Up Up


 





        (4) 

where p, pt and α (= θ) are as in Equation (1), U is an 
extended linear transfer function [1], b and β are those 
for the number assignment process [1], respectively and c 
is an extended dimensional constant [1]. One may rewrite 
Equation (4) as 

 2 2
tfl c p p

  

            (5) 

where cf is a combined dimensional constant of b, c and 
U in Equation (4) depending on frequency as c in Equa- 
tion (1). It is clear that also in Equation (1) c must de- 
pend on the frequency. However, both c and cf are (by 
definition) independent of the pressure (or sound pres- 
sure levels). Therefore cf can never have such a value that 
these equations are the same, i.e. the loudness functions 
(1) and (4) are surely different (provided that 1  ). It 
also seems that the desire of the international group to 
include two or three different processes or parts in a 
loudness process has been reduced to a foreign exponent 
β in the “original” loudness function (1). 

The group states that “…When the loudness of a 
1000-Hz pure tone is equal to the loudness of an f-Hz 
pure tone, the following equation can be derived from 
Equation (C.2) (Equation (4) here)”. The “following 
equation” is 

   
 

r r

 122 22
r tr t2

1 f
f

f f
f

p p p U p
U

     f 
  (6) 

where the subscript “f” refers to frequency band depend- 
ence with “r” referring to 1000 Hz. However, one cannot 
derive this equation from Equation (4) except providing 
that b = c = β = 1. The group has obtained the fre- 
quency-dependent parameters αf (replacing θ in Equation 
(1)) and 2

fU  by mathematical fitting and smoothing 
methods from Equation (6) by defining additionally 

  N
2 10

r o 10Lp p   

(at 1000 Hz), where LN is the constant loudness level 
parameter chosen to derive the loudness level contour 
considered. Equation (6) can be rewritten in the form 

r2 2 2 2 2 2
t r t

f f f fa a a a a
f f f fU p U p p p r

r
         (7) 

One can see that the chosen loudness function (1) with 
the dimensional constant 2

fU  (replacing c in Equation 
(1)) has been set at the same value as the loudness func- 
tion in the 1000 Hz frequency band. Here, of course, the 
right-hand side of Equation (7) represents a known loud- 
ness function at 1000 Hz with a known dimensional con- 
stant (= 1) and the known exponent θ = αr (= 0.250). 

However, the chosen loudness function (Equation (1)) 

left-hand side has the same loudness value as the second 
term on the right-hand side (the threshold loudness 
value). Therefore, Equation (7), as does Equation (6), 
reduces to (here the reference pressures are also shown) 

    
 

 

2 1/
2 1

N
rr

o r o2

22
o

2 10
r o 10

fr

ff

f
f

a
f f

L

p p p p
U

U p p

p p











 

         (8) 

Equation (8) shows that the parameters αf and 2
fU

a s
 in 

the standard [1] could have been determined from im- 
pler equation than Equation (6). Namely, a significant 
advantage of Equation (8) is that that it can be reduced to 
a linear equation (provided that the sound pressures are 
shown in decibels). By using the notation in the standard 
[1] (LU = 10lg 2

fU ) and the defining above taking into 
account the requ ment to have for an equal-loudness- 
level contour the same quotation (phon value) as the 
sound pressure level at the crossing point (at 1000 Hz) at 
the dB axis, Equation (6) finally becomes 

ire

  
  

2
10

o
r r

N
r

lg 10 lg
N

r 210 10

phon

ff
f f

f
pf U

U p p

L L L



 




    
 

  

  (9) 

including LU as a frequency dependent weighting on the 

quation (6) would have 
he

uation (6), the re- 
sp

L
  

sound pressure level domain [2]. 
The latter equation, a form of E
lped and simplified the fitting and smoothing processes 

considerably. Note here that if LU is solved from Equa- 
tion (9), LU only depends on the frequency (band). Thus, 
after determining αf, LU is wholly determined independ- 
ently of the equal-loudness-level contour considered (the 
threshold contour, for example). 

Besides the complicated form of Eq
ective main equations in the standard [1] differ for- 

mally from this Equation (6) and are principally different 
than Equation (9). The equation for Lp is written [1]: 

10
lg 94 dBp f U

f

L A L


 
    
 

       (10) 

where 

 
 

N0.0253

90 10

4.47 10 10 1.15

0.4 10
f

f U

L
f

T L

A





 

   

    

 

where LU (note that LU here differs from the LU above) is 
a magnitude of the linear transfer function normalised at 
1000 Hz [1] and Tf is the frequency-dependent threshold 
sound pressure level. The mystic constants having nu- requires that in Equation (7) the second term on the 
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merical values of 4.47, 1.15, 0.4 and 94 dB are not de- 
fined in the standard. Anyhow, if LN is solved from 
Equation (10) the loudness level according to the stan- 
dard [1] finally becomes [1]: 

40lgL B

resulting in a type of a linear Equation (9) 

N 94 phonf          (11) 

where 

 

 

90 10

90 10

0.4 10

0.4 10 0.005135

f
p U

f
f U

L L

f

T L

B




 

 

    

     

 

Because of the great accuracy of the last constant term 
in Equation (11), the author’s reservations first arose here. 
It seems that an oversight has occurred here, originating 
from Equation (6) while expressing pressures in decibels. 
The group has taken the reference pressure 20 μPa to be 
equal to –94 decibels. However, the reference pressure is 
zero in decibels. On this basis, by defining L’U to be the 
same as LU in Equation (9) and by substituting 

r94 94 'U U
f

L L



           (12) 

the respective identical equations (giving exactly the 
same equal-loudness-level contours) to Equations (10) 
and (11) become: 

10
lgp f

f

L A



 

  




         (10’) 

where 

 N r r r' 10 110 1010 10 10 10U f f fL L T
fA

        
0T 

and 

 N 40lg fL B          (11’) 

where 

  r r' 10 10 10 1010 10 10 10U f pf f f fL L T T
fB

       
 



In particular, here Equation (11’) is simpler and clearly 
m

iss in Equa- 
tio

ore informative than Equation (11) because the chosen 
loudness function type is formally shown (in brackets) 
with an explicit dimensional frequency dependent con- 
stant showing that the constant terms with high numeri- 
cal accuracy of Equations (10) and (11) are not a result of 
the fitting and smoothing processes applied. 

On the other hand, something must be am
n (11’). Namely, by taking into account the originally 

chosen loudness function type and the discussion con- 
cerning Equation (6) above, the following requirement 
must be fulfilled independently of the frequency band: 

r r' 10 10 1010 10 10U f f fL T T         (13) 

for Equations 
(10’) and (11’). However, except at 1000 Hz this is not 
the case (even though as stated in the standard [1]: “LU 
values were re-estimated by using Equation (C.1) (Equa- 
tion (1) here) with values of αf”), as can be found by cal- 
culating with the tabulated parameter values given in 
Table 1 [1]. Therefore, the applied loudness function 
remains unclear and impossible in the standard [1]. 

Consequently, in addition, although “the contours ex- 
hibit a pattern of parallel displacement” [4] (parallel dis- 
placement: ΔLN/ΔLp = constant at each frequency band 
independent of the sound pressure level), Equations (10’) 
and (11’) do not show such a property generally to hold. 
In this respect the difference between [1] and the former 
standard [5] is rather significant. The equal-loudness- 
level contours in [5] exhibit almost wholly a pattern of 
parallel displacement, as a result of which the author [2] 
has derived the terms c and θ (at each frequency band) of 
a loudness function type of Equation (3) (or Equation (1) 
as well). 

On the other hand, it may be possible that the loudness 
function differs from a simple power function. For ex- 
ample, perhaps the power exponents αf depend on sound 
pressures. However, such a case cannot be controlled 
(without any additional definitions) by mathematical 
fitting methods and solving the parameters for a function, 
which differs from the chosen basic loudness function. 

At 1000 Hz, however, the expression of B*f in Equa- 
tion (11’) satisfies Equation (13) and the chosen loudness 
function type reduces to 

   100 0.250

10
pL L

l



0 Hz 1000 Hz

10 40
1000 Hz 10

p

     (14) 

which results from the assumed loudness function type of 
Equation (3) with the chosen parameter values at 1000 
Hz (c = 1 and θ = αr = 0.250), not depending on the fit- 
ting and smoothing methods used to determine the pa- 
rameters αf and LU at the other frequencies. 

Finally, by using the notation (the definition in [1]) 
10lg (p /p )2 = L  ) mentioned in a differentr o N  form above, 
loudness level (LN in phons) becomes 

 1000   H

4040lg10
pL

L 
z

N        (15) 

confirming that the loudness level in phons of a certain 
equal-loudness-level contour coincides at 1000 Hz with 
the sound pressure level expressed in decibels. This 
seems to be in accordance with the loudness level as de- 
fined in the standard [1] and literature: “Value in phons 
that has the same numerical value as the sound pressure 
level in decibels of a reference sound, consisting of a 
frontally incident, sinusoidal plane progressive wave at a 
frequency of 1000 Hz, which is judged as loud as the 
given sound.” It is worth noting that the result of Equa- 
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tion (15) seems also to be in accordance with the data 
(except the threshold contour) shown in [1]. 

However, something seems to be wrong also here. 
Namely, Equation (15) includes a phon level

conto ssing po he dB of 1000  re- 
vealin ubjectiv he omp  up- 
wards and downwards. The connection between the loud- 

he loudness in sones: 

 value based 
on

LU dB Tf dB 

 a chosen loudness function (Equation (14)) and such a 
“phon” requires certain rules to be fulfilled. The phon 
here does not include any defined information concerning 
the connection between the magnitude of the respective 
loudness function and the respective phon-level quota- 
tion and the physical dB axis (the equal-loudness-level 

 
Table 1. Parameters used to calculate the normal equal- 
loudness-level contours [1]. 

Frequency, f Hz αf 

20 

ur cro int at t  axis  Hz),
g the s e sense of t contour c lexes

ness function and the loudness levels are considered next. 

3. The Phon Definition and the Magnitude of 
Loudness 

For example, the international standard ISO 532 [6] in- 
cludes the following relation between the loudness level P 
in phons and t

 40 102 PS            (16) 

In Equation (16) S is loudness in sones and is desig-
nated to be the strength [6] of a sou
to its subjective magnitude as esti
se

nd that is proportional 
mated by normal ob-

rvers. One sone is the loudness of a sound whose loud-
ness level is 40 phons [6]. Inversely Equation (16) be-
comes 
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10log 40 lg 40 33.22 lg 40
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P S S S       (17) 

and thus P is the loudness level in phons. In addition
standard [6] includes the following notes: 

A—When loudness levels are computed from calcu- 

portant, there- 
fo

rement. 

(instead of 
te

erefore, it 
is

, the 

lated loudness values, the results may differ from those 
obtained by subjective judgement. It is im

re, to state whether the values have been calculated or 
have been measured by other means. 

B—The term phon, without a qualifying abbreviation, 
should be reserved for the expression of loudness levels 
determined by direct subjective measu

Mathematically the definition (Equations (16) and (17)) 
of a phon P is rather similar to that of a decibel. The dif- 
ference is that the logarithm has a base of two 

n), and additionally the definition includes an additive 
part of 40 phons and a reference value of 1 sone. The lat- 
ter have a certain meaning, as seen later. Purely mathe- 
matically, P only shows the value of the loudness magni- 
tude (the magnitude of the loudness function or its esti- 
mate) in powers of two multiplied by ten and with the 
additive constant 40 phons. Because of the logarithm base 
and the multiplying factor, P always increases by ten 
when the loudness magnitude S is doubled. 

One can understand here that the properties above of P 
are purely mathematical and in no way concern the loud- 
ness S, which is only required to be positive. Th

 important to see that the loudness problems only con- 
cern S (l here) and that any of these problems cannot be 
solved based on the manner of representing the results 
(e.g. in phons or any other logarithmic quantity) [2]. The 
use of logarithmic representations concerning loudness 
magnitudes seems only to originate from the fact that a 
loudness function appears to be (in the first approximation, 
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at least) an exponential of the sound pressure level or a 
power function of sound pressure. 

Finally, it should be noted that the two wholly different 
methods in the standard ISO 532 [6] (the first method by 
S. S. Stevens, L. Cremer, G. Plenge, and D. Schwarze and 
th

Hz is designated to 
re

as to be “nor-
malised” to be sen
m

ent of the logarithmic 
base, only if 

is the loudness function at the 1000 Hz band 
and C is a multiplicative constant insi
depending on the loudness function, not ot

levels at 
10

e second method by E. Zwicker) both apply the phon 
definition according to Equation (17) when converting 
sones to logarithmic loudness levels. 

Concerning the “normal observers” or “otologically 
normal persons” as stated in the standard [1], a sound in 
sound pressure levels (dB) at 1000 

present the loudness S of one sone (=40 phons respect- 
tively). Such a sound must be defined for reference pur- 
poses (referring to normal hearing) and to fix the respect- 
tive loudness level (and loudness function) unequivocally 
at the physical dB axis. If such a sound is designated to be 
40 dB (representing one sone for otologically normal 
persons), the logarithmic decibel and phon quantities al- 
ways coincide at 1000 Hz at 40 dB, so that 

40 phon = 40 dB            (18) 

As a consequence of relation (18), any loudness func-
tion shown as a mathematical expression h

sible and comparable with the other 
ethods. In a general case, the normalising procedure 

only includes the derived or chosen loudness function S 
(being any type of a function of sound pressure level 
(SPL)) being given the value of 40 phons (or 1 sone re-
spectively) at 1000 Hz with the argument (SPL) value of 
40 dB. The normalising equation is 

  2 1000 Hz40 10log 40dB 40P C l      (19) 

which is satisfied, in fact, independ

 1000  Hz 40dBC l           (20) 

where l1000 Hz 

1

de the logarithm 
herwise affect- 

ing the loudness function as such by any means. 
Concerning Equation (14) above, if it is normalised, C 

takes the value of 1/10 and the final equation for defining 
P quotations as a function of sound pressure 

00 Hz becomes 

 1000  Hz
0.250

10
N 2

1
10log 10 40 phon

pL

L
 

      (21) 
10 
 

giving 40 phons for the loudness function at 1000 
the sound pressure level of 40 dB as the respectiv
tion (15) based on the standard [1]. However, the other 

 law (with an exponent θ 
= 

Hz with 
e Equa- 

quotations, e.g. for 30 dB and 50 dB in [1] become, ac-
cording to Equation (21), the respective quotations 31.7 
and 48.3 phons, differing from the value at the crossing 

point at the dB axis of 1000 Hz. 
As mentioned above, the author has derived the equal- 

loudness-level contours in the former standard [5] under 
the condition that Stevens’ power
αr = 0.3) holds [2]. In [2] the basic loudness function (at 

1000 Hz) is quite similar to Equation (14) above, the only 
difference being that θ was taken to be 0.3 instead of the 
value of 0.250 in the standard [1]. By replacing 0.250 
with 0.3 and approximating, that 10log 2 1 3.322 0.3  , 
the normalising factor C for a function type of Equation 
(14) becomes 

   40 10 0.3 4010 10 1 16C       

and Equation (

33.22

21) (in the case of the former standard [5]) 
then becomes 

 1000  Hz
0.3

10
N 2

1
10log 10 40 phon

p

L
 

      (22) 
16

L

 
 

In addition by changing the logarithmic base, 

 1000  Hz

33.22
N p33.22lg10   phon

pL

L L     (23) 

which is formally similar to that of Equation (15), giving 
similar loudness level values for a power functio
exponent of 0.3. 

 seems that the loudness function expo- 
ne

rception to all kinds of acous- 
tic

 226:2003(E) [1], it has been found 
es not differ formally from the basic 

n with an 

However, only the latter, Equation (23), is consistent 
with the phon definitions shown in the standard [6], for 
example. Thus, it

nt (αr = 0.250) in the standard [1] has been applied 
carelessly and erroneously when performing the loudness 
magnitude conversions. Of course, such conversions must 
be unequivocally defined. However, this is not the case in 
[1]. Therefore, clearly something is seriously wrong also 
with the loudness function and its relation to the phon 
levels in the standard [1]. 

Finally, although the changes of the contour shapes 
may be reasoned, a basic international standard connect- 
ing the human auditory pe

s, cannot be derived based on a questionable loudness 
function, including additionally misleading and perplex- 
ing mathematical manipulations and elementary misun- 
derstandings about earlier definitions of acoustical terms. 

4. Conclusions 

Starting by reviewing the chosen loudness function type 
in the standard ISO
that this function do
loudness function type given by S. S. Stevens. It has been 
shown that the fitting and smoothing processes applied in 
the standard [1] lead to parameter values defining equal- 
loudness-level contours that are not consistent with the 
chosen loudness function type. The reason for this seems 
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 [1] seem to 
in

arithmic representations of
an

im

be taken into account and corrected before pub- 
lis
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